Overview of Spin Physics Program at JLab

Xiaochao Zheng

University of Virginia, Charlottesville, Virginia, USA

- The Standard Model of subatomic physics
- How does nucleon spin study fit in
- Inclusive spin physics program at JLab
 - +low Q² spin physics and results from the past year
 - high x spin physics and upcoming experiments
- Summary and outlook

The Beauty of Physics - From Leptons and Quarks to the Cosmos

The Standard Model

(1) the elementary fermions - quarks and leptons

(2) the symmetries + gauge invariance

- (3) the origin of masses

Standard Model of Elementary Particles

Within the Standard Model, or Beyond the Standard Model?

The Standard Model is "an effective theory at the electroweak scale"

Many subatomic physicists are now focusing on searching for new physics beyond the Standard Model - new particles, new symmetries, new interactions, new structures, high precision measurement of all couplings and other parameters...

Or, within the Standard Model:

- QED: tested to 9 orders of magnitude
- Electroweak unification has been tested rigorously and so far data do not indicate any new physics
- Strong interaction: asymptotic freedom vs. confinement

Success of QCD - but only in the perturbative regime

UNIVERSITY of VIRGINIA

Success and Challenges - Hadronic Structure Study and QCD

- DIS established the existence of quarks
- QCD can successfully explain asymptotic freedom, and perturbative calculations explain well the Q²-evolution of structure functions
- But we do not know or understand:
 - > how confinement arises from QCD Lagrangian, quantitatively this is a serious problem, are quarks even real?
 - > the mechanism of chiral symmetry breaking
 - > the nature of the QCD vacuum and to explain it theoretically (the strong CP problem?)
 - > how to calculate/predict the value of form factors or structure functions

Within the Standard Model, or Beyond the Standard Model?

The Standard Model is "an effective theory at the electroweak scale"

Many subatomic physicists are now focusing on searching for new physics beyond the Standard Model - new particles, new symmetries, new interactions, new structures, high precision measurement of all masses (neutrinos) and couplings...

But is the Standard Model that successful yet?

- QED has been tested to 9 orders of magnitude
- Electroweak unification has been tested rigorously and so far data do not indicate any new physics
- Strong interaction: asymptotic freedom vs. confinement
- We do not yet know how to explain nonperturbative phenomena → We should boldly claim that we are still missing 1/6 of the Standard Model!

Nucleon Spin Structure from Polarized Inclusive DIS

Scattering cross section is spin-dependent

in QPM and the infinite momentum frame:

$$g_{1}(x) = \frac{1}{2} \sum e_{i}^{2} [q_{i}^{\uparrow}(x) - q_{i}^{\downarrow}(x)] = \frac{1}{2} \sum e_{i}^{2} [\Delta q_{i}(x)]$$

UNIVERSITY / VIRGINIA

How does Nucleon Spin Physics Contribute to QCD/Strong Interaction Study? - Theoretical Aspect

- To understand the compositeness how do partons form the nucleon spin? the proton spin crisis/puzzle
- perturbative/high-energy/short-distance regime: to verify perturbative QCD calculations
- non-perturbative/low-energy/long-distance regime: to test effective field theories that use the hadronic degrees of freedom
- to provide predictions for structure functions
- how hadrons arise from quark and gluon degrees of freedom? lattice QCD

How does Nucleon Spin Physics Contribute to QCD/Strong Interaction Study? - Observables

- To understand the compositeness how do partons form the nucleon spin? - moments (of polarized structure functions)
- perturbative/high-energy/short-distance regime: to verify perturbative QCD calculations - Q² evolution of g1, etc
- non-perturbative/low-energy/long-distance regime: to test effective field theories that use the hadronic degrees of freedom
 moments at very low Q²/long distances
- to provide predictions for structure functions
 structure function ratios at large x
- how hadrons arise from quark and gluon degrees of freedom?
 Q² dependence of moments

How does Nucleon Spin Physics Contribute to QCD/Strong Interaction Study? - Observables

- To understand the compositeness how do partons form the nucleon spin? - moments (of polarized structure functions)
- perturbative/high-energy/short-distance regime: to verify perturbative QCD calculations - Q² evolution of g1, etc
- non-perturbative/low-energy/long-distance regime: to test effective field theories that use the hadronic degrees of freedom
 moments at very low Q²/long distances
- to provide predictions for structure functions
 structure function ratios at large x
- how hadrons arise from quark and gluon degrees of freedom?

