Hybrid states in the framework of Dyson-Schwinger equations

Shu-Sheng Xu(徐书生) Nanjing University

Based on arXiv: 1805.06430 [nucl-th]

Shu-Sheng Xu, Zhu-Fang Cui, Lei Chang, Joannis Papavassiliou, Craig D. Roberts, Hong-Shi Zong

The 10th Workshop on Hadron physics in China and Opportunities Worldwide, Jul 26-30, 2018, Shangdong, China

- The well-known light hadron is simple
 - It is qualitatively matches the constituent quark model by Gell-Mann and Zweig (1964).
 - Mesons built from a constituent-quark-antiquark ($Q\overline{Q}$) pair
 - Baryons constituted from three constituent quarks (QQQ) where Q is u, d, s-quarks

- The well-known light hadron is simple
 - It is qualitatively matches the constituent quark model by Gell-Mann and Zweig (1964).
 - Mesons built from a constituent-quark-antiquark (QQ) pair Ş
 - Baryons constituted from three constituent quarks (QQQ) where Q is u, d, s-quarks

- Gell-Mann and Zweig also raised possibility of multi-quark state
 - Tetraquark: QQQQ

Ş

Pentaquark: QQQQ

No candidate were then known, and they didn't know gluon

- After ~50 years, in heavy quark systems, that now has changed
 - X, Y, Z,... pentaquark appears.

- ✤ In 1970s, during discovery of Quantum Chromodynamics(QCD)
 - based on quantum field theory
 - Self-interacting gauge boson mediate the interactions between quarks.

- In 1970s, during discovery of Quantum Chromodynamics(QCD)
 - based on quantum field theory
 - Self-interacting gauge boson mediate the interactions between quarks.
- ✦ A new possibility appears, that is a system with valence gluon
 - \bigcirc hybrid/exotic meson GQQ
 - hybrid baryons GQQQ
 - Glueballs GG, GGG,...

where "G" is a constituent gluon, but we don't know its property onlyif such system detected

- ✤ In 1970s, during discovery of Quantum Chromodynamics(QCD)
 - based on quantum field theory
 - Self-interacting gauge boson mediate the interactions between quarks.
- ✦ A new possibility appears, that is a system with valence gluon
 - \bigcirc hybrid/exotic meson GQQ
 - hybrid baryons GQQQ
 - Glueballs GG, GGG,...

where "G" is a constituent gluon, but we don't know its property onlyif such system detected

✦ There are a few plausible hybrid-meson candidates below 2 GeV

 Dedicated searches for such states are underway at modern facilities (e.g. COMPASS @ CERN, GlueX @ JLab)

Model studies of hybrids

- Numerous models have employed to study spectrum of light hybrid mesons
 - Approaches are distinguished by their treatment/definition of constituent gluon
 - Their spectrum disagree each other

Table 1: Quantum numbers and approximate masses of non-strange hybrids in various models. The LQCD masses in parentheses are given for a pion mass of $396 \text{ MeV}/c^2$. $J_{q\bar{q}'}^{PC}$ and J_g^{PC} denote the quantum numbers of the $q\bar{q}'$ pair and the gluon, respectively, which couple to give J^{PC} of the hybrid. Bold numbers indicate spin-exotic quantum numbers. [B. Ketzer, Pos QNP2012(2012)]

Model	$J^{PC}_{q\overline{q}'}$	J_g^{PC}	J^{PC}	Mass (GeV/ c^2)
Bag [1 2]	0-+	1 ⁺⁻ (TE)	1	~ 1.7
[-;-]	1	1 ⁺⁻ (TE)	$(0, 1, 2)^{-+}$	$\sim 1.3, 1.5, 1.9$
	0-+	1 (TM)	1+-	heavier
	1	1 (TM)	$(0,1,2)^{++}$	heavier
Flux tube [3,4]	0-+	1+-	1	1.7-1.9
[-,]	1	1+-	$(0, 1, 2)^{-+}$	1.7-1.9
	0-+	1-+	1++	1.7-1.9
	1	1-+	$(0, 1, 2)^{+-}$	1.7-1.9
Constituent gluon	0-+	1	1+-	1.3-1.8 / 2.1
[5,6]	1	1	$(0, 1, 2)^{++}$	1.3-1.8 / 2.2
	1+-	1	$(0, 1, 2)^{-+}$	1.8-2.2 / 2.2
	$(0,1,2)^{++}$	1	$1^{}, (0, 1, 2)^{}, (1, 2, 3)^{}$	1.8-2.2 / 2.3
Constituent gluon /	0-+	1+-	1	(2.3)
LQCD [7,8]	1	1+-	$(0, 1, 2)^{-+}$	(2.1, 2.0, 2.4)
	1+-	1+-	$(0, 1, 2)^{++}$	(> 2.4)
	$(0, 1, 2)^{++}$	1+-	$1^{+-}, (0, 1, 2)^{+-}, (1, 2, 3)^{+-}$	(> 2.4)

