Cross section measurement of $\eta J/\psi$ and $\pi^0 J/\psi$ at \sqrt{s} = 4.009GeV

23/03/2018 Jing Maoqiang

What has this memo done?

- With 477pb⁻¹ data sample collected at \sqrt{s} =4.009GeV, the production of e⁺e⁻ \rightarrow η J/ ψ is observed with a statistical significance of greater than 10 σ as well as its branch ratio
- The production of $e^+e^- \rightarrow \pi^0 J/\psi$ is searched for but no significance signal is observed only an upper limits of branch ratio is given

What does this memo achieved the goals?

• The Born-order cross section is calculated using the following formulism as well as branch ratio:

$$\sigma^{B} = \frac{N^{obs}}{\mathcal{L}_{int}(1+\delta)\epsilon\mathcal{B}}$$
$$(1+\delta) = \frac{\sigma^{obs}}{\sigma^{B}} = \frac{\int BW(s(1-x))F(x,s)dx}{BW(s)}$$

• π^0 and η are constructed by two γ s and J/ ψ are constructed by e⁺e⁻ and $\mu^+\mu^-$ channels

- Normal event selection criteria has been applied
- Some special event selection criteria
 - For electron candidates: E/p ratio value larger than 0.8 of each track
 - For muon candidates: deposited energy of each track less than 0.4GeV

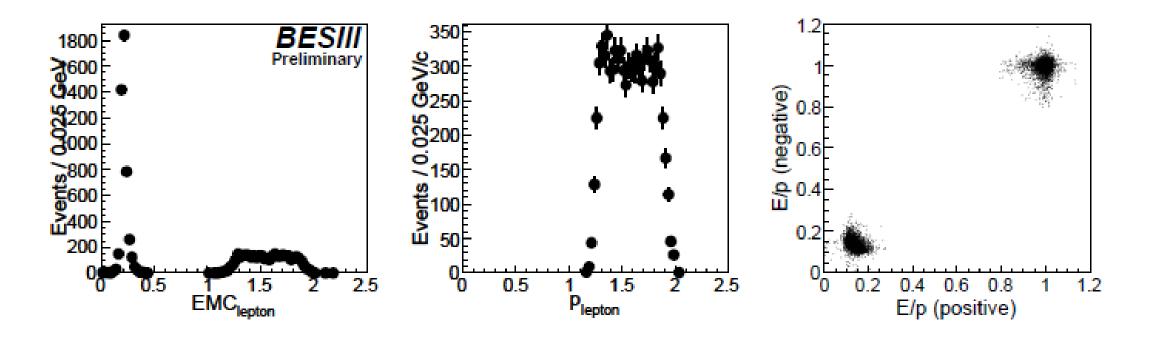
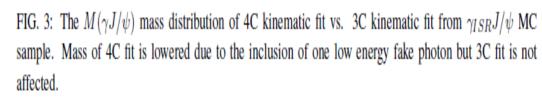
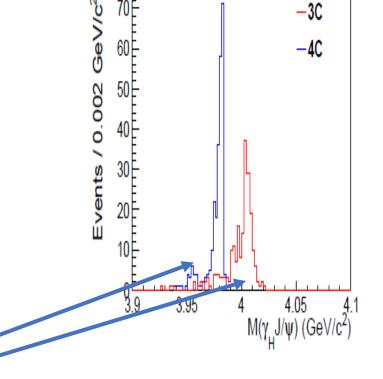




FIG. 1: (left) EMC deposit energy distribution, (middle) momentum distribution, and (right) E/p scatter plot of leptons in $\eta J/\psi$ signal MC sample. Electron events and muon events are separated clearly by EMC deposit energy and E/p ratio.

 \succ To further separate events with one real photon and one low energy fake photon (for example $\gamma_{ISR} J/\psi$ events), threeconstraint (3C) kinematic fits are also performed with the two charged tracks and two photon candidates (missing the energy of the low energy photon). Question from Hao: what are 3C and 4C

fit? Why the peak from 4C is a little lower than that from 3C

➢ In order to veto e⁺e[−]→π⁺π[−]π⁰ background in π⁰J/ψ search, at least one charged track have MUC hit depth larger than 30 cm.