- Q² dependence of moments

focus of this talk

(Some) Moments and Sum Rules

- Quark spin contribution to the nucleon spin: $\sum_{f} \Delta q_{f}$
- Bjorken Sum Rule: (current algebra, isospin symmetry)

$$\int (g_1^p - g_1^n) dx = \frac{1}{6} g_A \left(1 + \frac{\alpha_s(Q^2)}{\pi} + ... \right) + \text{non-pertubative corrections (higher twist)}$$

GDH Sum Rule (real photon):
(unitarity)

$$\int_{v_{th}}^{\infty} (\sigma^{1/2} - \sigma^{3/2}) \frac{dv}{v} = -\frac{2\alpha\pi^{2}\kappa^{2}}{M^{2}}$$

GDH Sum Rule (virtual photon): spin dependent DDVCS amplitude

$$\frac{16\,\alpha\,\pi^2}{Q^2} \int_0^1 g_1 dx = 2\,\alpha\,\pi^2 S_1 \quad \longrightarrow \quad -\frac{2\,\alpha\,\pi^2\,\kappa^2}{M^2}$$

low-to-intermediate Q²: chiral PT, OPE

Higher Moments - Spin Polarizabilities

Generalized forward spin polarizability:

$$\gamma_{0} = \frac{16 \alpha M^{2}}{\pi Q^{6}} \int_{0}^{x_{0}} x^{2} \left[g_{1} - \frac{4 M^{2}}{Q^{2}} x^{2} g_{2} \right] dx$$

Longitudinal-Transverse polarizability:

$$\delta_{\rm LT} = \frac{16 \,\alpha \, M^2}{\pi \, Q^6} \int_0^{x_0} x^2 \big[g_1 + g_2 \big] dx$$

• Twist-3 term d_2 :

$$d_{2}(Q^{2}) = \int_{0}^{1} x^{2} \Big[2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2}) \Big] dx = 3 \int_{0}^{1} x^{2} \Big[g_{2}(x,Q^{2}) - g_{2}^{WW}(x,Q^{2}) \Big] dx$$

Calculations exist or possible from lattice QCD, Dyson-Schwinger Equations, or Chiral PT

Lopton	EX
Lepton	E8
scattering spin	E1
ctructuro	EN
Suuciule	SN
experiments	E1
(mostly	E1
(mosuy	E1
inclusive).	E1
	HE