- [1]M. S. Chanowitz and S. R. Sharpe, Nucl. Phys. B 222, 211 (1983).
- [2] T. Barnes, F. Close, and F. de Viron, Nucl. Phys. B 224, 241 (1983).
- [3] N. Isgur and J. E. Paton, Phys. Rev. D 31, 2910 (1985).
- [4] T. Barnes, F. Close, and E. Swanson, Phys. Rev. D 52, 5242 (1995).
- [5] S. Ishida, H. Sawazaki, M. Oda, and K. Yamada, Phys. Rev. D 47, 179 (1993).
- [6] I. J. General, S. R. Cotanch, and F. J. Llanes-Estrada, Eur. Phys. J. C51, 347 (2007).
- [7] P. Guo et al., Phys. Rev. D 77, 056005 (2008).
- [8] J. J. Dudek, Phys. Rev. D 84, 074023 (2011).

Model studies of hybrids

- Numerous models have employed to study spectrum of light hybrid mesons
 - Approaches are distinguished by their treatment/definition of constituent gluon
 - Their spectrum disagree each other
- Development of a reliable continuum method for calculating hybrid meson properties would be valuable

Table 1: Quantum numbers and approximate masses of non-strange hybrids in various models. The LQCD masses in parentheses are given for a pion mass of $396 \text{ MeV}/c^2$. $J_{q\bar{q}'}^{PC}$ and J_g^{PC} denote the quantum numbers of the $q\bar{q}'$ pair and the gluon, respectively, which couple to give J^{PC} of the hybrid. Bold numbers indicate spin-exotic quantum numbers. [B. Ketzer, Pos QNP2012(2012)]

Model	$J^{PC}_{q\overline{q}'}$	J_g^{PC}	J^{PC}	Mass (GeV/ c^2)
Bag [1 2]	0-+	1 ⁺⁻ (TE)	1	~ 1.7
[-;-]	1	1 ⁺⁻ (TE)	$(0, 1, 2)^{-+}$	$\sim 1.3, 1.5, 1.9$
	0-+	1 (TM)	1+-	heavier
	1	1 (TM)	$(0, 1, 2)^{++}$	heavier
Flux tube [3,4]	0-+	1+-	1	1.7-1.9
[-,.]	1	1+-	$(0, 1, 2)^{-+}$	1.7-1.9
	0-+	1-+	1++	1.7-1.9
	1	1^{-+}	$(0, 1, 2)^{+-}$	1.7-1.9
Constituent gluon	0-+	1	1+-	1.3-1.8 / 2.1
[5.6]	1	1	$(0, 1, 2)^{++}$	1.3-1.8 / 2.2
	1+-	1	$(0, 1, 2)^{-+}$	1.8-2.2 / 2.2
	$(0,1,2)^{++}$	1	$1^{}, (0, 1, 2)^{}, (1, 2, 3)^{}$	1.8-2.2 / 2.3
Constituent gluon /	0-+	1+-	1	(2.3)
LQCD [7,8]	1	1+-	$(0, 1, 2)^{-+}$	(2.1, 2.0, 2.4)
	1+-	1+-	$(0, 1, 2)^{++}$	(> 2.4)
	$(0, 1, 2)^{++}$	1+-	$1^{+-}, (0, 1, 2)^{+-}, (1, 2, 3)^{+-}$	(> 2.4)

- [1]M. S. Chanowitz and S. R. Sharpe, Nucl. Phys. B 222, 211 (1983).
- [2] T. Barnes, F. Close, and F. de Viron, Nucl. Phys. B 224, 241 (1983).
- [3] N. Isgur and J. E. Paton, Phys. Rev. D 31, 2910 (1985).
- [4] T. Barnes, F. Close, and E. Swanson, Phys. Rev. D 52, 5242 (1995).
- [5] S. Ishida, H. Sawazaki, M. Oda, and K. Yamada, Phys. Rev. D 47, 179 (1993).
- [6] I. J. General, S. R. Cotanch, and F. J. Llanes-Estrada, Eur. Phys.J. C51, 347 (2007).
- [7] P. Guo et al., Phys. Rev. D 77, 056005 (2008).

[8] J. J. Dudek, Phys. Rev. D 84, 074023 (2011).

