

Achim Denig

Institute for Nuclear Physics Johannes Gutenberg University Mainz

Recent Results and future Perspectives for Hadron Physics at Mainz

July 26, 2018 Weihai, Shandong Province, China 10th Intl. Workshop on Hadron Physics and Opportunities Worldwide

The Mainz Microtron MAMI

Electron Accelerator for Fixed Target Experiments

The Mainz Microtron MAMI

Mainz Energy-Recovering Superconducting Accelerator Recirculating ERL E_{max} = 105/155 MeV I_{max} > 1 mA (ERL)

Achim Denig

Mainz Energy-Recovering Superconducting Accelerator Recirculating ERL Mode 1: **Extracted Beam** E_{max} = 105/155 MeV P2 Experiment $I_{max} > 1 mA (ERL)$ 1171-R

Mainz Energy-Recovering Superconducting Accelerator **Recirculating ERL** Mode 1: **Extracted Beam** E_{max} = 105/155 MeV P2 Experiment I_{max} > 1 mA (ERL) 0.245 $\sin^2\theta_W(Q)$ E158 NUTEV 0.24 Oweak 0.235 1171-122 APV LEP1 Tevatron PVDIS 0.23 SLD ΞΞ P2 MOLLER 0.225 0.001 0.01 0.1 10 100 1000 **Q** [GeV]

Achim Denig

Results and future Perspectives at Mainz

Mainz Energy-Recovering Superconducting Accelerator Recirculating ERL Mode 1: **Extracted Beam** E_{max} = 105/155 MeV P2 Experiment $I_{max} > 1 mA (ERL)$ 17-64 **Extracted beam BDX Experiment**

Mainz Energy-Recovering Superconducting Accelerator Recirculating ERL Mode 1: **Extracted Beam** E_{max} = 105/155 MeV P2 Experiment $I_{max} > 1 mA (ERL)$ 1171-10 Mode 2: ERL **Extracted beam Internal Target BDX Experiment MAGIX** Experiment

Achim Denig

Energy Recovering (ERL) mode: $E_{max} = 105 \text{ MeV}$, $I_{max} > 1 \text{ mA}$

Energy Recovering (ERL) mode: $E_{max} = 105$ MeV, $I_{max} > 1$ mA

MAinz Gas Internal EXperiment

Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target
→ a novel technique in nuclear and particle physics
→ measurement of low momenta tracks with high accuracy
→ competitive luminosities

ທ MAG X ອ∀W

Supersonic Gas-Jet-Target

Westfälische Wilhelms-Universität Münster

baratron

- Windowless !
- Supersonic gas jet
- Higher gas density (10¹⁹/cm²)
- O(mm) target length
- H₂, ³He, ⁴He, O₂,, Xe
- $O(10^{35} \text{ cm}^{-2} \text{ s}^{-1}) @ 10^{19}/\text{cm}^2$

Supersonic Gas-Jet-Target

Westfälische Wilhelms-Universität Münster

baratron

Commissioned in 2017/18

- Windowless !
- Supersonic gas jet
- Higher gas density (10¹⁹/cm²)
- O(mm) target length
- H₂, ³He, ⁴He, O₂,, Xe
- $O(10^{35} \text{ cm}^{-2} \text{ s}^{-1}) @ 10^{19}/\text{cm}^{2}$

Results and future Perspectives at Mainz

New Vistas in Low-Energy Precision Physics (LEPP)

4-7 April 2016 Kupferbergterrasse Mainz

Overview

Scientific Programme

Timetable

Contribution List

Participant List

Accomodation

Travel

Venue & Social Events

- Electromagnetic Formfactors and

Polarisabilities of Nucleons

- Few Body Physics
- Nuclear Astrophysics,
- Dark Photon Searches,
- Light Dark Matter Searches

....

