

Recent results on nucleon spin structure study at RHIC

Qinghua Xu(徐庆华,山东大学)

Hadron 2018, Weihai

July 28, 2018

Experimental aspects: RHIC

Recent spin highlights:

✓ Gluon polarization (Jet production, π⁰): gluon polarization Δg
 ✓ Quark/Anti-quark polarization (W/Z production): sea quark Δq
 ✓ Transverse spin asymmetry (W/Z production): Sivers function
 ✓ Transverse spin asymmetry (Hadron production): Collins & IFF
 □ Upgrade plans for spin physics in 2021+ at RHIC

□ Summary

RHIC- 1st polarized proton-proton collider

- World's only polarized hadron-hadron collider
- Polarization direction changes from bunch to bunch
- Spin rotators provide choice of spin orientation

$\Delta q(x)$, $\Delta g(x)$ - global analysis of data

Accessing $\Delta g(x)$ in pp collision

 $\frac{d\Delta\hat{\sigma}}{d\hat{\sigma}}$ $\hat{a}_{LL} =$ Longitudinal spin asymmetry: Δf_1 Δf_2 D_f^{π} $A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\sum_{f_1, f_2} \Delta f_1 \otimes \Delta f_2 \otimes d\hat{\sigma}^{f_1 f_2 \to fX} \cdot \hat{a}_{LL}^{f_1 f_2 \to fX} \otimes B_f^{\pi}}{\sum_{f_1, f_2} f_1 \otimes f_2 \otimes d\hat{\sigma}^{f_1 f_2 \to fX} \otimes D_f^{\pi}}$ $\frac{\Delta q}{q} \frac{\Delta G}{G}$ $\Delta q \, \Delta q$ $\Delta G \Delta G$ \hat{a}_{LL} tellecourses A: $gg \rightarrow gg$ 0000000 C 0.75 0.5 Partonic fraction for jet/ π^0 production: 0.25 B: $qq \rightarrow qq$ Subprocess Fraction n qg $\begin{array}{c} C \colon qg \to qg \\ qq' \to qq' \end{array} D \colon q\overline{q} \to q\overline{q} \end{array}$ -0.25 $q\overline{q}' \rightarrow q\overline{q}'$ 0.4 $qg \rightarrow q\gamma E: q\overline{q} \rightarrow gg$ -0.5 pp→jet+X $\overline{q}q \rightarrow \overline{q}\gamma$ gg $\rightarrow q\overline{q}$ NLO CTEQ6M -0.75 $q\overline{q} \rightarrow q'\overline{q}'$ Anti-kT R=0.6 $q\overline{q} \rightarrow g\gamma$ E |η|<1 qq+qq 0.2 -1

0.1

0.05

0.1

Mukherjee and Vogelsang, PRD.86.094009

0.15

vs=200 GeV

0.35

0.4

0.45 Jet x_{_} (= 2p_/ √s) 0

 $\cos \theta^*$

0.4

0.8

-0.8

-0.4

STAR Run6 results on jet x-section and ALL

 Cross section well described by NLO pQCD+Hadronization

STAR, PRD86, 32006(2012)

•STAR run6 data rule out several previous models of gluon polarization, and included in the DSSV global analysis together with PHENIX π^0 results.

$$\int_{0.05}^{0.2} \Delta g(x) dx = 0.005 \pm_{0.164}^{0.129} \text{ at } Q^2 = 10 \text{ GeV}^2$$
-arXiv:1304.0079

STAR inclusive jet A_{LL} from run9

- 2009 STAR data is a factor of 4 more precise than 2006.
- The A_{LL} asymmetry is small, but clearly non-zero !
- Impact of STAR data in NNPDF:

Qinghua Xu (Shandong U.)

