

Heavy hadron spectroscopy "@ EicC"

Feng-Kun Guo (郭奉坤) Institute of Theoretical Physics, CAS

Prepared for the **EicC** discussion

The 10th Workshop on Hadron Physics in China and Opportunities Worldwide

Weihai, 26-30 July 2018

Low-energy QCD: big challenge

Hidden-charm XYZ states

• Quark model works very well for the low-lying states

Hidden-charm XYZ states

Some states are very close to two-body S-wave thresholds

 $M_1 = (4380 \pm 8 \pm 29) \text{ MeV}, \qquad \Gamma_1 = (205 \pm 18 \pm 86) \text{ MeV},$ $M_2 = (4449.8 \pm 1.7 \pm 2.5) \text{ MeV}, \qquad \Gamma_2 = (39 \pm 5 \pm 19) \text{ MeV}.$

• observed in $J/\psi p$ invariant mass distribution: pentaguark ($c\bar{c}uud$) candidates

- quantum numbers not determined
- Narrow pentaguark-like structures with hidden-charm had been predicted 5 years before (07.2010):

Prediction of narrow N^* and Λ^* resonances with hidden charm above 4 GeV, J.-J. Wu, R. Molina, E. Oset, B.-S. Zou, PRL105(2010)232001

Charmed mesons

 $D_1(2430)^0$ WIDTH

<u>Puzzles:</u>

 $384^{+130}_{-110} \text{ MeV}$

(1) Why $D_{s0}^{*}(2317)$, $D_{s1}(2460)$ so light?

(2) Why
$$M_{D_{s1}(2460)^{\pm}} - M_{D_{s0}^{*}(2317)^{\pm}}$$

=(141.8±0.8) MeV
 $\simeq M_{D^{*\pm}} - M_{D^{\pm}}$?
=(140.67±0.08) MeV
(3) Why $M_{D_{0}^{*}(2400)} \gtrsim M_{D_{s0}^{*}(2317)}$
and $M_{D_{1}(2430)} \sim M_{D_{s1}(2460)}$?

What are they?

- Hadron resonances due to QCD dynamics, poles of the S-matrix
 - Ordinary mesons and baryons

Exotic hadrons: multiquark states, hybrids, glueballs, and hadronic molecules

- Kinematic effects, (normally) branching point of the S-matrix
 - normal two-body threshold cusp
 - riangle singularity
 - R

. . .

Example: Z_c

BESIII and Belle observed in

• D0 observed in inclusive decays of *b*flavored hadrons, but still via $Y(4260) \rightarrow [J/\psi\pi]\pi$

BESIII, PRL110(2013)252001; Belle, PRL110(2013)252002

4.3

4.4

[GeV]

4.1

[GeV]

3.95 4 4.05

[GeV]

Example: Z_c

- Importance of a triangle singularity in $Y(4260) \rightarrow \pi Z_c(3900)$ noticed, but $Z_c(3900)$ still needed Q.Wang, Hanhart, Q.Zhao, PRL111(2013)132002; PLB725(2013)106
- Coupled-channel analysis with both triangle diagrams and FSI (Z_c generated)

Albaladejo, FKG, Hidalgo-Duque, Nieves, PLB755(2016)337

	M_{Z_c} (MeV)	$\Gamma_{Z_c}/2$ (MeV)	Ref.	Final state	
	3899 ± 6	23 ± 11	[1] (BESIII)]/ψ π	
	3895 ± 8	32 ± 18	[2] (Belle)	$J/\psi \pi$	
	3886 ± 5	19 ± 5	[3] (CLEO-c)	$J/\psi \pi$	
	3884 ± 5	12 ± 6	[4] (BESIII)	\bar{D}^*D	
	3882 ± 3	13 ± 5	[5] (BESIII)	\bar{D}^*D	
	$3894\pm 6\pm 1$	$30\pm12\pm6$	$\Lambda_2 = 1.0 \text{ GeV}$	$J/\psi \pi, \bar{D}^*D$	resonance pole
	$3886 \pm 4 \pm 1$	$22\pm 6\pm 4$	$\Lambda_2 = 0.5 \text{ GeV}$	J/ψ π, D*D	resonance pole
	$3831 \pm 26^{+7}_{-28}$	virtual state	$\Lambda_2 = 1.0 \text{ GeV}$	$J/\psi \pi, \bar{D}^*D$	and the second second
	$3844 \pm 19^{+12}_{-21}$	virtual state	$\Lambda_2=0.5~\text{GeV}$	$J/\psi \pi, \bar{D}^*D$	or virtual state
-					