Proton Radius

Puzzle

The New York Times

Atomic Spectroscopy (PSI: Lamb Shift in muonic hydrogen)

Electron Scattering on proton (EM form factor measurements)

 $R_{E} = 0.879 \pm 0.008 \text{ fm}$

PRL (2010), PRD(2014)

Proton charge radius:

$$\left\langle r_{E/M}^{2}\right\rangle = -\frac{6\hbar^{2}}{G_{E/M}\left(0\right)} \left.\frac{\mathrm{d}G_{E/M}\left(Q^{2}\right)}{\mathrm{d}Q^{2}}\right|_{Q^{2}=0}$$

Atomic Spectroscopy (PSI: Lamb Shift in muonic hydrogen)

Electron Scattering on proton (EM form factor measurements)

 $R_{E} = 0.879 \pm 0.008 \text{ fm}$ PRL (2010), PRD(2014)

New value from exotic atom trives radius by four per cent A worldwide effort in atomic physics, hadron/particle physics and theory

New Physics explanation ? Lepton – Non-Universality !

Different coupling of electron-proton vs. muon-proton

- → light or heavy new particles (Dark Photon)?
- Unknown QED / hadronic correction in μH data ? Main limitation from two-photon processes
- Electron scattering expts. not at sufficiently low Q²
 - or radiative corrections not understood
 - or normalization errors

or ?

ISR Measurement of EM Form Factors

\rightarrow Access low Q² values down to 2x10⁻⁴

Achim Denig

Energy of scattered electron [GeV]

\rightarrow Access low Q² values down to 2x10⁻⁴

JG**U**

JGU

26

Results and future Perspectives at Mainz

Mainz Proton Radius Programme

Éhe New Hork Eimes

- Proton FF (repeat Bernauer) measurement with gas jet target (2019), ISR measurement as well
- TPC detector (PNPI St. Petersburg) measuring proton recoil (2020)
- Deuteron FF measurement (result expected 2018)
- A2 programme on proton polarizabilities (result expected 2019) to reduce two-photon correction / uncertainty of μH results / PSI

Mainz Proton Radius Programme

- Proton FF (repeat Bernauer) measurement with gas jet target (2019), ISR measurement as well
- TPC detector (PNPI St. Petersburg) measuring proton recoil (2020)
- Deuteron FF measurement (result expected 2018)
- A2 programme on proton polarizabilities (result expected 2019) to reduce two-photon correction / uncertainty of μH results / PSI

The New Hork Times

Mainz Proton Radius Programme

Ehe New Hork Eimes

- Proton FF (repeat Bernauer) measurement with gas jet target (2019), ISR measurement as well
- TPC detector (PNPI St. Petersburg) measuring proton recoil (2020)
- Deuteron FF measurement (result expected 2018)
- A2 programme on proton polarizabilities (result expected 2019) to reduce two-photon correction / uncertainty of μH results / PSI

- MESA
- Electric FF measurement at low Q²
- Magnetic FF measurement at low Q² using double polarization
- Elastic FF measurements for Few-Body-Systems (d, ³He, ⁴He, ...) as well as break-up measurements
- Polarizability measurements of proton and of Few-Body-Systems

Search for the Dark Photon

New massive force carrier of extra U(1)_d gauge group; predicted in almost all string compactifications

Search for the $O(GeV/c^2)$ mass scale in a world-wide effort

- Could explain large number of astrophysical anomalies Arkani-Hamed et al. (2009) Andreas, Ringwald (2010); Andreas, Niebuhr, Ringwald (2012)
- Could explain presently seen deviation of 3.6σ between (g-2)_μ Standard Model prediction and direct (g-2)_μ measurement Pospelov(2008)

IGKinetic Mixing and Dark MatterA way to relate the dark sector to the SM (coupling ~ ε^2)Holdom [1986]Dark
Sector
U(1)dDark PhotonHeavy Charged Leptons L

 $(carry U(1)_d charge)$

(aka A', U, Z_d, ...)

Kinetic Mixing and Dark Matter

Excess of positrons in cosmic ray spectrum due to Dark Matter annihilation?

Results from A1

Low-Energy Electron Accelerators with high Intensity ideally suited for Dark Photon search Bjorken et al. (2009)

Signal process

Achim Denig

Results from A1

→ at time of publication most stringent limit ruling out major part of the parameter range motivated by $(g-2)_{\mu}$

\rightarrow at time of publication most stringent limit ruling out major part of the parameter range motivated by (g-2)_µ

Dark Sector Searches at MAGIX

Features:

- Xe gas target
- Luminosity 10³⁵ cm⁻²s⁻¹
- 6 month of data taking

Achim Denig

MAGIX / MESA

MAG X 94M

(use of thin HVMAPS detectors for proton recoil under study)

Light Dark Matter Searches

Parameter range accessible

Search for Light Dark Matter in a Beam Dump **Experiment**

Electron Scattering on Beam Dump → Collimated pair of Dark Matter particles !

