

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

Towards a New Paradigm in Hadron Spectroscopy

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

CONTENTS

- Introduction: Mysteries of the strong interactions
- Salient features of QCD
- Theory of hadronic molecules
- Lattice results for charmed scalar mesons
- ullet Amplitude analysis of $B
 ightarrow D\pi\pi$
- Prospects & summary

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

Mysteries of the strong interactions

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

THE STANDARD MODEL

quarks make up the matter surrounding us

gluons mediate the forces between quarks

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

CONVENTIONAL HADRONS

 \bullet hundreds of hadrons ("the particle zoo") can be described as $q\bar{q}$ and qqq states

highly successfull picture – but why should it work?

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

MULTI-FACES of QCD: EXOTIC HADRONS

States with glue: QCD

Multi-Quark states: Gell-Mann, Phys.Lett. 8 (1964) 214

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

the experimental and theoretical study of such states is a key to understand QCD

STILL MORE STRUCTURE: ATOMIC NUCLEI

exploring the residual color force \rightarrow ab initio calculations possible

MYSTERIES in the QUARKONIUM SPECTRUM

- \bullet many of these close to thresholds \hookrightarrow hadronic molecules
- \bullet some are charged \hookrightarrow these must be exotic

Towards a new paradigm in hadron spectrocopy - Ulf-G. Meißner - 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

 $\cdot \circ \triangleleft < \land \lor >$

 \triangleright

MORE MYSTERIES in the CHARMONIUM REGION

• Open charm cs mesons: first indication of the quark model breakdown

 \star no isospin partners observed \Rightarrow I = 0tiny widths

GI: Godfrey, Isgur, Phys. Rev. D 32 (1985) 189

 $\cdot \circ \triangleleft < \land \lor >$

MORE MYSTERIES in the CHARMONIUM REGION

•
$$D_0^*(2400)$$
 Belle (2004)
 $M = (2318 \pm 29) \text{ MeV}$, $\Gamma = (247 \pm 67) \text{ MeV}$, $J^P = 0^+$ PDG2016
• New measurements by LHCb: $M = (2360 \pm 15) \text{ MeV}$ LHCb (2015)
• In all experiments, a Breit-Wigner resonance from was assumed!
[often very dangerous!]
• Puzzles to be answered:
* why are the masses of the $D_{s0}^*(2317)$ and the $D_{s1}(2460)$
much lower than the quark model predictions for $c\bar{s}$ mesons?

much lower than the quark model predictions for $c\bar{s}$ mesons? \star why $M_{D_{s1}(2460)} - M_{D_{s0}^{\star}(2317)} \simeq M_{D^{\star}} - M_{D}$? (within 1 MeV) \star why $M_{D_{0}^{\star}(2400)} \gtrsim M_{D_{s0}^{\star}(2317)}$ and $M_{D_{1}(2430)} \simeq M_{D_{s1}(2460)}$?

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

Salient features of QCD

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

 $\cdot \circ \triangleleft < \land \lor >$

QCD LAGRANGIAN

•
$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu,a} + \sum_f \bar{q}_f (i \not D - \mathcal{M}) q_f + \dots$$

$$D_{\mu} = \partial_{\mu} - ig A^a_{\mu} \lambda^a / 2$$

$$G^a_{\mu\nu} = \partial_{\mu} A^a_{\nu} - \partial_{\nu} A^a_{\mu} - g [A^b_{\mu}, A^c_{\nu}]$$

$$f = (u, d, s, c, b, t)$$
• running of $\alpha_s = \frac{g^2}{4\pi} \Rightarrow \Lambda_{\text{QCD}} = 210 \pm 14 \text{ MeV}$ $(N_f = 5, \overline{MS}, \mu = 2 \text{ GeV})$