Example: Z_c(3900)

• JPAC analysis with triangle diagrams but w/o a nearby pole for Z_c Pilloni et al., PLB772(2017)200

Example: P_c

- Excellent candidates for hidden-charm pentaquarks
- For P_c(4450), ambiguities due to nearby triangle singularities if $J^P = \frac{1}{2}^+$ or $\frac{3}{2}^+$

FKG, Meißner, W. Wang, Z. Yang, PRD92(2015)071502(R); X.-H. Liu, Q. Wang, Q. Zhao, PLB757(2015)231; Bayar, Aceti, FKG, Oset, PRD94(2016)074039

Need completely different production processes

- To establish exotic multiquarks, distinguish from triangle singularities
- Triangle singularities depend strongly on the kinematics, thus different production processes needed! ⇒ photoproduction

Q. Wang, X.-H. Liu, Q. Zhao, PRD92(2015)034022

From charm to bottom

Puzzles and possible solutions:

(1) Why $D_{s0}^{*}(2317)$, $D_{s1}(2460)$ so light? Hadronic molecules (*DK*, *D*K*) (2) Why $M_{D_{s1}(2460)\pm} - M_{D_{s0}^*(2317)\pm}$ $=(141.8\pm0.8)$ MeV $\simeq M_{D^{*\pm}} - M_{D^{\pm}}$ $=(140.67\pm0.08)$ MeV Heavy quark spin symmetry (3) Why $M_{D_0^*(2400)} \gtrsim M_{D_{s0}^*(2317)}$ and $M_{D_1(2430)} \sim M_{D_{s1}(2460)}$? Lowest: $M_{D_0^*} \approx 2.10 \text{ GeV}$, $M_{D_1} \approx 2.25 \text{ GeV}$

One important theory idea: heavy quark symmetry (HQS)

• HQS is better for bottom than charm

$$\frac{\Lambda_{\rm QCD}}{m_b} \ll \frac{\Lambda_{\rm QCD}}{m_c}$$

Du et al., arXiv:1712.07957

From charm to bottom

 Heav 	y-strange	Du et al., arXiv:1712.07957					
	meson	J^P	prediction (MeV)	PDG2017 (MeV)	lattice (MeV)		
	D_{s0}^*	0^+	2315^{+18}_{-28}	2317.7 ± 0.6	$2348^{+7}_{-4}[1]$	[1] Bali et al _ PPD96(2017)074501	
	D_{s1}	1^+	2456^{+15}_{-21}	2459.5 ± 0.6	$2451\pm4[1]$		
	B_{s0}^*	0^+	5720^{+16}_{-23}	—	$5711 \pm 23[2]$	[2] Lang et al., PLB750(2015)17	
	B_{s1}	1^{+}	5772^{+15}_{-21}	_	$5750\pm25[2]$		

• Heavy-nonstrange, two I = 1/2 states $(M, \Gamma/2)$:

	Lower (MeV)	Higher (MeV)	PDG2017 (MeV)
D_0^*	$\left(2105^{+6}_{-8}, 102^{+10}_{-11}\right)$	$(2451^{+36}_{-26}, 134^{+7}_{-8})$	$(2318 \pm 29, 134 \pm 20)$
D_1	$\left(2247^{+5}_{-6}, 107^{+11}_{-10}\right)$	$\left(2555^{+47}_{-30}, 203^{+8}_{-9}\right)$	$(2427 \pm 40, 192^{+65}_{-55})$
B_0^*	$(5535^{+9}_{-11}, 113^{+15}_{-17})$	$(5852^{+16}_{-19}, 36\pm 5)$	_
B_1	$(5584^{+9}_{-11}, 119^{+14}_{-17})$	$(5912^{+15}_{-18}, 42^{+5}_{-4})$	_

