Doubly charmed baryon studies at LHCb

Lars Eklund, on the behalf of the LHCb Collaboration Ξ_{cc}^{++} dcc Ξ_{co}^+ SCC Σ_c^0 uuc ddc udc usc dsc uud udd Σ^{-} uds dds 🖉 **Λ**, Σ⁰ uus /dss uss "⊒0

University of Glasgow

UCAS PFPI visiting fellow

- The LHCb Experiment
- Doubly-charmed baryons
 - Introduction & motivation
 - Previous searches
- First observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$
 - Mass measurement
- Outlook

The LHCb detector

LHCb trigger and data

Run II Turbo stream:

• Candidates reconstructed at trigger level saved for offline analyses directly

- Integrated luminosity to date: 6.9 fb⁻¹
- Results presented here
 - 0.65 fb⁻¹ record 2011
 - 2.1 & 1.7 fb⁻¹ recrded in 2012 & 2016
- Expectation for 2018: approximately 2 fb⁻¹
- Triggers re-optimied regularly

LHCb Integrated Recorded Luminosity in pp, 2010-2017

Doubly heavy baryons

Quark model predicts doubly-heavy baryons: QQq (Q ∈ c, b; q ∈ u, d, s)
 Predicted states: Ξ⁺_{cc}(ccd), Ξ⁺⁺_{cc}(ccu), Ω⁺_{cc}(ccs), Ξ⁺_{bc}(bcu), Ξ⁰_{bc}(bcd) etc.
 More doubly charmed baryons produced at LHCb: σ(cc̄, cc̄) >> σ(bb̄, cc̄) >> σ(bb̄, bb̄)

Physics motivation

Example: HQET where two charm quarks considered as static heavy di-quark reducing it to simple $Q\overline{q}$ system

- Heavy hadrons (Qq, QQ, QQQ, QQQ etc) are all of much interest in QCD studies
- Allow great testing grounds for phenomenological models and lattice QCD techniques
- Doubly heavy baryons will open new sector to study strong force and CPV in baryonic matter

Mass and lifetimes predictions

- Many models been applied to determine masses of ground states of (QQq) baryons;
 - QCD sum rules, (non-)relativistic QCD potential models, bag model, quark model...

- Recent lattice QCD computations: • $m(\Xi_{cc}^+/\Xi_{cc}^{++}) \approx 3.6 \text{ GeV}$ • $m(\Xi_{cc}^+) - m(\Xi_{cc}^{++}) \approx \text{few MeV}$ • $m(\Omega_{cc}^+) \approx 3.7 \text{ GeV}$
- Lifetime predictions $\succ \tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+}) \sim \tau(\Omega_{cc}^{+})$ $\succ \tau(\Xi_{cc}^{++}) \in 200-700 \text{ fs}$ $\succ \tau(\Xi_{cc}^{+}) \in 50-250 \text{ fs}$
- Ξ_{bc} higher at 6.75 7.1 GeV with m(Ξ_{bc}^{0}) \approx m(Ξ_{bc}^{+})
- Ξ_{bc} lifetimes predicted to be generally longer than Ξ_{cc} with: $\tau(\Xi_{bc}^+) > \tau(\Xi_{bc}^0)$

SELEX and \mathcal{Z}_{cc}^+

SELEX: fixed-target experiment @ Fermilab > Observation of Ξ_{cc}^+ in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$, 2002 (6.3 σ) > Evidence of Ξ_{cc}^+ in $\Xi_{cc}^+ \to D^+ p^+ K^-$, 2004 (4.8 σ)

- Signal had some unexpected properties:
 - Short lifetime: τ < 33 fs at 90% C.L., suggests a strong decay
 - \blacktriangleright Large production: 20% Λ_c^+ came from Ξ_{cc}^+ decays
- SELEX findings never reproduced by other groups
- Unique production environment:
 - ➢ 600 GeV beam of hyperons on fixed target of Cu/diamond
 - Production cross-section could be very different than in pp colliders