This beam dump is going to be the P2 beam dump 10,000 hours @ 150 μA → 10²³ electrons on target (EOT)

- Full GEANT4 simulation (P2 target, beam dump, BDX detector volume, walls etc.)
- Addition of 2.5 mm W plate before beam dump to increase (dark) photon rate?
- No neutrino background due to low beam energy, reduced neutron background
- First detector layout: lead glass blocks

Depending on parameter range large energy deposit

Results and future Perspectives at Mainz

MAMI test beam this week

- 14 MeV electron beam
- Seven detector prototypes
 - Mainly scintillation light:
 - 2 x BGO
 - Cherenkov light:
 - 2 x PbF₂ (in two different lengths)
 - 3 x lead glass (SF5, SF6 & SF57HTultra)
- Fibre detector as trigger system

	X [mm]	Y [mm]	Z [mm]	Density [g/cm³]
SF 5	70	55	160	4.07
SF 6	30	55	160	5.18
SF 57 HTultra	40	55 (180)	160	5.51
BGO	21	21	230	7.13
PbF ₂ (1)	Frustum of a pyramid		150	7.77
PbF ₂ (7)	(30x30 / 26x26)		185.4	7.77

Conclusions

 MAMI accelerator (1.6 GeV high intensity electron beam, polarized) producing highly competitive results for decades

- Exciting physics topics at the intensity / precision frontier (proton radius, EW mixing angle, dark photon physics, ...)
- New MESA accelerator (order of magnitude of increase of statsitics) under construction at Mainz, commissioning in 2021
- Competitive programme in nuclear, hadron, and particle physics

Conclusions

 MAMI accelerator (1.6 GeV high intensity electron beam, polarized) producing highly competitive results for decades

- Exciting physics topics at the intensity / precision frontier (proton radius, EW mixing angle, dark photon physics, ...)
- New MESA accelerator (order of magnitude of increase of statsitics) under construction at Mainz, commissioning in 2021
- Competitive programme in nuclear, hadron, and particle physics

THANK YOU ! NEW COLLABORATORS WELCOME !

BACKUP

The MAGIX Spectrometers

High resolution spectrometers MAGIX:

- double arm, compact design
- momentum resolution: $\Delta p/p < 10^{-4}$
- acceptance: ±50 mrad
- GEM- or TPC-based focal plane detectors

Gas Jet or polarized T-shaped target for polarized target measurements

ISR Measurement with Gas-Jet-Target

Remaining contributions after measurement with gas jet target and slight additional modifications: Sytematic uncertainty < 0.5%

Detector Development MAG 2 DAM ŒM Tracker Focal e pl ane Particle pat h Target

GEM Focal Plane Detectors

2 Sensitive layers (30x120 cm²)

- The first centered on the focal plane
- The second with a sizable lever arm to measure the angle

GEM Detectors (2 or 3 layers)

- 2D Strip readout
- High rate capabilities
- Aim for 50 µm resolution
- 1 MHz readout rate

GEM Detectors

Material budget of standard GEM foils too high for low-energy environment at MAGIX

GEM readout on a Kapton foil

GEM copper reduction: Replacing copper with an atomic layer of Chromium

Small Drift TPC as a Focal Plane Detector ?

Thin T-shaped foil

- Length (~ 30 cm)
- First prototype with mylar foil
- Can use polarized gases
- Estimated luminosity with polarized beam O(>> 10³² cm⁻² s⁻¹)

- Windowless !
- Supersonic gas jet
- Higher gas density (10¹⁹/cm²)
- O(mm) target length
- H₂, ³He, ⁴He, O₂,, Xe
- *O(10³⁵ cm⁻² s⁻¹)* @ 10¹⁹/cm²

Supersonic Gas-Jet-Target

Commissioning of jet target at A1/MAMI in 2017/18

- Installation of jet target and of pumping system
- Measurem. of jet properties via elastic scattering
- Target density > 2 x 10¹⁸ /cm² achieved
- Cluster beam width 1.72 mm