- Predictions for bottom partners distinguish different scenarios
- $X, Y, Z \Rightarrow X_b, Y_b, Z_b$
- $P_c \Rightarrow P_b$

see the talk by B.-S. Zou on 30 July

From doubly-charm baryons to doubly-bottom tetraquarks

EicC

- Different production mechanisms ⇒ free of triangle singularities
- Polarization ⇒ quantum numbers
- Bottom: connected to charm, ideal to reveal the mystery of exotic hadrons (better HQS);
 both charm and bottom @ EicC
 - ✓ Bottom mesons and baryons: so far very few
 - $\checkmark \Xi_{cc}, \Xi_{bc}, \Xi_{bb}, \dots$
 - $\checkmark X, Z_c, X_b, Z_b, \dots$
 - P_c, P_b, \dots talk by B.-S. Zou on July 30
 - ✓ Doubly-heavy tetraq.: T_{cc} , T_{bc} , T_{bb}
 - ✓ Small-x, hybrids

Reliable cross section estimates/simulations need to be done

Complementary to

Refs. of photoproduction of XYZ and Pc

XYZ

X.-H. Liu, Q. Zhao, F. E. Close, Search for tetraquark candidate Z(4430) in meson photoproduction, PRD77(2008)094005 J. He, X. Liu, Discovery potential for charmonium-like state Y(3940) by the meson photoproduction, PRD80(2009)114007 G. Galata, Photoproduction of Z(4430) through mesonic Regge trajectories exchange, PRC83(2011)0065203 Q.-Y. Lin, X. Liu, H.-S. Xu, Charged charmoniumlike state $Z_c(3900)^{\pm}$ via meson photoproduction, PRD88(2013)114009 Q.-Y. Lin, X. Liu, H.-S. Xu, Probing charmoniumlike state X(3915) through meson photoproduction, PRD89(2014)034016 X.-Y. Wang, X.-R. Chen, A. Guskov, Photoproduction of the charged charmoniumlike Z_c^+ (4200), PRD92(2015)094017 COMPASS, Search for exclusive photoproduction of Z_c^{\pm} (3900) at COMPASS, PLB742(2015)330 COMPASS, Observation of X(3872) muoproduction at COMPASS, arXiv:1707.01796 [hep-ex] J. Stevens, Opportunities in Photoproduction and Spectroscopy at an EIC, https://wiki.ge.infn.it/eic/images/d/d3/Eic_aps-1.pdf, APS meeting 2015

• **Pc**

Y. Huang, J. He, H. F. Zhang, and X. R. Chen, *Discovery potential of hidden charm baryon resonances via photoproduction*, JPG41(2014)115004

Q. Wang, X.-H. Liu, Q. Zhao, Photoproduction of hidden charm pentaquark states $P_c^+(4380)$ and $P_c^+(4450)$, PRD92(2015)034022 V. Kubarovsky, M. B. Voloshin, Formation of hidden-charm pentaquarks in photon-nucleon collisions, PRD92(2015)031502

M. Karliner, J. Rosner, Photoproduction of exotic baryon resonances, PLB752(2016)329

A. N. Hiller Blin et al. (JPAC), Studying the $P_c(4450)$ resonance in J/ψ photoproduction off protons, PRD94(2016)034002; arXiv:1801.10211 [hep-ph]

M.-E. Meziani et al., A Search for the LHCb Charmed 'Pentaquark' using Photo-Production of J/ψ at Threshold in Hall C at Jefferson Lab, arXiv:1609.00676 [hep-ex], E12-16-007 Experiment S. Joosten, M.-E. Meziani, Heavy Quarkonium Production at Threshold: from JLab to EIC, arXiv:1802.02616 [hep-ex]

http://www.ectstar.eu/node/4230

The spectroscopy program at EIC and future accelerators

From Wednesday, 19 December, 2018 - 08:30 to Friday, 21 December, 2018 - 14:00

Location: ECT* Conference room

Abstract:

Last decade witnessed the discovery of many states who challenged the quark model paradigm of hadrons. The workshop aims at reviewing the current status of light and heavy quark spectroscopy, with particular emphasis on exotic states, and focus on the opportunity for a comprehensive hadron spectroscopy program at the Electron-Ion collider (EIC), which is the highest priority project for the QCD community, expected to be built in the USA during the next years.