SELEX $\Lambda_c^+ K^- \pi^+$ and $D^+ p^+ K^-$ distributions superposed <u>Phys.Lett. B628 (2005) 18-24</u>

Combined mass: 3518.7 \pm 1.7(stat) MeV/ c^2

LHCb search for Ξ_{cc}^+

JHEP 12 (2013) 090

9/19

- In 2013, LHCb searched for $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decays with 0.65 fb⁻¹ of 2011 data
- Examined mass range 3.3-3.8 GeV but found no evidence of Ξ_{cc}^+ production
- Experiment sensitivity strongly depends on Ξ_{cc}^+ lifetime however

$$\mathsf{R} = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)}$$

R < 0.013 for $\tau(\Xi_{cc}^+) = 100$ fs R < 3.3 × 10⁻⁴ for $\tau(\Xi_{cc}^+) = 400$ fs

 Due to limited sensitivity at short lifetimes, this nonobservation is not inconsistent with the SELEX claim

LHCb search for Ξ_{cc}^{++}

- In 2016 Started searching for doubly charged state in $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ decays
- BF suggested to be as high as $\sim 10\%$ (arXiv:1703.09086)
- τ(Ξ⁺⁺_{cc}) >> τ(Ξ⁺_{cc})
 Σ⁺⁺_{cc} travels further from PV, increasing the selection efficiency

Analysis strategy:

- Use 1.7 fb⁻¹ 2016 Run II data at \sqrt{s} = 13 TeV
- Dedicated exclusive trigger ensuring high efficiency
- Full event reconstruction done at trigger level
- 2 fb⁻¹ 2012 Run I data also analysed to cross check results

 $arepsilon_{cc}^{++}
ightarrow(csu)W^+
ightarrow(csu)(\pi^+,
ho^+,a_a^+)$

PRL 119, 112001 (2017)

Selector trained on simulated signal and un-physical wrong-sign (WS) data

$$\Xi_{cc}^{++} \to \Lambda_c^+ \ K^- \pi^+ \pi^-$$

• Very large hadronic background be con-
from 2
• Pure, high-yield sample of
$$\Lambda_c^+ \rightarrow p^+ K^- \pi^+$$
 (cuts-based)

L. Eklund (Glasgow)

 \succ Tracks: positive particle ID, displaced and large p_T

 $\succ \Lambda_c^+$: good vertex quality and displaced from primary vertex

• Λ_c^+ combined with PID-selected $K^-\pi^+\pi^+$ tracks to form Ξ_{cc}^{++} candidates

Multivariate selector used to select Ξ_{cc}^{++} candidates:

- > Decay Fit quality of Ξ_{cc}^{++} candidates
- Kinematics of final states

• $\sigma(\Xi_{cc}^{++}) \ll \sigma_{\text{inelastic}}$ (by ~×10⁵)

 $\succ \Xi_{cc}^{++}$ vertex separation from PV

11/19

 $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ selections

• A significant structure in right sign (RS) data

• Not present in wrong sign (WS) combinations

PRL 119, 112001 (2017)

- Not observed for Λ_c^+ background candidates
- Distributions similar except the peak in RS

Mass measurement

Local significance > 12σ

Resolution = 6.6 ± 0.8 MeV

(consistent with the detector resolution)

Signal yield = 313 ± 33

Systematics of mass measurement

Source	Value $[MeV/c^2]$
Momentum-scale calibration	0.22
Selection bias correction	0.14
Unknown Ξ_{cc}^{++} lifetime	0.06
Mass fit model	0.07
Sum of above in quadrature	0.27
Λ_c^+ mass uncertainty	0.14

 $M(\Xi_{cc}^{++}) - M(\Lambda_{c}^{+}) = 1134.94 \pm 0.72 \text{ (stat)} \pm 0.27 \text{ (syst)} \text{ MeV}$

 $M(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 \text{ (stat)} \pm 0.27 \text{ (syst)} \pm 0.14 (\Lambda_c^+) \text{ MeV}$