PHENIX results on $\pi^0 A_{LL}$

PHENIX-Phys. ReV. D 90, 12007(2014) [arXiv:1402.6296]

- High precision measurement at mid-rapidity
- Results are consistent with zero within uncertainty

DSSV global analysis including both STAR & PHENIX data -Observation of gluon polarization

DSSV: arXiv:0904.3821 DSSV*: DSSV + all new (SI)DIS DSSV: DSSV* & RHIC 2009

$$\int_{0.05}^{1.0} dx \Delta g \sim 0.2 \pm_{0.07}^{0.06} @ 10 \text{ GeV}^2$$

To further constrain $\Delta g(x)$, need to go to lower x

-> higher energy, forward di-jets

• Can we further improve our knowledge on $\Delta g(x)$? Yes!

• STAR jet A_{LL} at 510 GeV, which access small x region, consistent with 200GeV data.

 PHENIX π⁰ A_{LL} at 510 GeV, which access small x region Correlation measurements with partonic kinematics

Access to partonic kinematics through di-jet production

Di-jets A_{LL} at 200 GeV at STAR

STAR, Phys. Rev. D95,071103(2017)

Di-jets A_{LL} at 200 GeV at STAR

STAR, Phys. Rev. D95,071103(2017)

- Mid-rapidity di-jet A_{LL} for two topologies, allowing for constraints on the shape of $\Delta g(x)$
- Compared to expectations from DSSV14 and NNPDFpol1.1 polarized PDFs, both containing 2009 inclusive jet results
- Systematic bands from PDF and scale uncertainties shown for NNPDFpol1.1 curve

arXiv: 1805.09742, to appear in PRD

- Di-jet A_{LL} shown for two Barrel-Endcap topologies
 - New results are compared to DSSV14 and NNPDFpol1.1 expectations
 - The dijet data will more tightly constrain gluon spin at lower momentum fraction

.

Di-jets A_{LL} at 500 GeV at STAR

- Comparison of 500 and 200 GeV di-jets results, plotted vs. M_{inv}/√s
- 510GeV data extend to lower M_{inv}/\sqrt{s}

- Preliminary results for run 13, Run 12 ready for final release at STAR
- Good agreement between Run 12 and Run 13

Forward J/psi A_{LL} at PHENIX

Probing sea quark polarization via W production

• Quark polarimetry with W-bosons:

• Spin asymmetry measurements:

$$A_{L}^{W^{+}} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{-\Delta u(x_{1})\overline{d}(x_{2}) + \Delta \overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) + \overline{d}(x_{1})u(x_{2})} = \begin{cases} -\frac{\Delta u(x_{1})}{u(x_{1})}, y_{W^{+}} >> 0\\ \frac{\Delta \overline{d}(x_{1})}{\overline{d}(x_{1})}, y_{W^{+}} << 0 \end{cases}$$
$$A_{L}^{W^{-}} = \begin{cases} -\frac{\Delta d(x_{1})}{d(x_{1})}, y_{W^{-}} >> 0\\ \frac{\Delta \overline{u}(x_{1})}{\overline{u}(x_{1})}, y_{W^{-}} << 0 \end{cases}$$

 $\Lambda u(x_{\cdot})$

Expectation of W A_L at RHIC

- Large parity-violating asymmetries expected.
- Simplified interpretation at forward and backward rapidity:

STAR mid-rapidity W A_L –2011+2012

• First multiple-eta-bin A_L results from 2011+2012 data:

- A_L of W⁻ shows indication that data are larger than the DSSV predictions
- A_L of W⁺ is consistent with theoretical predictions with DSSV pdf.
- Indication of symmetry breaking of polarized sea.

STAR, PRL113(2014)72301

Global Analysis with STAR W $\rm A_{L}$ 2012

Global Analysis with STAR W A₁ results

0.04

0.02

 $x\Delta\overline{u}(x,Q^2=10 \text{ GeV}^2)$

Big impact seen in NNPDFpol1.1 global analysis after including STAR A_1 data.