JLab's focus is high precision and low to intermediate Q² values

	Experiment	Ref.	Target	Analysis	$W \; ({\rm GeV})$	x_{Bj}	$Q^2 ~({\rm GeV^2})$
	E80 (SLAC)	[101]	р	A_1	2.1 to 2.6	0.2 to 0.33	1.4 to 2.7
n	E130 (SLAC)	[102]	р	A_1	2.1 to 4.0	0.1 to 0.5	1.0 to 4.1
	EMC (CERN)	[103]	р	A_1	5.9 to 15.2	1.5×10^{-2} to 0.47	3.5 to 29.5
	SMC (CERN)	[250]	p, d	A_1	7.7 to 16.1	10^{-4} to 0.482	0.02 to 57
	E142 (SLAC)	[244]	³ He	A_1, A_2	2.7 to 5.5	3.6×10^{-2} to 0.47	1.1 to 5.5
	E143 (SLAC)	[245]	p, d	A_1, A_2	1.1 to 6.4	3.1×10^{-2} to 0.75	0.45 to 9.5
	E154 (SLAC)	[246, 247]	³ He	A_1, A_2	3.5 to 8.4	1.7×10^{-2} to 0.57	1.2 to 15.0
	E155/x (SLAC)	[248, 249]	p, d	A_1, A_2	3.5 to 9.0	1.5×10^{-2} to 0.75	1.2 to 34.7
	HERMES (DESY)	[253, 254]	p, ³ He	A_1	2.1 to 6.2	2.1×10^{-2} to 0.85	0.8 to 20
	E94010 (JLab)	[256]	³ He	g_1, g_2	1.0 to 2.4	1.9×10^{-2} to 1.0	0.019 to 1.2
	EG1a (JLab)	[257]	p, d	A_1	1.0 to 2.1	5.9×10^{-2} to 1.0	0.15 to 1.8
	RSS (JLab)	[258, 259]	p, d	A_1, A_2	1.0 to 1.9	0.3 to 1.0	0.8 to 1.4
5	COMPASS	[251]	p, d	A_1	7.0 to 15.5	4.6×10^{-3} to 0.6	1.1 to 62.1
	(CERN) DIS						
	COMPASS	[280]	p, d	A_1	5.2 to 19.1	4×10^{-5} to 4×10^{-2}	0.001 to 1.
	(CERN) low- Q^2						
	EG1b (JLab)	[260, 261,	p, d	A_1	1.0 to 3.1	2.5×10^{-2} to 1.0	0.05 to 4.2
		262, 263]					
	E99-117 (JLab)	[264]	³ He	A_1, A_2	2.0 to 2.5	0.33 to 0.60	2.7 to 4.8
	E99-107 (JLab)	[265]	³ He	g_1, g_2	2.0 to 2.5	0.16 to 0.20	0.57 to 1.34
	E01-012 (JLab)	[266, 267]	³ He	g_1, g_2	1.0 to 1.8	0.33 to 1.0	1.2 to 3.3
	E97-110 (JLab)	[268]	³ He	g_1, g_2	1.0 to 2.6	2.8×10^{-3} to 1.0	0.006 to 0.3
	EG4 (JLab)	[269]	p, n	g_1	1.0 to 2.4	7.0×10^{-3} to 1.0	0.003 to 0.84
	SANE (JLab)	[271]	р	A_1, A_2	1.4 to 2.8	0.3 to 0.85	2.5 to 6.5
	EG1dvcs (JLab)	[270]	р	A_1	1.0 to 3.1	6.9×10^{-2} to 0.63	0.61 to 5.8
	E06-014 (JLab)	[272, 273]	³ He	g_1, g_2	1.0 to 2.9	0.25 to 1.0	1.9 to 6.9
	E06-010/011	[278]	$^{3}\mathrm{He}$	single	2.4 to 2.9	0.16 to 0.35	1.4 to 2.7
	(JLab)			spin asy.			
	E07-013 (JLab)	[72]	$^{3}\mathrm{He}$	single	1.7 to 2.9	0.16 to 0.65	1.1 to 4.0
				spin asy.			
_	E08-027 (JLab)	[309]	р	g_1, g_2	1. to 2.1	3.0×10^{-3} to 1.0	0.02 to 0.4

MUNIVERSITY / VIRGINIA

(Recently Published and Preliminary) Results on Moments of Structure Functions in the low to intermediate Q² region

Existing data (proton) – up to 2017

Fersch et al. PRC 96 065208 (2017)

UNIVERSITY / VIRGINIA

Existing data (neutron) – up to 2017

UNIVERSITY&VIRGINIA

X. Zheng, July 2018, Hadron Physics Workshop, Weihai, China

0.3

New deuteron results from EG4 (Hall B)