L. Eklund (Glasgow)

Confirmation on Run I data

- Similar search done with 2 fb⁻¹ of Run I data recorded in 2012, $\sqrt{s} = 8$ TeV
- Different trigger and data processing configuration than in Run II
- But again a clear peak is seen in $\Lambda_c^+ K^- \pi^+ \pi^+$ mass spectrum:
 - > Local significance: >7 σ
 - > Signal yield: 113 \pm 21
 - \geq Resolution: 6.6 \pm 1.4 MeV
- Δm(Run I, Run II) = 0.8 ± 1.4 MeV (consistent between the samples)

Weak Decay

 Ξ_{cc}^{++}

 Λ_c^+

t > 5σ

р

- Peaking structure remains significant after requiring minimum decay time, $t > 5\sigma$ w.r.t. the PV:
 - \succ Run I significance: >7 σ
 - > Run II significance: >12 σ

Consistent with a weak decay: Lifetime measurement in progress

L. Eklund (Glasgow)

Comparison with SELEX

Inconsistent with being isospin partners: E.g. Guo, Hanhart, and Meissner, <u>PLB 698 251-255</u>; Karliner and Rosner, <u>arXiv:1706.06961</u>

L. Eklund (Glasgow)

- Searches for additional decay modes of Ξ_{cc}^{++} (ccu)
 - e.g. $\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+} \& \Xi_{cc}^{++} \to D^{+}p^{+}K^{-}\pi^{+}$
 - Relative BR, mass & lifetime measurements
 - Production cross-section, quantum numbers (J^P)
- Searches for the isospin partner Ξ_{cc}^+ (ccd)
 - e.g. $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+ *$, $\Xi_{cc}^+ \to D^+ p^+ K^- * \& \Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$
 - Mass & lifetime measurements
- Searches for Ω_{cc}^+ (ccs)
 - e.g. $\Omega_{cc}^+ \to \Xi_c^+ K^- \pi^+ \& \Omega_{cc}^+ \to \Omega_c^0 \pi^+$
 - Mass & lifetime measurements

Future doubly-heavy baryon studies @ LHCb

- Searches for excited states of doubly charmed baryons
 - Adding tracks to ground states
- Searches for Ξ_{bc} , Ω_{bc} , Ξ_{bb} baryons
 - Smaller production cross section than Ξ_{cc}
 - Smaller BF for accessible final states
- Additional data sets with improved triggers
 - 2017 recorded: 1.7 fb⁻¹
 - 2018 expected: ~ 2 fb⁻¹
- LHCb upgrade: 5x instantaneous luminosity
 - Data taking from 2021
 - Full detector readout @ 40 MHz rate
 - S/W trigger beneficial for complex hadronic final states

L. Eklund (Glasgow)

18/19

LHCb very active in hadron spectroscopy studies

- Observed narrow structure in $\Lambda_c^+ K^- \pi^+ \pi^+$ mass spectrum
 - Consistent with a weak decay of Ξ_{cc}^{++} (ccu)
 - Observed in two independent data sets (2012 & 2016)
 - Inconsistent with being an isospin partner of Selex' Ξ⁺_{cc}(ccd)
- Doubly charmed studies in LHCb continues
 - Lifetime & mass measurements
 - More decay modes
 - Searches for Ξ_{cc}^+ (ccd) and Ω_{cc}^+ (ccd)
 - Further ahead: excited states and Ξ_{bc} , Ω_{bc} , Ξ_{bb}

 $M(\Xi_{cc}^{++}) = 3621.40 \pm 0.78$ (tot) MeV/c²

Back-up

Cross-checks

- 1. Varying threshold value of MVA selector has no effect on signal significance
- 2. MVA efficiency as a function of mass: very smooth, no biasing
- 3. Multiple candidates do not create fake narrow structures
- 4. Checking combinations of tracks from Λ_c^+ and Ξ_{cc}^{++} : again no peaking structures
- 5. Varying particle ID selections: no peaking structure emerges in WS combinations but structure remains in RS sample
- 6. Tried cut based selection instead of MVA:
 - requiring good vertex fit quality
 - \succ Ξ_{cc}^{++} vertex displaced
 - tracks are not produced from PV
 - ✓ Peak significance still > 12σ