> NNPDF1.1, Nucl.Phys. B887,276 (2014) -0.02

PHENIX mid-rapidity W A_L –more data

• PHENIX mid-rapidity A_L results from run 2011-2013:

W A_L results in the forward region at PHENIX

• $W \rightarrow \mu A_L$ in Run 13 pp 510 GeV at forward region

W A_L results – STAR 2013

- STAR 2013 W A_L results:
 - Jinlong Zhang @ INPC 2016
 - Devika Gunarathne@ SPIN2016

W A_L results – STAR 2013

- STAR 2013 W A_L results:
 - Jinlong Zhang @ INPC 2016
 - Devika Gunarathne@ SPIN2016
- Impact in reweighting NNPDFpol1.1

W A_L results – STAR 2013

- New preliminary A_L results at near-forward rapidity !
- STAR 2013 results are the most precise measurements of W A_L so far.

W A_L results – STAR 2013

- New preliminary A_L results at near-forward rapidity !
- STAR 2013 results are the most precise measurements of W A_L so far.
- Consistent with 2011+2012 published results, with 40% uncertainty reduced.
- Further confirmed the preference of positive $\Delta \overline{u}$.
- Can provide further constraints for $\Delta \overline{u}$, $\Delta \overline{d}$.

W A_L results – STAR 2013

- New preliminary A_L results at near-forward rapidity !
- STAR 2013 results are the most precise measurements of W A_L so far.
- Consistent with 2011+2012 published results, with 40% uncertainty reduced.
- Further confirmed the preference of positive $\Delta \overline{u}$.
- Can provide further constraints for $\Delta \overline{u}$, $\Delta \overline{d}$.

Transverse Single spin asymmetry (A_N) of W boson

• Sivers sign change in DIS and DY/W/Z process:

-Critical test for our understanding of TMD's and TMD factorization

- Active experimental programs at COMPASS (DY) and RHIC (W production)
- Advantages of weak boson production
 - Low background
 - High Q²-scale (~ W/Z boson mass)

STAR goal: measure sign change and pin down TMD-evolution by measuring A_N for all the processes: W[±], Z⁰, DY

The effects from TMD evolution on Sivers A_N

First W, Z A_N results at 500 GeV from STAR

Data: STAR 2011 transverse run @ 500 GeV, integrated luminosity ~25 pb⁻¹

• First
$$A_N$$
 for W[±] and Z results : $A_N \equiv \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$

- Sivers sign-change scenario preferred over no-sign change scenario.
- Precision measurements from run 17, x14 times in integrated luminosity!

• STAR collected ~400 pb⁻¹ transverse pp in 2017:

Goal:

- ✓ Constrain TMD evolution sea-quark Sivers function
- ✓ Test sign-change if TMD-evolution suppression factor ~5 or less

Mid-rapidity hadron-jet correlations (Collins)

- Study proton transversity through its coupling to Collins function:
- Collins asymmetries:

Collins angle: $\Phi_c = \Phi_s - \Phi_h$ Collins modulation: $sin(\Phi_s - \Phi_h)$ j_T : transverse momentum in jet Φ_s : azimuthal angle of beam spin Φ_h : azimuthal angle of hadron

Mid-rapidity hadron-jet correlations (Collins)

Non-zero Collins asymmetries observed from run2012 200 GeV

 A_{IIT} vs. j_T for $x_F > 0$

 A_{IIT} vs. z for $x_F > 0$

 $\frac{\mathbf{x}^{+}}{\mathbf{x}_{F}} = \mathbf{x}_{F} = \mathbf{0}$ • π+ STAR Preliminary 0.04 0.04 STAR Preliminary $x_{F} > 0$ **π** $\mathbf{A}_{\mathsf{UT}}^{\mathsf{sin}(\varphi_{\mathsf{s}} - \varphi_{\mathsf{H}})}$ $A_{UT}^{sin(\varphi_{s}} - \varphi_{\mu})$ ÷ $p^{\uparrow} + p \rightarrow jet + \pi^{\pm} + X at \sqrt{s} = 200 \text{ GeV}$ $p^{\uparrow} + p \rightarrow jet + \pi^{\pm} + X at \sqrt{s} = 200 \text{ GeV}$ 5.6% Scale Uncertainty Not Shown -0.04 5.6% Scale Uncertainty Not Shown -0.04 10 < Jet p_ < 31.6 GeV/c 10 < Jet p_ < 31.6 GeV/c Jet p_ Jet p_T 0.1 < z < 0.6 0.125 < j_ < 4.5 GeV/c 0.75 1.5 N <u>,</u> 0.25 0.5 0.1 0.2 0.3 0.4 0.5 0.6 10⁻¹ 0 0.7 1 j_[GeV/c] z