The MAGIX Spectrometers

Simple Design: Quadrupole + Dipole

The MAGIX Spectrometers

Magix - Optik

The Focal Plane Detectors

2 Sensitive layers (30x120 cm²)

- The first centered on the focal plane
- The second with a sizable lever arm to measure the angle

GEM Detectors (2 or 3 layers)

- 2D Strip readout
- 0.7% radiation length
- High rate capabilities
- Material reduction
- Aim for 50 µm resolution
- 1 MHz readout rate

GEM Focal Plane Detectors

- GEM readout on a Kapton foil
 - New pads and strips readout
 - First design to be tested in October
- GEM copper reduction
 - Replacing copper with an atomic layer of Chromium
 - First batch of Chromium GEMs successfully tested
 - Data analysis ongoing
- High-rate capability
 - Expected single count rate in the MAGIX spectrometers O(MHz/cm²)
 - Successfully tested at MAMI with similar rates (standard and chromium GEMS alike)
 - New electronic system under development to achieve readout rates of O(10-100 kHz) (in collaboration with the CERN RD51 group)

Internal Gas Targets for MAGIX

Thin T-shaped foil

- Length (~ 30 cm)
- First prototype with mylar foil
- Can use polarized gases
- Estimated luminosity with polarized beam O(>> 10³² cm⁻² s⁻¹)

- Windowless !
- Supersonic gas jet
- Higher gas density (10¹⁹/cm²)
- O(mm) target length
- H₂, ³He, ⁴He, O₂,, Xe
- O(10³⁵ cm⁻² s⁻¹) @ 10¹⁹/cm²

Measurement of Gas Density Profile

Nucleon Polarizabilities

Polarisability Corrections in Light Nuclei Systems

μD: $\Delta E^{TPE} = (1727 \pm 20) \mu eV$ nucleon potentials form chiral EFT Hernandez et al. (2014) accuracy factor 5 worse than present experimental precision

 μ^{3} He⁺: $\Delta E^{TPE} = (15.46 \pm 0.39) \text{ meV}$ nucleon potentials form chiral EFT

 (15.14 ± 0.49) meV dispersive analysis

Carlson, Gorchtein, Vanderhaeghen (2016)

Reaction of nucleon under influence of an EM field <--> Compton scattering

provides fundamental information of the nucleon; very sensitive test of theories (Η/ΒχΡΤ, Disp. Rel.).

- Electric Polarizability: α_{E1}
- Magnetic Polarizability: β_{M1} $H_{eff}^{(2)} = -4\pi \left[\frac{1}{2} \alpha_{E1} \vec{E}^2 + \frac{1}{2} \beta_{M1} \vec{H}^2 \right]$

Spin (Vector) Polarizabilities: γ_{E1E1}, γ_{M1M1}, γ_{M1E2}, γ_{E1M2}

Attempts at MAMI to reduce magnetic polarizability β by a factor of 2 using spin observables (difficult)

 $\gamma p \to \gamma' p'$

Experiment	Status	
Σ _{2x}	February 2011	
Σ 3	December 2012	
$lpha_{E1},eta_{M1}$	June 2013	
Σ _{2z}	May 2014	

Beam: circular Target: longitudinal

$$\Sigma_{2z} = \frac{\sigma_{+z}^R - \sigma_{+z}^L}{\sigma_{+z}^R + \sigma_{+z}^L} = \frac{\sigma_{+z}^R - \sigma_{-z}^R}{\sigma_{+z}^R + \sigma_{-z}^R}$$

Beam: circular Target: transverse

$$\Sigma_{2x} = \frac{\sigma_{+x}^R - \sigma_{+x}^L}{\sigma_{+x}^R + \sigma_{+x}^L} = \frac{\sigma_{+x}^R - \sigma_{-x}^R}{\sigma_{+x}^R + \sigma_{-x}^R}$$

Seam: linear, || and ⊥ to scattering plane Target: unpolarized

$$\Sigma_3 = \frac{\sigma^{\parallel} - \sigma^{\perp}}{\sigma^{\parallel} + \sigma^{\perp}}$$

Proton Polarizabilities

Reaction of nucleon under influence of an EM field <--> Compton scattering provides fundamental information of the nucleon, very sensitive test of theories (H/BxPT, Disp. Rel.).