MUNIVERSITY / VIRGINIA

E97-110 preliminary neutron(³He) results on $\int g_1 dx$

UNIVERSITY of VIRGINIA

New proton results from Hall A – g_2^p at low Q² Figur

Figure credit: K. Slifer

UNIVERSITY of VIRGINIA

New proton (preliminary) results from EG4

UNIVERSITY / VIRGINIA

Test of Chiral Perturbation Theory

Ref.	Γ_1^p	Γ_1^n	Γ_1^{p-n}	Γ_1^{p+n}	γ_0^p	γ_0^n	γ_0^{p-n}	γ_0^{p+n}	δ^n_{LT}	d_2^n
Ji 1999 [194, 196]	X	X	A	X	-	-	-	-	-	-
Bernard 2002 [192, 193]	X	Χ	Α	X	X	Α	X	X	X	X
Kao 2002 [197]	-	-	-	-	X	Α	X	X	X	X
Bernard 2012 [198]	X	X	A	X	X	Α	X	X	X	-
Lensky 2014 [199]	X	Α	A	A	Α	X	X	X	$\sim \mathbf{A}$	Α

A = good agreement between chPT prediction and data X = not that well

(Data guiding chPT calculations)

Table credit: A. Deur, S.J. Brodsky, G.F. de Teramond, review article in progress

Upcoming Experiments

The A1n and d2n experiments are scheduled to run in Fall 2019, using the polarized 3He target in Hall C.

Similar proton measurements will be carried out in Hall B (CLAS12), using an upgraded NH3/ND3 target. It will likely run in or after 2020.

Nucleon (spin) Structure at High x_{Bj}

We need structure function measurements for which QCD can make absolute predictions!

The far valence domain (x>0.5)

involve only valence quarks

- is the only domain where QCD (and many other models) can make absolute predictions for (the ratio of) structure functions
- The ratio of structure functions at x→ 1 provide unambiguous, scale invariant, non-perturbative features of QCD"

Predictions for A₁ and $\Delta q/q$ at large X $|p^{\uparrow}\rangle = \frac{1}{\sqrt{2}} |u^{\uparrow}(ud)_{00}\rangle + \frac{1}{\sqrt{18}} |u^{\uparrow}(ud)_{10}\rangle - \frac{1}{3} |u^{\downarrow}(ud)_{11}\rangle$ $-\frac{1}{3} |d^{\uparrow}(uu)_{10}\rangle - \frac{\sqrt{2}}{3} |d^{\downarrow}(uu)_{11}\rangle$

Model	F_{2}^{n}/F_{2}^{p}	d/u	∆ u/u	Δ d/d	A_1^n	A ₁ ^p
SU(6) = SU3 flavor + SU2 spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfine	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1
DSE-1 (realistic)	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2 (contact)	0.41	0.18	0.88	-0.33	0.34	0.88

The only place where models and/or QCD can make absolute predictions for structure functions.

UNIVERSITY / VIRGINIA

X. Zheng, July 2018, Hadron Physics Workshop, Weihai, China

26

Predictions for A_1 and $\Delta q/q$ at large x

hyperfine interaction: the two $\frac{1}{\sqrt{10}} | u^{\uparrow}(ud) |_{\text{quarks in the spectator di quark prefer to form a S=0 to}$ a S=1 state. - based on nucleon-Delta

mass plitting, etc. – but the breaking of SU(6) may not be that big.

Model	F_{2}^{n}/F_{2}^{p}	d/u	∆ u/u	∆ d/d	A_1^n	A ₁ ^p
SU(6) = SU3 flavor + SU2 spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfine	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1
DSE-1 (realistic)	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2 (contact)	0.41	0.18	0.88	-0.33	0.34	0.88

The only place where models and/or QCD can make absolute predictions for structure functions.

27

UNIVERSITY of VIRGINIA

Predictions for A_1 and $\Delta q/q$ at large x

$$|p^{\uparrow}\rangle = \frac{1}{\sqrt{2}} |u^{\uparrow}(ud)_{00}\rangle + \frac{1}{\sqrt{18}} |u^{\uparrow}(ud)_{10}\rangle - \frac{1}{3} |u^{\uparrow}(ud)_{10}\rangle - \frac{1}{3} |d^{\uparrow}(uu)_{10}\rangle - \frac{\sqrt{2}}{3} |d^{\downarrow}(uu)_{11}\rangle$$

pQCD: the struck quark is free + constraint on the gluon exchange within the diquark \rightarrow the struck quark must carry nucleon's helicity at x \rightarrow 1

Model	F_{2}^{n}/F_{2}^{p}	d/u	∆ u/u	Δ d/d	A_1^n	A ₁ ^p
SU(6) = SU3 flavor + SU2 spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfine	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1
DSE-1 (realistic)	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2 (contact)	0.41	0.18	0.88	-0.33	0.34	0.88

The only place where models and/or QCD can make absolute predictions for structure functions.