• light (u,d,s) and heavy (c,b,t) quark flavors:

$$egin{aligned} m_{ ext{light}} \ll \Lambda_{ ext{QCD}} & m_{ ext{heavy}} \gg \Lambda_{ ext{QCD}} & \ m_u &= 2.2^{+0.6}_{-0.4} \, ext{MeV} & m_c &= 1.28 \pm 0.03 \, ext{GeV} & \ m_d &= 4.7^{+0.5}_{-0.4} \, ext{MeV} & m_b &= 4.18^{+0.04}_{-0.03} \, ext{GeV} & \ m_s &= 96^{+8}_{-4} \, ext{MeV} & m_t &= 173.1 \pm 0.6 \, ext{GeV} & \end{aligned}$$

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

LIMITS of QCD

• light quarks: $\mathcal{L}_{QCD} = \bar{q}_L \, i D \!\!\!/ q_L + \bar{q}_R \, i D \!\!\!/ q_R + \mathcal{O}(m_f / \Lambda_{QCD})$

- L and R quarks decouple \Rightarrow chiral symmetry
- spontaneous chiral symmetry breaking \Rightarrow pseudo-Goldstone bosons
- pertinent EFT \Rightarrow chiral perturbation theory (CHPT)
- heavy quarks: $\mathcal{L}_{
 m QCD} = ar{Q}_f \, iv \cdot D \, Q_f + \mathcal{O}(\Lambda_{
 m QCD}/m_f)$

independent of quark spin and flavor

 \Rightarrow SU(2) spin and SU(2) flavor symmetries (HQSS and HQFS)

- pertinent EFT \Rightarrow heavy quark effective field theory (HQEFT)

• heavy-light systems:

- heavy quarks act as matter fields coupled to light pions
- combine CHPT and HQEFT

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

Theory of hadronic molecules

Towards a new paradigm in hadron spectrocopy - Ulf-G. Meißner - 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

What are HADRONIC MOLECULES ?

- Bound states of two hadrons in an S-wave very close a 2-particle threshold or between two close-by thresholds ⇒ particular decay patterns
- weak binding entails a large spatial extension
- the classical example:

★ the deuteron

 $m_p + m_n = 938.27 + 939.57$ MeV,

$$m_d = m_p + m_n - arepsilon o arepsilon = 2.22\,{
m MeV}$$

 $r_d=2.14\,\mathrm{fm}\,\left[r_p=0.85\,\mathrm{fm}
ight]$

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

• other examples: $\Lambda(1405), f_0(980), X(3872), \ldots$

 \Rightarrow how to distinguish these from compact multi-quark states ?

COMPOSITENESS CRITERION

Weinberg (1963), Morgan (1991), Tornquist (1995), Baru et al. (2003), ...

• Consider S-wave scattering of two hadrons, forming a bound state:

$$a=-2rac{1-Z}{2-Z}\left(rac{1}{\gamma}
ight)+\mathcal{O}\left(rac{1}{eta}
ight) \qquad \gamma=\sqrt{2\mu E_B}$$

a = scattering length, γ/E_B = binding momentum/energy, μ = reduced mass of the two-particle system, β = range of forces

 \Rightarrow pure molecule (Z=0): maximal scattering length $a=-1/\gamma$

 \Rightarrow compact state (Z = 1): the scattering length is $a = -\mathcal{O}(1/\beta)$

The deuteron:
 with the range of forces:
 leads with Z = 0 to:
 consistent with the data:

 $E_B = 2.22 \, {
m MeV} o \gamma = 45.7 \, {
m MeV}$ $1/eta \sim 1/M_\pi \simeq 1.4 \, {
m fm}$ $a_{
m mol} = -(4.3 \pm 1.4) \, {
m fm}$ $a = -5.419(7) \, {
m fm}$, $r = 1.764(8) \, {
m fm}$

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

• more details in: Guo, Hanhart, UGM, Wang, Zhao, Zou, Rev. Mod. Phys. 90 (2018) 015004

$D^{\star}_{s0}(2317)$ and $D_{s1}(2460)$ as HADRONIC MOLECULES⁷

Barnes et al. (2003), van Beveren, Rupp (2003), Kolomeitsev, Lutz (2004), Guo et al. (2006), ...