Production in pp collisions

- Many theoretical studies on production of such states at LHC
- Double parton scattering believed to be dominant according to double heavy production LHCb measurements
- Typical approach is factorization of the two $Q\overline{Q}$ pair production, computed in pQCD
- Heavy di-quark formation and hadronization then treated nonperturbatively

- Easier final states signatures (higher p_T , J/Ψ modes)
- Lifetimes could be longer than Ξ_{cc} <u>arXiv:hep-ph/9901224</u>
- Smaller XS and BF expected however
- Production rate in order of magnitude: $\sigma(\Xi_{bc}) \sim (0.1-0.5) \times \sigma(B_c^+)$

- Unlike Ξ_{cc} decays under investigation, likely to be no single golden mode for Ξ_{bc}
- Multiple channels will be studied in parallel for best chance of a discovery
- Ongoing work in J/Ψ , D^+ and D^0 modes

Se Se

Searches for Ξ_{cc} by other experiments

Nucl.Phys.Proc.Suppl.

115 (2003) 33-36

- FOCUS@Fermilab: Photon beam on Be fixed target
 - > Searched for both Ξ_{cc}^+ and Ξ_{cc}^{++} states
 - \succ 7 exclusive Ξ_{cc} → Λ⁺_cX modes
 - > 14 exclusive Ξ_{cc} → $D^{0,+}Y$ modes
 - > No evidence of a Ξ_{cc} state
- BaBar@SLAC: e^-e^+ at \sqrt{s} = 10.58 GeV
 - > Searched for both Ξ_{cc}^+ and Ξ_{cc}^{++} states
 - > Searched for $\Xi_{cc}^{+(+)} \rightarrow \Lambda_c^+ K^- \pi^+(\pi^+)$
 - > Searched for $\Xi_{cc}^{+(+)} \rightarrow \Xi_{c}^{0} \pi^{+} (\pi^{+})$
 - > No evidence of a Ξ_{cc} states
- Belle@KEK: e^-e^+ at $\sqrt{s} = 10.58$ GeV
 - \succ Searched for Ξ⁺_{cc} → Λ⁺_c K⁻π⁺
 - > Found new Ξ_c^+ resonance decaying to $\Lambda_c^+ K^- \pi^+$
 - > No evidence of a Ξ_{cc} state

L. Eklund (Glasgow)

S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Spectroscopy of doubly heavy baryons*, Phys. Atom. Nucl. **63** (2000) 274, arXiv:hep-ph/9811212.

S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Spectroscopy of doubly charmed baryons:* Ξ_{cc}^+ and Ξ_{cc}^{++} , Mod. Phys. Lett. A14 (1999) 135, arXiv:hep-ph/9807375.

C. Itoh, T. Minamikawa, K. Miura, and T. Watanabe, *Doubly charmed baryon masses and quark wave functions in baryons*, Phys. Rev. **D61** (2000) 057502.

S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Spectroscopy of doubly heavy baryons*, Phys. Rev. **D62** (2000) 054021.

K. Anikeev et al., Workshop on B physics at the Tevatron: Run II and beyond, Batavia, Illinois, September 23-25, 1999, 2001. arXiv:hep-ph/0201071.

V. V. Kiselev and A. K. Likhoded, *Baryons with two heavy quarks*, Phys. Usp. 45 (2002) 455, arXiv:hep-ph/0103169.

D. Ebert, R. N. Faustov, V. O. Galkin, and A. P. Martynenko, *Mass spectra of doubly heavy baryons in the relativistic quark model*, Phys. Rev. D66 (2002) 014008, arXiv:hep-ph/0201217.

