

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Towards the nEDM search at TRIUMF

Ryohei Matsumiya (TRIUMF) for the TUCAN collaboration

Hadron 2018 workshop July 26-30, 2018, Shandong University, Weihai, China

TRIUMF UltraCold Advanced Neutron source

¹KEK

²The University of British Columbia
 ³The University of Winnipeg
 ⁴The University of Manitoba,
 ⁵TRIUMF
 ⁶RCNP
 ⁷The University of Northern BC
 ⁸Osaka University
 ⁹Simon Fraser University
 ¹⁰Nagoya University

TUCAN's Goal

- Develop world-leading intensity Ultra-Cold Neutron (UCN) source at TRIUMF
- Search for the neutron Electric Dipole Moment (nEDM) to a precision of 10⁻²⁷ ecm

Outline

- Background, nEDM, Ultra-Cold Neutron (UCN)
- UCN source
 - ✓ Super-thermal UCN production
 - ✓ Prototype UCN source development at RCNP, Osaka U, Japan
 - ✓ New world-leading UCN source
- nEDM spectrometer
- Summary and Future Outlook

Baryon Asymmetry in the Universe

CP violation in the SM is not sufficient. New source of CP violation is needed.

- Our universe: matter >> anti-matter
- Baryon asymmetry parameter large discrepancy between observation and theory

$$\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 10^{-10} \qquad \text{Observation}$$

$$\eta = \frac{n_B - n_{\bar{B}}}{n_\gamma} \le 10^{-18}$$

Standard Model (SM) expectation

Sakharov's 3 conditions

- 1. Baryon number B violation
- 2. C and CP violation
- 3. Interactions out of thermal-equilibrium

TRIUMF

nEDM - Neutron Electric Dipole Moment

- New physics beyond standard model (BSM)
 - Supersymmetry, multi Higgs, LR model etc...
- Many BSM physics. How to test it?

nEDM can be a good probe to test BSM

Neutron Electric Dipole Moment (nEDM)

Time reversal

TRIUMF

nEDM - Neutron Electric Dipole Moment

- New physics beyond standard model (BSM)
 - Supersymmetry, multi Higgs, LR model etc...
- Many BSM physics. How to test it?

nEDM can be a good probe to test BSM

Neutron Electric Dipole Moment (nEDM)

Time reversal

nEDM - Neutron Electric Dipole Moment

- New physics beyond standard model (BSM)
 - Supersymmetry, multi Higgs, LR model etc...
- Many BSM physics. How to test it?

nEDM can be a good probe to test BSM

Neutron Electric Dipole Moment (nEDM)

Time reversal

Ultra-Cold Neutron (UCN)

Ultracold Neutron (UCN)

Energy ~ 100neV Velocity ~ 5 m/s Wavelength ~ 500 Å (50 nm)

Interaction

Gravity ~ 102 neV/m Magnetic field ~ 60 neV/T Weak interaction: n → p + e + v Strong interaction (Fermi potential) ⁵⁸Ni fermi potential: 335 neV Stainless steel: 190 neV Aluminum: 54 neV

UCN can be stored in a material vessel

for a long time (~100 sec)

→ nEDM, n lifetime, Gravity etc...

Ramsey Resonance

UCN density is important!

UCN Extracted from Reactor

- Institute Laue Langevin (ILL), Grenoble, France
 - UCNs are extracted from low energy tail of cold neutrons
 - UCN density in the EDM vessel: $0.7UCN/cm^3$ ($E_c=90neV$)
 - Phase space density is proportional to T_n^{-2}

Phase space density is constant (Liouville's theorem). To lower T_n in the reactor is difficult.

More efficient **UCN** production = Super-thermal UCN production 8

- Super-thermal UCN production (Golub & Pendlebury, 1977)
 - Phonon effective mass is same as the mass of a neutron at the intersection (1.1meV, 12K)
 - Momentum & energy of a cold neutron are passed to a phonon by single phonon scattering.
 - Effective UCN production becomes possible using phonon's phase space.

 Produce fast neutrons by proton-induced spallation reaction

< 300 neV

- First UCN production
 in 2002
- Operation at RCNP finished in 2011

,										
³ He Pumping 1K Helium Pumping									UCN	
Radiation Shield	Burst disk	4K Liquid Helium reservoir		3He pot	4K Liquid Helium reservoir		Radiati	ion d		
	Graphite	RT D ₂ O vessel	bottle	Ice D ₂ O vessel		Graphite				RCNP ring cyclotron
	Le	ead			—— pi	roton bea	m			1 1
			icau tai	,						11

R&D at RCNP

- Cleaning UCN bottle & guide (Baking & Alkali degreasing) 12

RTRIUMF

R&D at RCNP

- Cleaning UCN bottle & guide (Baking & Alkali degreasing) 12

• The prototype UCN source was transported from RCNP to TRIUMF in 2016 ~ 2017.

TRIUMF

TRIUMF Proton Beam Line (BL1U)

First beam on target on Nov 22, 2016

Major milestones☆ 2014~2016Construction of Beam line 1U☆ 2016 FallCommissioning of the proton beam and CN production☆ 2017 SpringPrototype UCN Source Installation & Cooling test☆ 2017 Nov.UCN Production with the Prototype UCN Source2021-Next Generation UCN Source

Installation at TRIUMF

- The prototype UCN source and equipments were installed on the beam line in 2017.
- He-II cooling test was performed in April, 2017. He-II temperature 0.9K was achieved.