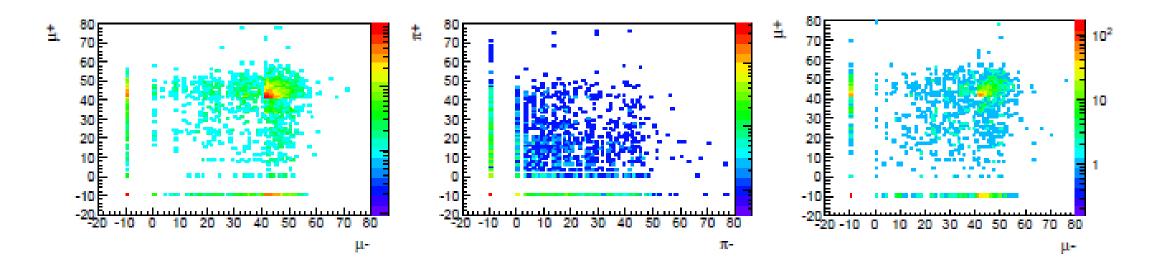


FIG. 5: Scatter plot of MUC hit depth distribution for $\pi^0 J/\psi$ MC events (left), $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ MC events (middle) and $\psi' \rightarrow \eta J/\psi$ data events (right).

Fit of $M(\gamma\gamma)$ spectra

• Fit to the M($\ell + \ell -$) invariant mass distribution of $\eta J/\psi$ MC sample with double Gaussian function

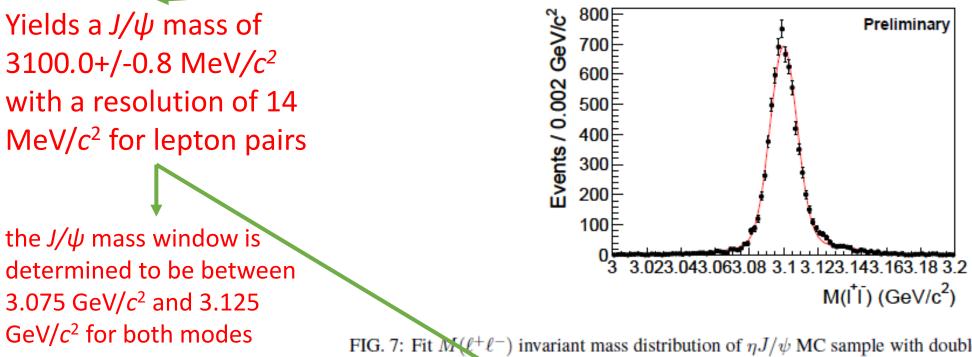


FIG. 7: Fit $M(\ell^+\ell^-)$ invariant mass distribution of $\eta J/\psi$ MC sample with double Gaussian function. The fit yields $M(J/\psi) = 3100 \pm 0.8 \text{ MeV}/c^2$ with resolution $\sigma = 14 \text{ MeV}/c^2$.

To reduce the uncertainty of background estimation, J/ψ mass sideband is chosen to be 2.95 < $M(\ell^+\ell^-) < 3.05 \text{ GeV}/c^2$ and $3.15 < M(\ell^+\ell^-) < 3.25 \text{ GeV}/c^2$, which is 4 times of the signal region.

Fit of $M(\gamma\gamma)$ spectra

• Fit of $M(\gamma\gamma)$ spectra

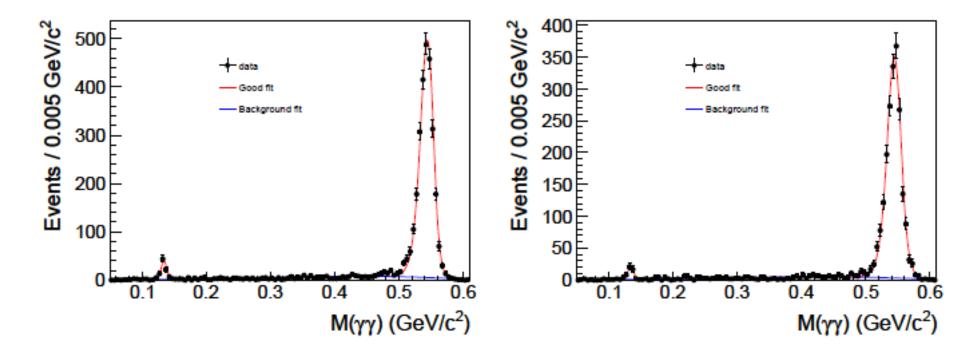


FIG. 8: Fit $M(\gamma\gamma)$ invariant mass distribution in $\mu^+\mu^-$ mode (left) and e^+e^- mode (right) for $\psi' \rightarrow \eta/\pi^0 J/\psi$ control sample with MC histogram convolving free Gaussian functions.