• $D^{(\star)}K$ bound states: Poles of the c.c. T-matrix (potential from CHPT & unitarization)

• large coupling to $DK \Rightarrow$ large isospin-breaking width from $[D^+K^0] - [D^0K^+]$

$$\Gamma(D_{s0}^{\star}(2317)
ightarrow D_s \pi) = \mathcal{O}(100 \text{ keV})$$

Faessler et al (2006), Lutz, Soyeur (2008), Guo et al (2008), Liu et al (2013), ...

- only a few keV in the quark model
 Godfrey (2003), Nielsen (2006), ...
- to be measured at PANDA
 Mertens [PANDA Collaboration] (2013)

 $\cdot \circ \triangleleft < \land \lor >$

HEAVY QUARK SYMMETRY for $D_{s0}^{\star}(2317)$ and $D_{s1}(2460)$

Cleven, Guo, Hanhart, UGM (2011)

• A natural consequence of HQSS $(DK \rightarrow D^*K)$: similar binding energies

 $M_D + M_K - M_{D_{s0}^\star} \simeq 45 \,\mathrm{MeV}$

 $\Rightarrow M_{D_{s1}(2460)} - M_{D_{s0}^{\star}(2317)} \simeq M_{D^{\star}} - M_{D}$ is understood!

• Easy prediction for the bottom analogues from HQFS:

 $M_{B_{s0}^{\star}} \simeq M_B + M_K - 45 \, \mathrm{MeV} \simeq 5.730 \, \mathrm{GeV}$ $M_{B_{s1}} \simeq M_{B^{\star}} + M_K - 45 \, \mathrm{MeV} \simeq 5.776 \, \mathrm{GeV}$

• Recent lattice QCD results:

Lang et al (2015)

$$M^{
m lat}_{B^{\star}_{s0}} = (5.711 \pm 0.013 \pm 0.019)\,{
m GeV}$$

 $M^{
m lat}_{B_{s1}} = (5.750 \pm 0.017 \pm 0.019)\,{
m GeV}$

Lattice results for charmed scalar mesons

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

FIT to LATTICE DATA

 $\cdot \circ \triangleleft < \land \lor >$

• Fit to lattice data in 5 simple channels: no disconnected diagrams

• Prediction: Pole in the (S, I) = (1, 0) channel: 2315^{+18}_{-28} MeV

Experiment:

 $M_{D^{\star}_{s0}(2317)} = (2317.7 \pm 0.6) \, {
m MeV} \, {
m PDG2016}$

DIRECT CALCULATION of the $D_{s0}^{\star}(2317)$

Mohler et al. (2013), Bali et al. (2017)

• Calculations with $c\bar{s} + DK$ interpolators and relatively light pions:

• Scattering length consistent with the molecular picture:

$$a_0=-1.33(20)\,{
m fm}$$
 $a_0^{
m mol}=-rac{2}{\sqrt{\mu_{DK}\epsilon}}\simeq -1\,{
m fm}$

• Chiral extrapolation consistent with the molecular picture:

 $\cdot \circ \triangleleft < \land \lor$

$$1 - Z = 1.04(0.08)(0.30)$$

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

0.7

WHAT ABOUT the $D_0^{\star}(2400)$?

- Recent results from the Hadron Spectrum Coll. for I = 1/2finding one pole corresponding to the $D_0^{\star}(2400)$ Moir et al., JHEP 1610 (2016) 011
- Postdict finite volume energy levels based on Liu et al. (2013)
 → this is NOT a fit!
 Albaladejo, Fernandez-Soler, Guo, Nieves (2017)
- reveals a two-pole scenario! [cf. $\Lambda(1405)$]
- this was seen earlier in various calc's Kolomeitsev, Lutz (2004)
 F. Guo, Shen, Chiang, Ping, Zou (2006)
 F. Guo, Hanhart, UGM (2009)
 Z. Guo, UGM, Yao (2009)
- ullet similar for D_1, B_0^\star, B_1
- \rightarrow but is their experimental support for this?