- Electric Polarizability: α_{E1}
- Magnetic Polarizability: β_{M1}
- Spin (Vector) Polarizabilities: γ_{E1E1}, γ_{M1M1}, γ_{M1E2}, γ_{E1M2}

$$H_{\text{eff}}^{(3)} = -4\pi \left[\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right]$$

For the first time measured at MAMI via double polarization variables Σ_{2x}

$$\Sigma_{2x} = \frac{\sigma_{+x}^R - \sigma_{+x}^L}{\sigma_{+x}^R + \sigma_{+x}^L} = \frac{\sigma_{+x}^R - \sigma_{-x}^R}{\sigma_{+x}^R + \sigma_{-x}^R}$$

First measurement of Σ_{2} below pion threshold

V. S., E.J. Downie, E. Mornacchi, J.A. McGovern, N. Krupina, Eur. Phys. J. A53 (2017) no.1, 14 High-precision measurements of the beam asymmetry and unpolarized cross-section planned in the end of 2017!

New data set from the A2 Collaboration

Highest statistics data set on Compton scattering below pion threshold! Proton scalar polarizabilities will be extracted with unprecedented precision

Proton Polarizabilities @ MESA

for scattered electron \rightarrow quasi-real photon

$$E_{\gamma} = E_{MESA} - E'$$

Low-energetic proton measured in one of the spectrometers

MAG X 94M
Proton Polarizabilities @ MESA

Measurement @ S-DALINAC / Darmstadt limited by beam intensity

Estimate for MESA: 110 MeV, 40 μ A beam current: 8 000 000 detected γp pairs in 3 weeks of beam time yielding $\Delta \alpha = 0.15$, $\Delta \beta = 0.20$ (stat. + syst. uncertainty)

Proton Polarizabilities @ MESA

Evgeny Maev @ LEPP16

Highly-pressurized active target (TPC) developed by group from St. Petersburg (proton detection)

Achim Denig

Nucleon Form Factors

The New York Times

A worldwide effort in atomic physics, hadron/particle physics and theory

• New Physics explanation ? Lepton – Non-Universality !

Different coupling of electron-proton vs. muon-proton

- → light or heavy new particles (Dark Photon)?
- Electron scattering expts. not at sufficiently low Q²
 - or radiative corrections not understood
 - or normalization errors
 - or ?

ISR Measurement of EM Form Factors

This experiment

ISR fit

Borkowski

0.010

Bernauer \longrightarrow

Simon — →

Murphy —

M. Mihovilovic, A.B. Weber et al. [A1 collaboration] Phys. Lett. B771 (2017) 194

- Access to unexplored Q² ranges below 4 x 10⁻³ GeV²
- Significant systematic uncertainties

Systematic uncertainty

0.004

 $Q^2 ~ [\text{GeV}^2/c^2]$

0.002

1.02

1.01

0.99

0.98

0.95

0.94

0.93

0.92

0.001

8월 0.97 0.96

1

Electron Scattering: Mainz Microtron MAMI

Magnetic Radius from limit $Q^2 \rightarrow 0$

• Suppressed by $au = rac{Q^2}{4m_p^2}$ in cross section

$$\frac{d\sigma}{d\Omega_e} = \left(\frac{d\sigma}{d\Omega_e}\right)_{\text{Mott}} \frac{1}{\epsilon(1+\tau)} \left[\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2)\right]$$

- Beam-Recoil polarization is limited by proton recoil momentum $|\vec{p}_p| > 300 \frac{\text{MeV}}{c}$
- Beam-Target polarization:

$$A(\theta^*, \phi^*) = A_I \sin \theta^* \cos \phi^* + A_S \cos \theta^*$$

$$A_I = -2 \sqrt{\tau(1+\tau)} \tan \frac{\theta}{2} \frac{G_E G_M}{G_E^2 + (\tau + 2\tau(1+\tau)\tan^2\frac{\theta}{2}) G_M^2}$$

$$A_{S} = -2 \tau \sqrt{1 + \tau + (1 + \tau)^{2} \tan^{2} \frac{\theta}{2}} \tan \frac{\theta}{2} \frac{G_{M}^{2}}{G_{E}^{2} + (\tau + 2\tau (1 + \tau) \tan^{2} \frac{\theta}{2}) G_{M}^{2}}$$