D.-H. He et al., Evaluation of the spectra of baryons containing two heavy quarks in a bag model, Phys. Rev. D70 (2004) 094004, arXiv:hep-ph/0403301.

C.-H. Chang, C.-F. Qiao, J.-X. Wang, and X.-G. Wu, *Estimate of the hadronic production of the doubly charmed baryon* Ξ_{cc} *in the general-mass variable-flavor-number scheme*, Phys. Rev. D73 (2006) 094022, arXiv:hep-ph/0601032.

W. Roberts and M. Pervin, *Heavy baryons in a quark model*, Int. J. Mod. Phys. A23 (2008) 2817, arXiv:0711.2492.

A. Valcarce, H. Garcilazo, and J. Vijande, *Towards an understanding of heavy baryon spectroscopy*, Eur. Phys. J. A37 (2008) 217, arXiv:0807.2973.

J.-R. Zhang and M.-Q. Huang, *Doubly heavy baryons in QCD sum rules*, Phys. Rev. **D78** (2008) 094007, arXiv:0810.5396.

Z.-G. Wang, Analysis of the $\frac{1}{2}^+$ doubly heavy baryon states with QCD sum rules, Eur. Phys. J. A45 (2010) 267, arXiv:1001.4693.

M. Karliner and J. L. Rosner, *Baryons with two heavy quarks: masses, production, decays, and detection*, Phys. Rev. D90 (2014) 094007, arXiv:1408.5877.

K.-W. Wei, B. Chen, and X.-H. Guo, *Masses of doubly and triply charmed baryons*, Phys. Rev. **D92 (2015) 076008**, arXiv:1503.05184.

Z.-F. Sun and M. J. Vicente Vacas, *Masses of doubly charmed baryons in the extended on-mass-shell renormalization scheme*, Phys. Rev. **D93** (2016) 094002, arXiv:1602.04714.

C. Alexandrou and C. Kallidonis, *Low-lying baryon masses using* $N_f = 2$ *twisted mass clover-improved fermions directly at the physical point*, arXiv:1704.02647.

C.-W. Hwang and C.-H. Chung, *Isospin mass splittings of heavy baryons in heavy quark symmetry*, Phys. Rev. **D78** (2008) 073013, arXiv:0804.4044.

S. J. Brodsky, F.-K. Guo, C. Hanhart, and U.-G. Meißner, *Isospin splittings of doubly heavy baryons*, Phys. Lett. **B698** (2011) 251, arXiv:1101.1983.

M. Karliner and J. L. Rosner, *Isospin splittings in baryons with two heavy quarks*, arXiv:1706.06961.

B. Guberina, B. Melić, and H. Štefančić, *Inclusive decays and lifetimes of doubly charmed baryons*, Eur. Phys. J. C9 (1999) 213, arXiv:hep-ph/9901323.

V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Lifetimes of doubly charmed baryons:* Ξ_{cc}^+ and Ξ_{cc}^{++} , Phys. Rev. **D60** (1999) 014007, arXiv:hep-ph/9807354.

C.-H. Chang, T. Li, X.-Q. Li, and Y.-M. Wang, *Lifetime of doubly charmed baryons*, Commun. Theor. Phys. **49** (2008) 993, arXiv:0704.0016.

A. V. Berezhnoy and A. K. Likhoded, *Doubly heavy baryons*, Phys. Atom. Nucl. 79 (2016) 260.

A. V. Berezhnoy, A. K. Likhoded, and M. V. Shevlyagin, *Hadronic production of B⁺_c mesons*, Phys. Atom. Nucl. 58 (1995) 672, arXiv:hep-ph/9408284.

K. Kolodziej, A. Leike, and R. Ruckl, *Production of B*⁺_c *mesons in hadronic collisions*, Phys. Lett. **B355** (1995) 337, arXiv:hep-ph/9505298.

A. V. Berezhnoy, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Doubly charmed baryon production in hadronic experiments*, Phys. Rev. **D57** (1998) 4385, arXiv:hep-ph/9710339.