2100

2800

2700

 $\bigoplus_{i=1}^{i} 2600$

□ 2400

2300 2200

200

 ${\widehat{\rm (MeV)}}_{100}^{150}$

50

0

2000

Ы

Im

2300

 $\cdot \circ \triangleleft < \land \lor$

 $\operatorname{Re} E$ (MeV)

2400

2500

2200

TWO-POLE SCENARIO in the HEAVY-LIGHT SECTOR

23

• Two states in various I = 1/2 states in the heavy meson sector $(M, \Gamma/2)$

	Lower [MeV]	Higher [MeV]	PDG [MeV]
D_0^\star	$\left(2105^{+6}_{-8},102^{+10}_{-11} ight)$	$\left(2451^{+36}_{-26},134^{+7}_{-8} ight)$	$(2318 \pm 29, 134 \pm 20)$
D_1	$\left(2247^{+5}_{-6},107^{+11}_{-10} ight)$	$\left(2555^{+47}_{-30},203^{+8}_{-9} ight)$	$(2427\pm40,192^{+65}_{-55})$
B_0^\star	$\left(5535^{+9}_{-11}, 113^{+15}_{-17} ight)$	$\left(5852^{+16}_{-19}, 36\pm5 ight)$	
B_1	$\left(5584^{+9}_{-11}, 119^{+14}_{-17} ight)$	$\left(5912^{+15}_{-18}, 42^{+5}_{-4} ight)$	

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

Amplitude Analysis of $B o D\pi\pi$

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

DATA for $B o D\pi\pi$

ullet Recent high precision results for $B
ightarrow D\pi\pi$ from LHCb

Aaji et al. [LHCb], PRD94(2016)072001

 $\cdot \circ \triangleleft < \land \lor$

>

• Spectroscopic information in the angular moments ($D\pi$ FSI):

THEORY of $B \rightarrow D\pi\pi$

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao [1712.07957]

- $B^- \rightarrow D^+ \pi^- \pi^-$ contains coupled-channel $D\pi$ FSI
- consider S, P, D waves: $\mathcal{A}(B^- \to D^+ \pi^- \pi^-) = \mathcal{A}_0(s) + \mathcal{A}_1(s) + \mathcal{A}_2(s)$

 \rightarrow P-wave: $D^{\star}, D^{\star}(2860)$; D-wave: $D_2(2460)$ as by LHCb

- \rightarrow S-wave: use coupled channel $(D\pi, D\eta, D_s\bar{K})$ amplitudes with all parameters fixed before π ,
- \rightarrow only two parameters in the S-wave (one combination of LECs *C* and one subtraction constant in the G_{ij})

$$\begin{aligned} \mathcal{A}_{0}(s) \propto E_{\pi} \left[2 + G_{D\pi}(s) \left(\frac{5}{3} T_{11}^{1/2}(s) + \frac{1}{3} T_{11}^{3/2}(s) \right) \right] \\ + \frac{1}{3} E_{\eta} G_{D\eta}(s) T_{21}^{1/2}(s) + \sqrt{\frac{2}{3}} E_{\bar{K}} G_{D_{s}\bar{K}}(s) T_{31}^{1/2}(s) \\ + C E_{\eta} G_{D\eta}(s) T_{21}^{1/2}(s) \end{aligned}$$

 $\cdot \circ \triangleleft < \land \lor >$

THEORY of $B \rightarrow D\pi\pi$ continued

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao [1712.07957]

More appropriate combinations of the angular moments:

• The **S-wave** $D\pi$ can be very well described using pre-fixed amplitudes

• Fast variation in [2.4,2.5] GeV in $\langle P_{13} \rangle$: cusps at the $D\eta$ and $D_s \overline{K}$ thresholds \hookrightarrow should be tested experimentally