Achim Denig

Mainz Proton Radius Programme

 Proton FF (repeat Bernauer) measurement with new gas jet target (2019), ISR measurement as well (2019+)

The New York Times

- TPC detector (PNPI St. Petersburg) measuring proton recoil (2020)
- Deuteron FF measurement (result expected 2018)
- A2 programme on proton polarizabilities (result expected 2019) to reduce uncertainty of muonic hydrogen result

MESA

- Electric FF measurement at low Q²
- Magnetic FF measurement at low Q² using double polarization
- Elastic FF measurements for Few-Body-Systems (d, ³He, ⁴He, ...) as well as break-up measurements
- Polarizability measurements of proton and of Few-Body-Systems

Few Body Physics

Few-Body Physics at MAGIX

to deal with EW processes

Achim Denig

Conclusions and outlook (cont.)

What should be measured?

Various observables in deuteron electrodisintegration (polarization might be crucial !)

Two-body break-up of ³He

- 1. unpolarized proton angular distributions (for a wide range of angles)
- 2. ³He analyzing power
- 3. Spin-dependent helicity asymmetries

Three-body break-up of ³He

- 1. Semi-exclusive cross sections (proton and neutron) at various emission angles with respect to the momentum transfer
- 2. ³He analyzing power
- 3. Spin-dependent helicity asymmetries

Jacek Golak / LEPP16

LEPP, Mainz, 7 April 2016

Conclusions and outlook

- Very robust momentum space framework to deal many electroweak processes has been constructed and tested (limitations)
- New input: improved chiral 2N and 3N potentials (even 4N potentials) from E. Epelbaum *et al.* are available
 - Substantial improvement in description of many observables
- LENPIC (Low Energy Nuclear Physics International Collaboration) to coordinate few-nucleon and many-nucleon Calculations
 See Kai Hebeler's talk today !
- Consistent electroweak current operators are needed and are being prepared
 - MESA results will be of great importance !

Conclusions and outlook (cont.)

BUT BEFORE MESA starts

- Energy ranges and phase-space regions best suited to study the nuclear current operator and three-nucleon force effects should be identified for considered reaction channels
 - Achievable accuracy of theoretical predictions for various observables should be estimated
 - Consistent chiral potentials and EM current operators are necessary as input to these calculations

Conclusions and outlook (cont.)

What should be measured?

Various observables in deuteron electrodisintegration (polarization might be crucial !)

Two-body break-up of ³He

- 1. unpolarized proton angular distributions (for a wide range of angles)
- 2. ³He analyzing power
- 3. Spin-dependent helicity asymmetries

Three-body break-up of ³He

- 1. Semi-exclusive cross sections (proton and neutron) at various emission angles with respect to the momentum transfer
- 2. ³He analyzing power
- 3. Spin-dependent helicity asymmetries

Introduction (cont.) Expected MESA

parameters

E= 150 MeV E' > 20 MeV Θ_{e} > 10 deg

ideal to study fewnucleon dynamics within the nonrelativistic framework with the input from ChEFT !

magnitude of threemomentum transfer vs. energy transfer

LEPP, Mainz, 7 April 2016

Introduction (cont.)

Few Body Systems

Also Puzzles ?

Ehe New York Times

Polarisability Corrections in Light Nuclei Systems

μD: $\Delta E^{TPE} = (1727 \pm 20) \mu eV$ nucleon potentials form chiral EFT Hernandez et al. (2014) accuracy factor 5 worse than present experimental precision

 μ^{3} He⁺: $\Delta E^{TPE} = (15.46 \pm 0.39) \text{ meV}$ nucleon potentials form chiral EFT

Nevo Dinur, Ji, Bacca, Barnea (2016)

 (15.14 ± 0.49) meV dispersive analysis

Carlson, Gorchtein, Vanderhaeghen (2016)

Simulation:

- Polarized target, 3 x 10¹⁵ / cm² (very conservative)
- 80% polarisation
- 1mA beam current, 105 MeV

Hadronic Corrections in Light Nuclei Systems

Search for the Dark Photon

Results from A1

Low-Energy Electron Accelerators with high Intensity ideally suited for Dark Photon search Bjorken et al. (2009)

Dark Photon Search (a) A1

Features 2010 pilot run (4 days)

- Beam energy 855 MeV
- Target: 0.05 mm Tantalum
- Beam current ~100 μ A \rightarrow Luminosity ~10³⁹ cm⁻²s⁻¹
- Kinematic configuration: complete energy transfer to γ' boson
 - symmetric e⁻ and e⁺ momenta
- Cerenkov detector for electron/positron identification

\rightarrow at time of publication most stringent limit ruling out major part of the parameter range motivated by (g-2)_µ

Sensitivity at MAGIX currently calculated within a bachelor thesis (use of thin HVMAPS detectors for proton recoil under study)

Model 2: Dark Photon coupling to light Dark Matter (invisible decay!)

