

Future physics at STAR and toward EIC

Jiangyong Jia

Stony Brook University & Brookhaven National Laboratory

July 28, 2018

Brookhaven National Laboratory

Hadron 2018, Weihai

Office of Science | U.S. Department of Energy

Study of non-Abelian QCD matter

- Consists of nucleons, hadrons, quarks or gluons
- Occupy extended volume, has finite lifetime

Phases of QCD Matter

• Regions reached by varying \sqrt{s}

 Matter at RHIC/LHC has high T (~0.4 GeV) and low chemical potential.

Some big questions:

- Confinement and Chiral symmetry restoration.
- Phase boundaries & Phase transitions.
- QGP equation of state & various transport properties.
- QCD at finite T: local parity violation and polarization.

How to study the QCD matter?

Large uncertainty from initial state

Space-time dynamics via bulk particles

jet

DIS and Heavy Ion

- DIS: Probe initial constituent distribution (one-body Wigner func.)
 - Precise control on collision kinematics

Heavy-ion: Multi-parton interactions (many-body Wigner function)

Frozen PDF fluctuation Frozen PDF fluctuation

Number of sources and their distributions

DIS and Heavy Ion

DIS: pQCD works down to Q~1-2GeV

HI: pQCD works only for p_T >5-10 GeV

STAR at Relativistic Heavy Ion Collider

Tracking and PID (full 2π) TPC: $|\eta| < 1$ TOF: $|\eta| < 1$ BEMC: $|\eta| < 1$ EEMC: $1 < \eta < 2$ HFT (2014-2016): $|\eta| < 1$ MTD (2014+): $|\eta| < 0.5$

MB trigger and event plane reconstruction BBC: $3.3 < |\eta| < 5$ EPD (2018+): $2.1 < |\eta| < 5.1$ FMS: $2.5 < \eta < 4$ VPD: $4.2 < |\eta| < 5$ ZDC: $6.5 < |\eta| < 7.5$

On-going/future upgrades iTPC (2019+): $|\eta| < 1.5$ eTOF (2019+): $-1.6 < \eta < -1$ FCS (2021+): $2.5 < \eta < 4$ FTS (2021+): $2.5 < \eta < 4$

Past runs 2000-2017

Various A+A species $\sqrt{s_{_{NN}}}$ = 5 - 200 GeV

Hot QCD, Phase diagram

p+A or d+A at √s=20-200 GeV

Cold QCD: nPDF, Saturation physics.

p-p, p1-p1 @ √s=22-500 GeV

Spin physics, ref for HI

√s [GeV]	" P+P	p+AI	p <mark>+Au</mark>	d+Au	3HetAu	Curicu	Cu+Au	Au+Au	U+U
510									
200									
130									
62.4									
39									
27									
20									
14.5									
7.7									

Some highlights of heavy ion program

Some highlights of heavy ion program

Science.1183980 Nature 473, 353

Require dense population q & qbar over an extended volume

Other accomplishments

Quarkonium sequential melting

M_{inv}/ vs

Also proton spin physics

Gluon contribution

Sea contribution

Road-Map for STAR leading to EIC

RUN 2018

- 200 GeV isobar system (⁹⁶Ru vs ⁹⁶Zr) and 27 GeV Au+Au
- Search for Chiral Magnetic Effect and measurement of vorticity
- Beam energy scan II: 2019-2021
 - Low energy ($\sqrt{s_{NN}} = 7.7, 9.1, 11.5, 14.5, 19.6 \text{ GeV}$) Au+Au runs using electron cooling to increase luminosity at lowest energies
 - Fixed target runs at $\sqrt{\text{sNN}} = (3.0), 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 \text{ GeV}$
 - Search for critical phenomena in event-by-event fluctuations
- Possible joint run with sPHENIX: 2023-2025
 - 200 GeV Au+Au, p+p, p+Au, p+Al
 - Constrain longitudinal dynamics of HI and ebye fluctuations
 - Unique opportunity for cold QCD physics (TMD, nPDF and saturation).

Road-Map for STAR leading to EIC

RUN 2018

- 200 GeV isobar system (⁹⁶Ru vs ⁹⁶Zr) and 27 GeV Au+Au
- Search for Chiral Magnetic Effect and measurement of vorticity
- Beam energy scan II: 2019-2021
 - Low energy ($\sqrt{s_{NN}} = 7.7, 9.1, 11.5, 14.5, 19.6 \text{ GeV}$) Au+Au runs using electron cooling to increase luminosity at lowest energies
 - Fixed target runs at $\sqrt{\text{sNN}} = (3.0), 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 \text{ GeV}$
 - Search for critical phenomena in event-by-event fluctuations
- Possible joint run with sPHENIX: 2023-2025
 - 200 GeV Au+Au, p+p, p+Au, p+Al
 - Constrain longitudinal dynamics of HI and ebye fluctuations
 - Unique opportunity for cold QCD physics (TMD, nPDF and saturation).

Chiral magnetic effects

- QCD chiral anomaly leads to imbalance of left and right handed quarks at finite T (QGP), characterized by a chiral chemical potential μ₅.
- This imbalance generates an electric current along the magnetic field (chiral magnetic effect)→ a fundamental prediction of QCD

Chiral magnetic effects

Choose systems with similar collision geometry i.e. collective dynamics (v₂) but different B-field (by 20%)

 $^{96}_{40}$ Zr + $^{96}_{40}$ Zr vs. $^{96}_{44}$ Ru + $^{96}_{44}$ Ru

Relative difference in charge separation effects (Ru vs Zr)

Control systematics to <10% of the observed effects.