- For interpretation of empirical observations
- Provide insights into results obtained via the numerical simulation of LQCD

Bound state problem

- ◆ QQ̄ mesons in quantum mechanics can't possess exotic quantum numbers: JPC=0+-, 0--,1-+, etc.
- Nevertheless, exotic quantum numbers are allowed in relativistic two-body bound state
- Studies of exotic mesons using simple truncation for Bethe-Salpeter kernel produce unrealistic spectra
- More sophisticated kernel can not remedied, it signal that exotic may contain explicit valence gluon degree of freedom

L	S	JPC
0	0	0-+
0	1	1
1	0	1+-
1	1	0++
1	1	1+-

0++	0+-	0-+	0
1++	1+-	1-+	1
2++	2+-	2-+	2
3++	3+-	3-+	3

Si-xue Qin, et al., Phys.Rev. C85 (2012) 035202

ω	0.4	0.5	0.6
m ₀	0.814	0.940	1.053
m ₀₊₋	1.186	1.252	1.323
m1-+	1.234	1.277	1.318

New perspective on hybrid mesons

- Can one produce sound treatment of hybrids using Poincarécovariant Faddeev equation?
 - Treat these systems as bound states of valence-gluon, -quark and antiquark.
 - Each constituent is massive in their infrared region

New perspective on hybrid mesons

- Can one produce sound treatment of hybrids using Poincarécovariant Faddeev equation?
 - Treat these systems as bound states of valence-gluon, -quark and antiquark.
 Bapid acquisition of ma
 - Each constituent is massive in their infrared region
- Recall DSEs for quark propagator and gluon propagator
 - Quark is massive in its infrared region
 - Running gluon mass

$$d(k^2) = \frac{\alpha(\zeta)}{k^2 + m_g^2(k^2;\zeta)}$$
$$m_g^2(k^2) \approx \frac{\mu_g^4}{\mu_g^2 + k^2}$$

It implies gluon is massive in it's infrared region

Hints from baryons

- ✦ Baryon is a bound state of three valence quarks
 - The anti-triplet coloured diquark correlations play in simplifying the baryon three body problem

$$=$$

$$P_{q}$$

$$P_{d}$$

The spectrum obtained from quark-diquark picture is almost same as full 3-body Faddeev equation

Hints from baryons

- ✦ Baryon is a bound state of three valence quarks
 - The anti-triplet coloured diquark correlations play in simplifying the baryon three body problem

$$=$$

$$P_{q}$$

$$P_{d}$$

- The spectrum obtained from quark-diquark picture is almost same as full 3-body Faddeev equation
- Can hybrid states be solved in this way?

The idea towards hybrids

- ◆ Suppose strong qg and q̄g correlation exist, then
 - Hybrids explained by coupled channel Faddeev-like bound state equation

 $\Psi=\Psi_1+\Psi_2$, where Ψ_1 is Faddeev amplitude for $q_g\overline{q}$ and Ψ_2 is that for $q\overline{q}g$

The idea towards hybrids

- ◆ Suppose strong qg and q̄g correlation exist, then
 - Hybrids explained by coupled channel Faddeev-like bound state equation

 $\Psi=\Psi_1+\Psi_2$, where Ψ_1 is Faddeev amplitude for $q_g\overline{q}$ and Ψ_2 is that for $q\overline{q}g$

Challenge:

- confirm existence of tight gluonquark correlations
- determine their properties

Gluon-quark correlations

 Using rainbow-ladder truncation for gluon-quark Bethe-Salpeter equation, and search for a pole solution

- The gluon infrared mass $\sim 1/2 m_{proton}$
- The quark infrared mass $\sim 1/3 m_{proton}$
- The pole of gluon-quark corralation located at $m_{q_g} \sim m_{proton} \sim 1.0$ GeV.

Gluon-quark correlations

- ♦ [gq] correlation behave like a dressed quark
 - Colour-triplet fermion-like object
 - Propagator takes the standard form

 $S_{gq}(p) = -i \gamma p \sigma_V(p^2) + \sigma_S(p^2)$ $\sigma_V(s) = \mathcal{E}(s, s_V), \ \sigma_S(s) = \frac{m_{gq}}{s} [1 - s_S \mathcal{E}(s, s_S)]$ E(s, s0) = (1 - Exp[-s/s0])/s

- The behavior of [gq] propagator
 - free-particle like in UV
 - infrared behavior is controlled by sv & ss

6

 \mathcal{C}

Hybrid spectrum in Rainbow-Ladder

JPC	0-+	1-+	1	0+-	0
m(GeV)RL	1.21(5)	1.78(7)	1.60(6)	1.71(7)	1.72(2)
LQCD _R -16 ³	1.72(2)	1.73(2)	1.84(2)	2.03(1)	
LQCD _R -20 ³	1.69(2)	1.72(2)	1.77(6)	1.99(2)	
LQCD _R -16 ³	2.14(1)	2.15(2)	2.26(2)	2.45(1)	
LQCD _R -20 ³	2.12(2)	2.16(2)	2.21(6)	2.43(2)	