Registration period: 01 Oct 2018 to 27 Nov 2018

Organizers

Marco Battaglieri	INFN Genova	battaglieri@ge.infn.it
Alessandro Pilloni	Jefferson Lab	pillaus@jlab.org
Adam Szczepaniak	Indiana University & Jefferson Lab	aszczepa@indiana.edu

Thank you for your attention!

Triangle singularity

$$\frac{A}{\frac{1}{2m_A}\sqrt{\lambda(m_A^2,m_1^2,m_2^2)}} \equiv \boxed{p_{2,\text{left}} = p_{2,\text{right}}} \equiv \gamma \left(\beta E_2^* - p_2^*\right)$$

on-shell momentum of m_2 at the left and right cuts in the A rest frame $\beta = |\vec{p}_{23}|/E_{23}, \gamma = 1/\sqrt{1-\beta^2}$ Bayar et al., PRD94(2016)074039

- $p_2 > 0$, $p_3 = \gamma \left(\beta E_3^* + p_2^*\right) > 0 \Rightarrow m_2$ and m_3 move in the same direction
- velocities in the A rest frame: $v_3 > \beta > v_2$

$$v_2 = \beta \frac{E_2^* - p_2^* / \beta}{E_2^* - \beta p_2^*} < \beta, \qquad v_3 = \beta \frac{E_3^* + p_2^* / \beta}{E_3^* + \beta p_2^*} > \beta$$

Charmed mesons

I=1/2 energy levels in finite volume Albaladejo, Fernandez-Soler, FKG, Nieves, PLB767(2017)465

Lattice data: Moir et al., JHEP1610(2016)011

20

XYZ with bottom quarks

- Only two Z_b in bottomonium region (from $e^+e^- \rightarrow \Upsilon(10860, 11020) \rightarrow \pi Z_b$)
- Any theory explaining XYZ states would predict similar states with bottom quarks.
 E.g., hadronic molecular model:

V_C	$I(J^{PC})$	States	Thresholds	Masses $(\Lambda = 0.5 \text{ GeV})$	Measurements
C_X	$0(1^{++})$	$\frac{1}{\sqrt{2}}(D\bar{D}^* - D^*\bar{D})$	3875.87	3871.68 (input)	3871.68 ± 0.17 PDG [X(3872)]
	$0(2^{++})$	$D^*\bar{D}^*$	4017.3	4012^{+4}_{-5}	?
	$0(1^{++})$	$\frac{1}{\sqrt{2}}(B\bar{B}^* - B^*\bar{B})$	10604.4	10580^{+9}_{-8}	?
	$0(2^{++})$	$B^*\bar{B}^*$	10650.2	10626^{+8}_{-9}	?
	$0(2^+)$	D^*B^*	7333.7	7322^{+6}_{-7}	?
C_Z	$1(1^{+-})$	$\frac{1}{\sqrt{2}}(B\bar{B}^* + B^*\bar{B})$	10604.4	10602.4 ± 2.0 (input)	10607.2 ± 2.0 Belle [Z _b (10610)]
	$1(1^{+-})$	$B^*\bar{B}^*$	10650.2	10648.1 ± 2.1	10652.2 ± 1.5 Belle $[Z_b(10650)]$
	$1(1^{+-})$	$\frac{1}{\sqrt{2}}(D\bar{D}^* + D^*\bar{D})$	3875.87	3871^{+4}_{-12} (V)	$3899.0 \pm 3.6 \pm 4.9$ BESIII [$Z_c(3900)$]
		• -			$3894.5 \pm 6.6 \pm 4.5$ Belle
					$3886 \pm 4 \pm 2$ CLEO-c
	$1(1^{+-})$	$D^* \bar{D}^*$	4017.3	4013^{+4}_{-11} (V)	$4026.3 \pm 2.6 \pm 3.7$ BESIII [Z _c (4020)]
	$1(1^{+})$	D^*B^*	7333.7	$7333.6^{\dagger}_{-4.2}$ (V)	?