2012 data, 20 pb⁻¹ at 200 GeV, Pb=61%, anti- k_T jet algorithm, R = 0.7

Collins asymmetries at 500 GeV

• New results on Collins asymmetries at 500 GeV (run11):

STAR, Phys. Rev. D 97 (2018)32004

Sivers asymmetries-jet SSA

• New results on jet spin asymmetries at 500 GeV (Run 11):

STAR, Phys. Rev. D 97 (2018)32004

Collins-like Asymmetries at 500 GeV

• Collins-like asymmetry $A_{UT}^{\sin(\phi_s-2\phi_H)}$, provide sensitivity to gluon linear polarization.

Gluon helicity density matrix

$$\rho = \frac{1}{2} \begin{pmatrix} 1 + P_{circ} & -P_{lin}e^{-2i\phi} \\ -P_{lin}e^{2i\phi} & 1 - P_{circ} \end{pmatrix}$$

• First measurement on $A_{UT}^{\sin(\phi_s - 2\phi_H)}$

• Di-hadron correlation provides access to IFF& transversity:

$$A_{UT} \sin \left(\phi_{RS}
ight) = rac{1}{Pol} rac{d\sigma^{\uparrow} \ - d\sigma^{\downarrow}}{d\sigma^{\uparrow} \ + d\sigma^{\downarrow}}$$

$$A_{UT}^{\sin(\phi_{RS})} \propto h_1 \otimes H_1^{\angle}$$
$$\phi_{RS} = \phi_R - \phi_S$$
$$\overrightarrow{p}_h = \overrightarrow{p}_{h,1} + \overrightarrow{p}_{h,2}$$
$$\overrightarrow{R}_h = \overrightarrow{p}_{h,1} - \overrightarrow{p}_{h,2}$$

—"Interference Fragmention Function"Bacchetta, Radici, Phys.Rev. D70 (2004)

Di-hadron spin asymmetries at STAR

• Significantly non-zero di-hadron asymmetries from run6 data:

STAR, PRL 115(2015)242501

Sign of non-zero signal for di-hadron transverse single spin asymmetries-> constraints on transversity!

Di-hadron spin asymmetries at STAR

Di-hadron correlation provide access to IFF& transversity:

$$rac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}}(\Phi_S-\Phi_R)=A_{UT}^{\sin\Phi}\sin(\Phi_S-\Phi_R).$$

Future RHIC Spin in 2021+

			1			
Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade	pa Zu
2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A_N^{DY} : Postshower to FMS@STAR	Aq Lu Aq Lu Aq Lu
			Transversity, Collins FF, linearly pol. Gluons, Gluon Sivers in Twist-3	$A_{UT}^{\sin(\phi_s - 2\phi_h)} A_{UT}^{\sin(\phi_s - \phi_h)} \text{ modula-}$ tions of h^{\pm} in jets, $A_{UT}^{\sin(\phi_s)}$ for jets	None	The RHIC Cold QCD Plan
			First look at GPD Eg	A_{UT} for J/ Ψ in UPC	None	A Portal to the ElC
2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.	
			evolution of ETQS fct. properties and nature of the diffractive exchange in p+p collisions.	A_N for γ A_N for diffractive events	None None	
2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	$R_{pAu}(DY)$:Yes Forward instrum.	arXiv:1602.03922
			Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None	Forward
			Clear signatures for Saturation	Dihadrons, y-jet, h-jet, diffraction	Yes Forward instrum.	
2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAl} : direct photons and DY	<i>R_{pAl}</i> (DY): Yes Forward instrum.	detector
			A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None	⁷ upgrade
			A-dependence for Saturation	Dihadrons, y-jet, h-jet, diffraction	Yes Forward instrum.	required
202X	p [†] p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	A_{UT} for Collins observables, i.e. hadron in jet modulations at $\eta > 1$	Yes Forward instrum.	
			quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton- proton collisions	mid-rapidity observables as in 2017 run	None	
202X	$\vec{p} \vec{p} @ 510$	1.1 fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets at $\eta > 1$	Yes Forward instrum.	
					11. 1	EIC