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

SUMMARY and OUTLOOK

- All three puzzles related to the positive-parity charm mesons are resolved:
 - Q: Why are the masses of the $D_{s0}^{\star}(2317)$ and the $D_{s1}(2460)$ much lower than the quark model predictions for $c\overline{s}$ mesons?
 - A: They are dominantly DK and D^*K molecular states, respectively
 - Q: Why $M_{D_{s1}(2460)} M_{D_{s0}^{\star}(2317)} \simeq M_{D^{\star}} M_D$ within 1 MeV?
 - A: Consequence of HQSS for dominantly DK and D^*K molecules
 - Q: Why $M_{D_0^{\star}(2400)} \gtrsim M_{D_{s0}^{\star}(2317)}$ and $M_{D_1(2430)} \simeq M_{D_{s1}(2460)}$?
 - A: There are two D_0^{\star} and two D_1 , and the lower ones have smaller masses
- \Rightarrow Strong support from remarkable agreement with lattice and exp. data!
- \Rightarrow The same pattern should occur in the bottom sector \rightarrow exp. tests!
- \Rightarrow Immediate tests: strong variation in $\langle P_{13}
 angle$ around the $D\eta$ and $D_s ar{K}$ thresholds

SUMMARY and OUTLOOK continued

• A new **paradigm** in open-flavor heavy meson spectroscopy:

So far: All ground states should be $c\bar{q}$ or $b\bar{q}$ quark model states

But: Going up in mass, more and more two-particle thresholds open \hookrightarrow quark model less and less reliable

 \Rightarrow

the hadron spectrum must be viewed as more than a collection of quark model states, but rather as a manifestation of a more complex dynamics that leads to an intricate pattern of various types of states that can only be understood by an interplay of theory and experiment (cf. the light scalar mesons)

 \Rightarrow

A bright future for FAIR & for HADRON PHYSICS

 $\cdot \circ \triangleleft < \land \lor > \triangleright$

SPARES

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

OBSERVATION of CHARM-STRANGE MESONS

- observed 2003 by BaBar, isospin-violating strong decays
- ullet mass much lower than in quark models, just below the KD/KD^* threshold

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

 $\cdot \circ \triangleleft < \land \lor$

MOLECULAR PICTURE of the charm-strange MESONS 32

- Goldstone boson octet (π, K, η) scatters off *D*-meson triplet (D^0, D^+, D_s^+)
- multi-scale/multi-faceted problem:
 - light particles, chiral symmetry \rightarrow chiral expansion in (p, m_q)
 - heavy particles, heavy quark symmetry o expansion in $1/m_c$
 - unitarization of the amplitude \rightarrow dynamical generation of poles (tower)

Guo, UGM (2011)

- at next-to-leading order, only two parameters
- fix one parameter from the mass of the $D_s(2317)$, vary the other

 \Rightarrow make predictions

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

• Prediction for the width of the $D^*_{s0}(2317)$

$$\Gamma(D^*_{s0}(2317)^+ o D^+_s \pi^0) = (180 \pm 110) \, {
m keV} \, \Big|$$

testable prediction

PREDICTIONS

note: much smaller in quark models (a few keV)

• expectation for the scattering length for DK(I = 0) in the molecular picture:

$$a_{DK}^{I=0} = -g_{\rm eff}^2 \Delta_{DK} = -\frac{1}{2\sqrt{\mu_{DK}\varepsilon}} \simeq 1\,{\rm fm}$$

no data, but first lattice investigations at varying quark masses
 Liu, Lin, Orginos, arXiv:0810.5412 [hep-lat]

$$\circ \lhd < \land \lor > \triangleright \bullet$$

QUARK MASS DEPENDENCE

• predictions: channels with no poles

Towards a new paradigm in hadron spectrocopy - Ulf-G. Meißner - 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

 ∇

>

 \triangleright

 \land

 $\cdot \circ \triangleleft <$

QUARK MASS DEPENDENCE cont'd

• *predictions:* channels with poles \rightarrow resonances or molecular states

a pair of poles above thr.

$$a_{D\pi}^{(0,1/2)}=0.35(1)$$
 fm

a bound states below thr. $D_{s0}^{*}(2317)$

400

 $\cdot \circ \triangleleft < \land \lor >$

300

$$a_{DK}^{(1,0)} = -0.93(5)$$
 fm

 $M_{_{\rm Z}}$ [MeV]