LQCD. Row 4,5: m_{π} >0.4 GeV...Dudek, et al. ePrint: arXiv:1004.4930 [hep-ph] These simulations overestimate mass of pion's first radial excitation by $\delta \pi_1 = 0.43$ GeV LQCD. Row 2,3 = Row 4,5 - $\delta \pi_1$

- Bound states exist in all changels
- 0+ and 1-- hybrids are structurally distinct from those accessible using the
 2-body Bethe-Salpeter equation in these channel

Hybrid spectrum in Rainbow-Ladder

JPC	0-+	1-+	1	0+-	0
m(GeV)RL	1.21(5)	1.78(7)	1.60(6)	1.71(7)	1.72(2)
LQCD _R -16 ³	1.72(2)	1.73(2)	1.84(2)	2.03(1)	
LQCD _R -20 ³	1.69(2)	1.72(2)	1.77(6)	1.99(2)	
LQCD _R -16 ³	2.14(1)	2.15(2)	2.26(2)	2.45(1)	
LQCD _R -20 ³	2.12(2)	2.16(2)	2.21(6)	2.43(2)	

- In comparison with LQCD predictions:
 - \bigcirc all states are too light, especially 0-+, and 1-+-1-- ordering is reversed.
 - wide variations of model parameters do not alter this outcome.

Hybrid spectrum in Rainbow-Ladder

JPC	0-+	1-+	1	0+-	0
m(GeV)RL	1.21(5)	1.78(7)	1.60(6)	1.71(7)	1.72(2)
LQCD _R -16 ³	1.72(2)	1.73(2)	1.84(2)	2.03(1)	
LQCD _R -20 ³	1.69(2)	1.72(2)	1.77(6)	1.99(2)	
LQCD _R -16 ³	2.14(1)	2.15(2)	2.26(2)	2.45(1)	
LQCD _R -20 ³	2.12(2)	2.16(2)	2.21(6)	2.43(2)	

- In comparison with LQCD predictions:
 - \bigcirc all states are too light, especially 0-+, and 1-+-1-- ordering is reversed.
 - Se wide variations of model parameters do not alter this outcome.

We must reconsider each element in our formulation of hybrid mesons.

- Mismatch between RL-direct and LQCD results
- RL truncation can be improved

 - RL truncation underestimates DCSB in bound state amplitudes
- Consequently, anomalous chromomagnetic moment (ACM) associated with this correlation is greatly underestimated
 - ACM enhencement essential to explain a_1 - ρ splitting.
- Introduce a correction factor
 - Solution Multiplication of ACM term by constant κ_{gq}

- Mismatch between RL-direct and LQCD results
- RL truncation can be improved

 - RL truncation underestimates DCSB in bound state amplitudes
- Consequently, anomalous chromomagnetic moment (ACM) associated with this correlation is greatly underestimated
 - Solution \mathbf{ACM} enhancement essential to explain a_1 - ρ splitting.
- Introduce a correction factor
 - Solution Multiplication of ACM term by constant κ_{gq}
- Can any value of k_{gq} yield match with LQCD?

• The RL truncation underestimated contributions from angular momentum. $\frac{p_{q_{u}}}{p_{q_{u}}} = \frac{p_{q_{u}}}{p_{q_{u}}}$

♦ We find t⁵ raised by 2.5, and omit the spin-independent coupling t³, the hybrid spectrum will be significantly changed.

JPC	0-+	1-+	1—	0+-	0—
m(GeV)RL	1.21	1.78	1.60	1.71	1.72
m(GeV)ACM-improved	1.60	1.74	1.85	1.86	1.90
LQCD _B -16 ³	1.72	1.73	1.84	2.03	
LQCD _R -20 ³	1.69	1.72	1.77	1.99	
LQCD _R -16 ³	2.14	2.15	2.26	2.45	
LQCD _R -20 ³	2.12	2.16	2.21	2.43	

- Beyond RL spectrum agreement with refined spectrum of LQCD
- Agreement is non-trivial
- Magnitude of our results set by
 - infrared values of the running gluon and quark masses
 - \subseteq π and ρ meson properties
 - unrelated to hybrid channels
- ♦ 0-- state deserves special attention
- ◆ LQCD predict lightest 0-- state above m_p+2GeV
- We confirm 0-- is ground-state heaviest hybrid, but probably too light.
 - Large angular momentumDCSB-enhancement
 - Simple corrected RL truncation may not be adequate.

Summary

- We introduced a novel approach to the valencegluon+quark+antiquark bound-state problem in quantum field theory
- ◆ Strong correlations exist in [qg=qg] & [qg=gq], and hence that a simpler, coupled pair of effectively two-body equations can provide the basis for a realistic description of hybrid mesons
- It reproduce the mass and ordering of ground-state light-quark hybrids obtained via LQCD
- It should serve as a guide for subsequent continuum treatments of the hybrid-meson three-body problem
- The hybrids wave functions can be used to predict a range of hybrid decays and other processes