- RHIC is the world's only polarized hadron hadron collider
- Unique physics opportunities in pp and pA

Qinghua Xu (Shandong U.)

detector

sPHENIX plan

- talk by Gunther Roland

sPHENIX Implementation

A solid foundation for EIC physics – LOI requested by BNL ALD.

EIC-sPHENIX detector

- HCal/Flux return
- Solenoid
- Extended Central EMCal
- Central hadron PID
- TPC
- MAPS
- Forward and backward tracking
- Forward and backward hadron PID
- Backward crystal EMCal
- Forward EMCal
- Forward HCal

-J.Lajoie

Looking Forward at STAR beyond 2021

-more on STAR upgrade by Jiangyong

Beam Energy Scan II 2019~2021

iTPC, eToF, EPD

Forward Physics 2021+

Forward Tracking System
 Forward Calorimeter System

https://drupal.star.bnl.gov/STAR/starnotes/public /sn0669

Qinghua Xu (Shandong University)

Summary & Outlook

Observation of positive gluon polarization from RHIC:

- Probes with jets and pion, are providing important constraints on ΔG . Global analysis indicates non-zero gluon polarization (0.05<x<0.2).
- Correlation measurements (di-jet) with access to partonic kinematics
- □ Unique probe of sea quark polarization via W production:
 - RHIC/STAR 2012 results on W[±] A_L provide important constraints on $\Delta \overline{u}$, $\Delta \overline{d}$.
 - New high precision A_L results for W[±] from RHIC run 13 data!
- □ Successful transverse run completed 2017 at 500 GeV
 - A_N for W,Z at STAR: 1st results obtained, run 17 to study Sivers sign change.
- □ Future RHIC spin in 2021⁺ -- Cold QCD plan
 - Unique physics opportunities in pp and pA, essential to fully realize the scientific promise of the EIC.
 - Forward detectors upgrade required-> evolve into EIC detector.

Impact of 2013 W A_L results

RHIC performance with pp collisions

- Long runs with long. polarization at 200 GeV in 2005, 2006, 2009, 2015.
- Collisions at 500
 GeV with long. pol.
 in 2009, 2012 and
 2013.
- Long runs with trans. pol. in 2006, 2008, 2012 at 200GeV and 2011 2017 at 500 GeV.

Forward neutron A_N

J.Bok

Probing sea quark polarization via W production

• Ws naturally separate quark flavors

> backward/forward region probe sea & valence quarks

• Ws are 100% parity-violated

> select only one helicity of the coupled (anti)quarks

• Ws are clean theoretically

> no fragmentation function involved

• Complementary to SIDIS: high Q², test universality of pdf

W selection at STAR : Jacobian peak

 $W \rightarrow e + \nu$ Candidate Event:

- Isolated track pointing to isolated EM cluster in calorimeter
- Large "missing energy" opposite the electron candidate

Signal of Jacobian peak with E_{T} distri. after selection :

W selection at PHENIX

- 1st background suppression by isolation cut, with cone R = 0.4 in η and ϕ
- Estimate residual backgrounds in signal region (p_T > 30 GeV) by extrapolating backgrounds in 10 < p_T < 22 (GeV) by using GPR (Gaussian Process Regression)
- Contribution by Z_0 : 7 % (e+) and 25 % (e-)