 \Rightarrow lattice test of the molecular nature

Towards a new paradigm in hadron spectrocopy - Ulf-G. Meißner - 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

35

Prospects and summary

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

HADRON PHYSICS COMPLEXES

• present and future HPC = Hadron Physics Complexes \rightarrow BEPC-II, FAIR (the contenders: B-factories and colliders)

Towards a new paradigm in hadron spectrocopy – Ulf-G. Meißner – 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

 $\cdot \circ \triangleleft < \land \lor >$

COMPLEMENTARITY

• BEPC-II e^+e^- collisions to generate numerous $J/\psi, \psi', \ldots$ particles

- relatively low luminosity
- clean background
- ullet final states from J/ψ resonance decay

• FAIR fixed target \bar{p} on p collisions

- high luminosity
- complicated background
- access to most quantum numbers directly

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

MEASURING LINE SHAPES

- Measuring line shapes → resolution defined by the beam momentum, not by the detector!
- Example: observation of the χ_{c1} state
- ullet $M(\chi_{c1})=3610$ MeV, $J^{PC}=1^{++}$
 - e^+e^- annihilation:

$$e^+e^-
ightarrow \psi'
ightarrow \gamma \chi_{c1}
ightarrow \gamma \gamma J/\psi
ightarrow \gamma \gamma e^+e^-$$

 $\bar{p}p$ annihilation:

$$\bar{p}p
ightarrow \chi_{c1}
ightarrow \gamma J/\psi
ightarrow \gamma e^+ e^-$$

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

 \rightarrow eagerly waiting for PANDA at HESR

FACETS of STRONG QCD

- ullet running coupling constant $lpha_S(Q^2)$ in QCD
 - \Rightarrow two regimes: strong & perturbative

- quarks and gluons form hadrons
 - \Rightarrow exploring the strong color force
 - \Rightarrow which kind of states are formed?
 - \Rightarrow how are these states formed?

 $\cdot \circ \triangleleft < \land \lor >$

What are HADRONIC MOLECULES ?

- Bound states of two hadrons in an S-wave just below a 2-particle threshold or between two close-by thresholds ⇒ particular decay patterns
- weak binding entails a large spatial extension
- classical examples:

 \star the deuteron $m_p+m_n=938.27+939.57\,{
m MeV},\ arepsilon=2.22\,{
m MeV}$

* the
$$\Lambda(1405)$$
 Dalitz et al., (1960)
 $m_{\Sigma} + m_{\pi} = 1189.37 + 139.57 = 1328.94 \,\mathrm{MeV}$
 $m_p + m_{\bar{K}} = 938.27 + 493.68 = 1431.96 \,\mathrm{MeV}$

 \star the scalar mesons $f_0(980),\ldots$

 $m_K + m_{ar{K}} = 2 imes 493.68 = 987.35 \, {
m MeV}, \, m(f_0) = 976.8 \, {
m MeV} \, [{
m KLOE} \, 2007]$

 \Rightarrow how to distinguish these from compact multi-quark states ?

NATURE of the $D_{s1}(2460)$

- Nature of the $D_{s1}(2460)$: $M_{D_{s1}(2460)} M_{D_{s0}^*(2317)} \simeq M_{D^*} M_D$
- \Rightarrow most likely a $D^{\star}K$ molecule (if the $D^{\star}_{s0}(2317)$ is DK)
- \Rightarrow study Goldstone boson scattering off D- and D^{\star} -mesons
- Use heavy meson chiral perturbation theory

Wise, Falk et al., Casalbuoni et al., ...

 $\cdot \circ \triangleleft < \land \lor > \triangleright$

- T-matrix:
- Unitarization (as before) \rightarrow find poles in the complex plane

KAON MASS DEPENDENCE

• Mass and binding energy: $M_{
m mol} = M_K + M_H - \epsilon$

Towards a new paradigm in hadron spectrocopy - Ulf-G. Meißner - 2nd Workshop on Heavy Quark Physics, IHEP, April 24, 2018

 ∇

/

 \triangleleft

• 0