 Fill-by-fill switching between Ru and Zr with same condition minimize all systematics

Vorticity of QGP via global A polarization

New tool to study QGP and relativistic quantum fluid vorticity

Road-Map for STAR leading to EIC

- **RUN 2018**
 - 200 GeV isobar system (⁹⁶Ru vs ⁹⁶Zr) and 27 GeV Au+Au
 - Search for Chiral Magnetic Effect and measurement of vorticity
- Beam energy scan II: 2019-2021
 - Low energy ($\sqrt{s_{NN}} = 7.7, 9.1, 11.5, 14.5, 19.6 \text{ GeV}$) Au+Au runs using electron cooling to increase luminosity at lowest energies
 - Fixed target runs at $\sqrt{\text{sNN}} = (3.0), 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 \text{ GeV}$
 - Search for critical phenomena in event-by-event fluctuations
- Possible joint run with sPHENIX: 2023-2025
 - 200 GeV Au+Au, p+p, p+Au, p+Al
 - Constrain longitudinal dynamics of HI and ebye fluctuations
 - Unique opportunity for cold QCD physics (TMD, nPDF and saturation).

QCD phase diagram-BESII

Explore the largely uncharted region of the QCD diagram Including regions around the conjectured critical point

Main tool: Fluctuation of conserved charge

• Signatures: enhanced thermodynamic fluctuations and increased correlation length $K_2 \sim \xi^2 - K_3 \sim \xi^{4.5} - K_4 \sim \xi^7$

• Top 5% central collisions show non-monotonic behavior vs \sqrt{s}

Sailing in the phase diagram

Sailing in the phase diagram

- Knowledge on the full space-time evolution is necessary for the CEP search: the fireball trajectory and how fast it flows in the phase diagram
- Rapidity dependence provides additional handle (e.g. baryon stopping)

Detector upgrades for BES-II

EPD upgrade: DONE

- Better and independent determination of collision geometry 2<|η|<5
- Improves trigger

iTPC upgrade:

- Extends PID coverage from |η|<1.0 to 1.5
- Improves dE/dx resolution

eTOF upgrade:

 Additional PID for η=1.1-1.6 to higher p_T

21

 Very important for fixed target program

Detector upgrades for BES-II

Full EPD has been installed

One iTPC sector has been installed

3 eTOF modules have been installed

Road-Map for STAR leading to EIC

	FY18 FY19	FY20 FY21	FY22 FY23	FY24 FY25	FY26	FY27	FY28	FY29	FY30	FY31
Critical Decisions	CD-0 Approve Mission Need Dec 2018	CD-1 Approve Selv and Cost Rai Dec 2020	CD-2 Approve Selection Performance ection Baseline nge Dec 2021	CD-3 Approve Start of Construction Dec 2023					CD-4 Approv Comple Dec 202	e Project tion :9
Beam Energy Scan SPHENIX									eRHIC	

- **RUN 2018**
 - 200 GeV isobar system (⁹⁶Ru vs ⁹⁶Zr) and 27 GeV Au+Au
 - Search for Chiral Magnetic Effect and measurement of vorticity
- Beam energy scan II: 2019-2021
 - Low energy ($\sqrt{s_{NN}} = 7.7, 9.1, 11.5, 14.5, 19.6 \text{ GeV}$) Au+Au runs using electron cooling to increase luminosity at lowest energies
 - Fixed target runs at $\sqrt{\text{sNN}} = (3.0), 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 \text{ GeV}$
 - Search for critical phenomena in event-by-event fluctuations
- Possible joint run with sPHENIX: 2023-2025
 - 200 GeV Au+Au, p+p, p+Au, p+Al
 - Constrain longitudinal dynamics of HI and ebye fluctuations
 - Unique opportunity for cold QCD physics (TMD, nPDF and saturation).

Forward upgrades beyond BESII

Beam Energy Scan II 2019~2021

Forward Physics 2023-2025

Forward Tracking System
Forward Calorimeter System

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669

Continued operation endorsed by 2017 & 2018 PAC $2.5 < \eta < 4.2$

STAR Forward Upgrade components

ECal and HCal

reuse PHFNIX PbSc ~10%/ \sqrt{E}

Sampling iron-scintillator $\sim 60\%/\sqrt{E}$

Cost: \$2.0M -ECAL \$ 0.41M -HCAL \$ 1.56M

Dynamics in longitudinal direction

Credit: Bjoern Schenke

$$oldsymbol{v}_n$$
 = $v_n e^{in\Psi_n}$

η/y_{beam}

Example: Control initial state of HI via pA

Initial geometry driven by nPDF $f_{Au}(x, \vec{b})$

Strong rapidity evolution towards low x: non-linear QCD a.la CGC

Probes by pA at RHIC

- Use observables free of final state effects
 - Gluons: R_{pA} for direct photons
 - Sea-quarks: R_{pA} for DY
- pA at RHIC explore unique x-Q² region
 - A-scan to constrain prediction of CGC
- Good precision with a run concurrent with sPHENIX
- Alternative observables and kinematics to EIC

Example: origin of A_N via forward jet

Forward jet reconstruction by tagging an additional charged hadron Charge-track asymmetry in jet \rightarrow Access Transversity @ large x

Test universality of transversity @ SIDIS

Talk by Qinghua Xu

Summary

- Rich set of accomplishments at STAR so far
- Large discovery potential expected in the years leading to EIC (2018~2025)
- Enabled by modest mid-rapidity upgrade and forward-rapidity upgrades
 - During BES-II: EPD, iTPC, eTOF
 - Leading to EIC: forward tracking/calo upgrade, complimentary to sPHENIX running:
- Essential to the mission of RHIC physics in hot and cold QCD
- Help lay the groundwork for the EIC.