Installation at TRIUMF

• He-II cooling test was performed in April, 2017. He-II temperature 0.9K was achieved.

First UCN Production at TRIUMF

• TUCAN collaboration achieved First UCN production on November 13, 2017

(Part of) TUCAN comrades

First UCN Production at TRIUMF

- November 13, 2017 First UCN production
 - 5x10⁴ UCN at 500MeV & 1uA p-beam, 60sec
 - UCN storage time: 38 sec (81 sec at RCNP)
 - 3x10⁵ UCN at 10uA p-beam, 60sec irradiation

New World-leading UCN Source

 TUCAN is designed CDR was 	gning a new world-leading s written and reviewed in		Prototype UCN source	New UCN source	Factor	
- lechnica - 2020-20	al design started. 21 install and start operat g system (104 m³/h)	ion	Beam power	400W (400MeV×1uA)	20kW (500MeV ×40uA)	×50
- Efficient her	e Cryostat LD ₂ Cryostat		Cold moderator	20K Ice D ₂ O	20K Liquid D ₂	×2.5
	Euidung au Buidung au	moderator d neutron flux ostat design	UCN production volume	8L	34L	×4.3
	He-II	Graphite	UCN production rate [UCN/s]	3.2×10 ⁴	2×10 ⁷	× 540 (50×2.5×4.3)
Measurement of:	Exchanger 2.5m	p-beam 400W -> 20kW	UCN density [UCN/cm ³]	9	5.6×10 ³	×630
- He-II thermat conductivity - Kapitza conductance		Heat load: 0.15W -> 10W He-II temp.: 0.9 K-> 1.15K				19

nEDM Spectrometer

LD₂ moderator

SCM polarizer 3.5T magnetic filed Polarize UCN ~100%

Magnetic shielded room

UCN detector

Spin flipper

and analyzer

EDM vessel + High voltage

Superconducting

magnet polarizer

Y-switch

Ban et al., NIM A611, 280 (2009) Jamieson et al,, EPJ A53,3 (2017)

Statistical error:

$$\sigma(d_n) = \frac{\hbar}{2\alpha T_c E \sqrt{N}}$$

- $\alpha_0 = 0.95$
- $T_{\rm c} = 120 \, {\rm s}$
- E = 12 kV/cm
- $N_0 = (6 \sim 7) \times 10^6$
- UCN density ~ 200 UCN/cm³
- 10⁻²⁷ ecm reached after ~400 beam days

- UCN guides
 - ✓ Low UCN loss and depolarization
 - ✓ Test at available UCN facilities (PSI, Prototype UCN source)
 - ✓ Coating facility at U Winnipeg
- EDM vessel
 - ✓ Low UCN loss and depolarization
 - ✓ Applying high voltage (~200kV), good insulation wall
- Magnetic field
 - $\checkmark\,$ High homogeneity and stability / active field control
 - ✓ Field monitoring with magnetometers & co-magnetometer
- Systematic effects
 - ✓ Simulation studies

- The prototype UCN source developed at RCNP was transported to TRIUMF, then installed on the dedicated proton beam line.
- First UCN production at TRIUMF was achieved in Nov, 2017.
- Designing a new world-leading UCN source.
 - Aiming at 10⁻²⁷ ecm sensitivity nEDM measurement
 - Will be operational in 2021
- nEDM spectrometer
 - Being developed in parallel with the new UCN source
- UCN from the prototype source is available until 2020.

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta I British Columbia I Calgary I Carleton I Guelph I Manitoba I McGill I McMaster I Montréal I Northern British Columbia I Queen's I Regina I Saint Mary's I Simon Fraser I Toronto I Victoria I Western I Winnipeg I York

Thank you! Merci! 谢谢!

Follow us at TRIUMFLab

Backup slides

RTRIUMF

nEDM Spectrometer @ILL/PSI

- ILL/RAL/Sussex setup
- nEDM uper limit: 3×10⁻²⁶ ecm (90%C.L)
- Moved to PSI

Neutron-phonon scattering in He-II

cold n flux

Scattering function

Cooling UCN Cryostat

27

Cooling UCN Cryostat

28

Cooling UCN Cryostat

He-II condensation

World Status

Place	Neutrons	UCN converter	Status
ILL	Reactor, CN	Turbine	Running
J-PARC	Spallation	Doppler shifter	Running
ILL SUN-2	Reactor, CN	Superfluid He	Running
ILL SuperSUN	Reactor, CN	Superfluid He	Future
RCNP/KEK/TRIUMF	Spallation	Superfluid He	Installing/Future
Gatchina WWR-M	Reactor	Superfluid He	Future
LANL	Spallation	Solid D2	Running/Upgrading
Mainz	Reactor	Solid D2	Running
PSI	Spallation	Solid D2	Running
NSCU Pulstar	Reactor	Solid D2	Installing
FRM-II	Reactor	Solid D2	Future

 $B = 3.5T \rightarrow -\mu_n \cdot B = \pm 210 \text{ neV}$

 $E_c \sim 200$ neV from our UCN source

Only one state can pass.