$m_{\gamma'} > 2m_{\rm DM}$

- Dark Matter particle not seen
- Few constraints
- Could again explain (g-2) $_{\mu}$
- → Missing energy / mass
- → Search for Dark Matter particle directly using dedicated lowbackground detectors

Beam Dump Experiment (BDX) @ MESA

Beam Dump Experiment (BDX) @ MESA

Electron Scattering on Beam Dump → Collimated pair of Dark Matter particles !

This existing beam dump is going to be the P2 beam dump

10,000 hours @ 150 μA

106

BDX @ MESA

Background situation

- FLUKA simulation of neutron background promising (~10¹¹ EOT)
- MESA running below pion production threshold → no neutrinos!

BDX @ MESA

Testing competititve parameter range

BDX-Proposals Worldwide

SLAC/Stanford

? Cornell ? Ebeam = 0.1 GeV ~10²⁴ EOT JLAB Ebeam = 11 GeV ~10²² EOT

 MAMI / MESA

 Ebeam = 1.6 GeV / 0.15 GeV

 P₂

 ~10²² EOT / 10²³ EOT

 P₂

 LNF/Frascati

 Ebeam = 1 GeV

 ~10²⁰ EOT

- Standard operation of MAMI with 2,45 GHz microwave frequency
 → bad for TOF purpose for BDX
- Recently single bunch tests carried out at MAMI
- Findings:
 - Bunch spacing can be varied almost arbitrarily
 - Drop of intensity
 - 12 ns bunch spacing @ 20 µA immediately achieved
 - 100 ns bunch spacing @ 3µA possible
- These numbers are conservativ estimates (A PhD student is working on this)

Dark Sector Workshop 2016 @ SLAC

Invisible Dark Photon Decays

Model 2: Dark Photon coupling to light Dark Matter

- \rightarrow could still explain (g-2)_µ discrepancy
- ightarrow exploit excellent momentum resolution
 - of MAGIX (proton recoil!)
- \rightarrow Main background: Virtual Compton scattering

$$e^-$$

$$m_{\gamma'}^2 = (e + p - e' - p')^2$$

Dedicated detectors (Si?) for proton detection at very low momenta

 χ

Mainz Energy-Recovering Superconducting Accelerator

P2: Precision Test of the Standard Model

P2 goal: $\delta \sin^2 \theta_W = 0.00031 (1.3\%)$

EW mixing angle

JGU

MAGIX Experiment

Cluster of Excellence Precision Physics,

PRISMA

✓ Mainz

Mainz Energy-Recovering Superconducting Accelerator

Results

MAGIX at the Internal Target Setup of MESA

ERL mode: $E_{max} = 105$ MeV, $I_{max} > 1$ mA

Beam Dump Experiment (BDX) @ MESA

Electron Scattering on Beam Dump → Collimated pair of Dark Matter particles !

119

This existing beam dump is going to be the P2 beam dump

10,000 hours @ 150 μA

MESA: $\Delta \sin^2 \theta_W = 4 \times 10^{-4}$

Nuclear Astrophysics at MAGIX?

¹²C (α , γ) ¹⁶O reaction

- Of fundamental importance for star burning
- Determines ¹²C / ¹⁶O abundance
- Influences the nucleosynthesis of heavy elements

Nuclear Astrophysics at MAGIX?

¹⁶O (α , γ) ¹²C Reaction at MAGIX

- Inverse reaction: ¹⁶O (α , γ) ¹²C
- Chose kinematics with quasi-real photon
- Factor of 100 improvement in cross section wrt. original reaction
- Simulation of process carried out

- Simulate acceptences
- Study background
- Concept for α detection

Nuclear Astrophysics

