# $\Lambda_c^+$ Physics at BESIII

04/05/2018 Jing Maoqiang

#### Introduction

- The decays of charm baryon provide crucial information for the study of both strong and weak interactions.
- The hadronic decays of  $\Lambda_c^+$  provide important input to b physics, while the semi-leptonic (SL) decays of  $\Lambda_c^+$  provide a stringent test on non-perturbative theoretical models.

#### The production of $\Lambda_c^+$

- Born cross section of  $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$  reaction is measured at four CM energies:  $\sqrt{s} = 4574.5$ , 4580.0, 4590.0 and 4599.5 MeV.
- At each CM energy, ten Cabibbo-favored hadronic decay modes as well as the ten corresponding charge-conjugate modes are independently reconstructed.

$$\begin{split} \Lambda_c^+ &\to p K^- \pi^+, \ p K_S^0, \ \Lambda \pi^+, \ p K^- \pi^+ \pi^0, \ p K_S^0 \pi^{0}, \ \Lambda \pi^+ \pi^0, \ p K_S^0 \pi^+ \pi^-, \ \Lambda \pi^+ \pi^+ \pi^-, \ \Sigma^0 \pi^+, \end{split}$$
and  $\Sigma^+ \pi^+ \pi^- \end{split}$ 

• Each mode will produce one measurement of the Born cross section and the total cross section is obtained from weighted average over the 20 individual measurements

### The production of $\Lambda_c^+$



### The production of $\Lambda_c^+$

- The data fulfilling all selection criteria are divided into ten bins in  $\cos\theta_{\Lambda_c^+}$ . In each  $\cos\theta_{\Lambda_c^+}$  bin, the total yield is obtained by summing yields of all the ten tagged modes.
- The total yields of  $\Lambda_c^+$ and  $\overline{\Lambda_c}$  are combined bin-by-bin and the shape function  $f(\theta) \propto (1 +$  $\alpha_{\Lambda_c} cos^2 \theta$ ) is fitted to the combined data.



Table 2 listed the resulting  $\alpha_{\Lambda_c}$  parameters obtained from the fits, as well as the  $|G_E/G_M|$  ratios extracted using the equation:

$$|G_E/G_M|^2(1-\beta^2) = (1-\alpha_{\Lambda_c})/(1+\alpha_{\Lambda_c}).$$

Table 2. Shape parameters of the angular distribution and  $|G_E/G_M|$  ratios at  $\sqrt{s} = 4574.5$ and 4599.5 MeV. The uncertainties are statistical and systematic. (BESIII preliminary results)

| $\sqrt{s}$ (MeV) | $lpha_{\Lambda_c}$        | $ G_E/G_M $              |
|------------------|---------------------------|--------------------------|
| 4574.5           | $-0.13 \pm 0.12 \pm 0.08$ | $1.14 \pm 0.14 \pm 0.07$ |
| 4599.5           | $-0.20 \pm 0.04 \pm 0.02$ | $1.23 \pm 0.05 \pm 0.03$ |

Figure 2. The angular distribution and corresponding fit results in data at  $\sqrt{s} = 4574.5$  MeV (a) and 4599.5 MeV (b).

# $\Lambda_c^+$ hadronic decay

• To identify the  $\Lambda_c^+ \overline{\Lambda_c^-}$  signal candidates, we firstly reconstruct one baryon (called single tag (ST)) through the signal states of any of the singly tagged modes.

$$\mathbf{V}_{j}^{\mathrm{ST}} = N_{\Lambda_{c}^{+}\bar{\Lambda}_{c}^{-}} \cdot \mathcal{B}_{j} \cdot \varepsilon_{j}$$

• Then we define double-tag (DT) events as those where the partner  $\Lambda_c^+$  recoiling against the  $\overline{\Lambda_c^-}$  is reconstructed in one of the signal modes.

$$N_{ij}^{\mathrm{DT}} = N_{\Lambda_c^+ \bar{\Lambda}_c^-} \cdot \mathcal{B}_i \cdot \mathcal{B}_j \cdot \varepsilon_{ij}$$

• The ratio of the DT yield and ST yield provides an absolute measurement of the BF.

$$\mathcal{B}_i = \frac{N_{ij}^{\rm DT}}{N_j^{\rm ST}} \frac{\varepsilon_j}{\varepsilon_{ij}}$$

# $\Lambda_c^+$ semi-leptonic decay

- Using the similar strategy in hadronic decay measurements, we select the data sample of  $\overline{\Lambda_c}$  baryons by reconstructing exclusive hadronic decays.
- The ST  $\overline{\Lambda_c}$  are reconstructed using eleven hadronic decay modes.  $\bar{\Lambda}_c^- \rightarrow \bar{p}K_S^0, \ \bar{p}K^+\pi^-, \ \bar{p}K_S^0\pi^0, \ \bar{p}K^+\pi^-\pi^0, \ \bar{p}K_S^0\pi^+\pi^-, \ \bar{\Lambda}\pi^-, \ \bar{\Lambda}\pi^-\pi^0, \ \bar{\Lambda}\pi^-\pi^+\pi^-, \ \bar{\Sigma}^0\pi^-, \ \bar{\Sigma}^-\pi^0 \ \text{and} \ \bar{\Sigma}^-\pi^+\pi^-$
- The signal candidates for  $\Lambda_c^+ \to \Lambda l^+ \upsilon_l$  are selected from the remaining tracks recoiling against the ST  $\overline{\Lambda_c}$  candidates. As the neutrino is missing, we employ a kinematic variable

$$U_{\rm miss} = E_{\rm miss} - c |\vec{p}_{\rm miss}|$$

 $E_{\text{miss}}$  and  $p_{\text{miss}}$  are the missing energy and momentum



**Figure 3.** (a) Fit to the  $U_{\text{miss}}$  distribution of process  $\Lambda_c^+ \to \Lambda e^+ \nu_e$ . (b) Fit to the  $U_{\text{miss}}$  distribution of process  $\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}$ . The points with error bars are data, the (red) solid curve shows the total fit and the (blue) dashed curve is the background shape. The green-dashed line in the right subfigure denotes the MC-driven background shapes which is supposed to simulate the remaining background.

• The absolute BF for  $\Lambda_c^+ \to \Lambda e^+ \upsilon_e$  is determined by

$$\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = \frac{N_{\text{semi}}}{N_{\bar{\Lambda}_c^-}^{\text{tot}} \times \varepsilon_{\text{semi}} \times \mathcal{B}(\Lambda \to p\pi^-)}$$

 Question from Ryuta: In the Figure 1, there are 4 red points from BESIII data, and the point at 4574.5 (most left one) shows bigger uncertainty in X-axis (sqrt(s)) direction, compared with the center two (4580.0, 4590.0) though the luminosity is much higher. Is there any specific reason for that ?



 Actually, I agree with Ryuta because higher luminosity will result in be lower uncertainty, but the most left and right points have the highest uncertainty  Question from Xin: On page 5, it says "For signal events, Umiss is expected to peak around zero." Could you explain why?

12 A vet I Pmiss = I PAC - PA - Pet = PAC - PA - Pet Emiss = Ebeam - En - Eet Ebeam = Ent = CPAt En = CPA Eet = CPet paround. . Umiss = Emiss - CPA iss (2) CPAt - CPA - CPA - CPAt  $+ CP_{0} + CPe^{+} = 0$