 $\mathcal{N}(\eta)_{\mu+\mu-}=111.4+/-11.0; \ \mathcal{N}(\eta)e^+e^-=61.4+/-10.5$

Results

• The Born-order cross section is calculated using the following formulism:

$$\sigma^{B} = \frac{N^{obs}}{\mathcal{L}_{int}(1+\delta)\epsilon\mathcal{B}}$$
$$(1+\delta) = \frac{\sigma^{obs}}{\sigma^{B}} = \frac{\int BW(s(1-x))F(x,s)dx}{BW(s)}$$

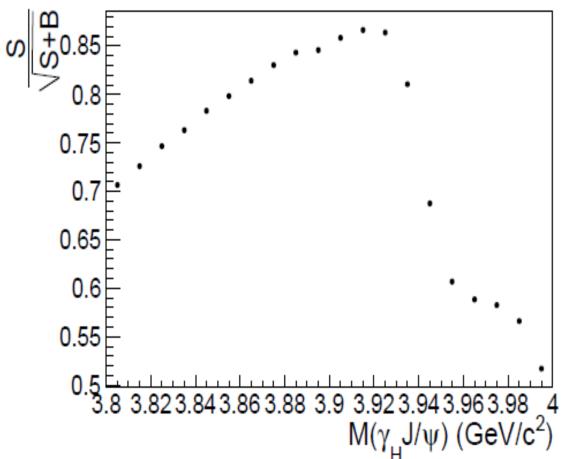
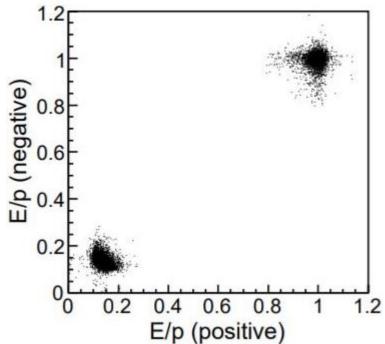

Results

TABLE I: Summary of the systematic errors (%) in $\mu^+\mu^-$ mode and e^+e^- mode.

Source	$\eta\mu^+\mu^-$	ηe^+e^-	$\pi^0 \mu^+ \mu^-$
Luminosity	1.1	1.1	1.1
Track finding	2	-	2
Photon detection	2	2	2
Lepton pair mass resolution	1.6	2.4	1.6
Kinematic fit	1.9	1.9	1.9
Background shape	1.5	3.0	9.4
$\psi(4040)$ parameters and line shape	2.0	3.3	4.0
Branching ratios	1.2	1.2	1.0
Others	1.0	1.0	1.0
Total	5.0	6.1	11.1


- From Ryuta: the center of mass energy = 4.009GeV differs from the mass of $\psi(3686)$, so that the momentum/energy of the muons from J/ ψ might be somehow different, but can we still expect that the MUC response is the same between these two?
- Answers from me: I think they are the same because when the detector detects a muon, for example, we can't distinguish whether it is from continuum process or from a resonance, we just detect a muon. To be honestly, I haven't any paper aimed at that. This judgment just based on my understanding of some papers I've read.

- From Suyu: what's S/sqrt(S+B)?
- Answers from me: basically, S are the events from signal MC S+B are the events from data. I don't know how the formula is got, but the function of it is to show the ratio of signal events by varying some variable to determine a cut for it

- From Kai:
 - Solution By assuming $\eta J/\psi$, $\pi^0 J/\psi$ are all from $\psi(4040)$ decays. What kind of interactions are these two processes, strong interaction, electromagnetic, or weak interaction, explain your choice
 - When selecting electron/positron candidates from J/ψ decay, why they require E/q to be around 1(>0.8 in this paper based on the distribution shape)?
- Answers from me:
 - For the first question: sorry, I can't answer that
 - For the second question: this is also the question I want to ask

- From Tao: Could you please make a simple explanation the pictures below? Especially the E-P ratio
- Answers from me: I especially want to know why we can consider E/p ratio as a selection criteria?

- From Xin: How to explain the largest systematic uncertainty of $\pi^0\mu^+\mu^-$: 9.4%?
 - C. Background shape

The systematic uncertainty from background shape is estimated through varying the background shape from 3rd order polynomial to 2nd order or 4th order and the difference is 1.5% in $\mu^+\mu^-$ mode and 3.0% in e^+e^- mode for $\eta J/\psi$. For $\pi^0 J/\psi$, the uncertainty from background shape is mainly due to peaking background estimation, which gives 9.4% in $\mu^+\mu^-$ mode.

- Answers from me: Sorry, there are too many details to understand and I'm too exhausted when I came to that point
- From Hao: Displayed in former slide