28

MUNIVERSITY / VIRGINIA

Predictions for $ p^{\uparrow}\rangle = \frac{1}{\sqrt{2}} u^{\uparrow}(ud)_{00}\rangle$ $-\frac{1}{3} d^{\uparrow}(ud) ^{00}$	A non (low-e theor diqua a resu chiral break used proba from form	A non-perturbative, (low-energy) effective theory. Non-pointlike diquark correlations as a result of dynamical chiral symmetry breaking. Predictions used diquark probabilities extracted from nucleon elastic form factors				
Model	F_{2}^{n}/F_{2}^{p}	d/u	∆ u/u	∆ d/d	A_1^n	A ₁ ^p
SU(6) = SU3 flavor + SU2 spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfine	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1
DSE-1 (realistic)	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2 (contact)	0.41	0.18	0.88	-0.33	0.34	0.88

The only place where models and/or QCD can make absolute predictions for structure functions.

MUNIVERSITY of VIRGINIA

29

The 6 GeV Hall A Measurement (21 PAC days, 2001) (ŭ+u)/(ŭ+u∆ ° , , Ъ (6)(6) This work(³He) (3)3 *)*(4) (4) E142 0 (1) SU(6) E154 (2) CQM Δ. 0.5 pQCD does HERMES (3) LSS(BBS) Ô (4) **BBS** not apply ! (7) (5) Bag (8) Model 0 (6) Duality (7) LSS 2001 (Þ+b)/(b∆+b∆ (1)This work (8) Statistic (2/ HERMES [106,107] (9) al Model 0.5 (9) Chiral Soliton 0 -0.5 L 02 0.4 0.6 0.8 (4) (1)(3) -0.5(Deutron data not shown: E143, E155, SMC) 0.2 0.4 0.6 0.8Ω X X. Zheng et al., Phys. Rev. Lett. 92, 012004 (1)CQM (2)LSS(BBS):pQCD+HHC (2004); Phys. Rev. C 70, 065207 (2004) (3) Statistical Model (4) LSS 2001

UNIVERSITY of VIRGINIA

A non-perturbative, (low-energy) effective theory. Non-pointlike diquark correlations as a result of dynamical chiral symmetry breaking. Predictions used diquark probabilities extracted from nucleon elastic form factors

pQCD: the struck quark is free + constraint on the gluon exchange within the diquark \rightarrow the struck quark must carry nucleon's helicity at x \rightarrow 1

now added quark OAM, but $\Delta d/d$ still must be 1 at x=1

MUNIVERSITY / VIRGINIA

Reaching Deeper Valence Quarks Region with 12 GeV

A₁ⁿ Kinematics

CLAS12 Kinematics

UNIVERSITY of VIRGINIA

Extracting $\Delta q/q$ from both proton and neutron (³He) data

MIVERSITY / VIRGINIA

Summary and Outlook

- Understanding confinement and non-perturbative nature of strong interaction is the most significant unresolved challenge within the Standard Model
- Nucleon spin structure study provide crucial information to the study of strong interaction and QCD, from low energy (non-perturbative) to high energy (perturbative) regime, and the transition in between.
- Recent experiments at Jefferson Lab have added a plethora of data, in particular the proton and the neutron spin structure functions and their moments at very low Q² values. These provide important check (and guidance) for chiral perturbation theory calculations.
- Spin asymmetries at large x provide a powerful test of models. The polarization of the down quark, $\Delta d/d$, will tell us whether the nucleon's behavior at high x is perturbative in nature. The upcoming (2019-2020) A_1 experiments in Hall C (neutron) and in Hall B/CLAS12 (proton and deuteron) will venture into a deeper valence quark region. Stay tuned!

