Prospects of discovering stable double-heavy tetraquarks at a Tera-Z factory

Ahmed Ali

DESY, Hamburg

23. April 2018

2nd. Workshop on Heavy Quark Physics, IHEP, Beijing

- Current Evidence for Multiquark states *X*, *Y*, *Z* and *P*_c
- Models for *X*, *Y*, *Z* Mesons
- The Diquark model of Tetraquarks
- Doubly Heavy Tetraquarks Theoretical Expectations
- Prospects of Discovery at a Tera-Z Factory (CPEC, CERN-ee)
- Summary

X(3872) - the poster Child of the X, Y, Z Mesons PHYSICAL REVIEW LETTERS

VOLUME 91, NUMBER 26

week ending 31 DECEMBER 2003

Observation of a Narrow Charmoniumlike State in Exclusive $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}I/\psi$ Decays

S.-K. Choi,⁵ S.L. Olsen,⁶ K. Abe,⁷ T. Abe,⁷ I. Adachi,⁷ Byoung Sup Ahn,¹⁴ H. Aihara,⁴³ K. Akai,⁷ M. Akatsu,²⁰ M. Akemoto,⁷ Y. Asano,⁴⁸ T. Aso,⁴⁷ V. Aulchenko,¹ T. Aushev,¹¹ A. M. Bakich,³⁸ Y. Ban,³¹ S. Banerjee,³⁹ A. Bondar,¹ A. Bozek.²⁵ M. Bračko.^{18,12} J. Brodzicka.²⁵ T. E. Browder.⁶ P. Chang.²⁴ Y. Chao.²⁴ K.-F. Chen.²⁴ B. G. Cheon.³⁷ R. Chistov, "Y. Choi, 37 Y. K. Choi, 37 M. Danilov, "L.Y. Dong," A. Drutskoy, "S. Eidelman, V. Eiges, "J. Flanagan," C. Fukunaga,⁴⁵ K. Furukawa,⁷ N. Gabyshev,⁷ T. Gershon,⁷ B. Golob,^{17,12} H. Guler,⁶ R. Guo,²² C. Hagner,⁵⁰ F. Handa,⁴² T. Hara, 29 N.C. Hastings,7 H. Hayashii, 21 M. Hazumi,7 L. Hinz, 16 Y. Hoshi, 41 W.-S. Hou, 24 Y. B. Hsiung, 24.8 H.-C. Huang.²⁴T. liji ma.²⁰K. Inami.²⁵A. Ishikawa.²⁰R. Itoh.⁷M. Iwasaki,⁴³Y. Iwasaki,⁷J. H. Kang.⁵²S. U. Kataoka.²¹ N. Katayama.⁷ H. Kawai.² T. Kawasaki.²⁷ H. Kichimi.⁷ E. Kikutani.⁷ H.J. Kim.⁵² Hyunwoo Kim.¹⁴ J.H. Kim.³⁷ S.K. Kim.³⁶ K. Kinoshita, ³ H. Koiso,⁷ P. Koppenburg,⁷ S. Korpar,^{18,12} P. Križan,^{17,12} P. Krokovny,¹ S. Kumar,³⁰ A. Kuzmin, ¹ J. S. Lange, ^{4,33} G. Leder, ¹⁰ S. H. Lee, ³⁶ T. Lesiak, ²⁵ S.-W. Lin, ²⁴ D. Liventsev, ¹¹ J. MacNaughton, ¹⁰ G. Majumder, 39 F. Mandl, 10 D. Marlow, 32 T. Matsumoto, 48 S. Michizono, 7 T. Mimashi, 7 W. Mitaroff, 10 K. Miyabayashi,²¹ H. Miyake,²⁹ D. Mohapatra,⁵⁰ G. R. Moloney,¹⁹ T. Nagamine,⁴² Y. Nagasaka,⁸ T. Nakadaira,⁴³ T.T. Nakamura,⁷ M. Nakao,⁷ Z. Natkaniec,²⁵ S. Nishida,⁷ O. Nitoh,⁴⁶ T. Nozaki,⁷ S. Ogawa,⁴⁰ Y. Ogawa,⁷ K. Ohmi,⁷ Y. Ohnishi,⁷ T. Ohshima,²⁰ N. Ohuchi,⁷ K. Oide,⁷ T. Okabe,²⁰ S. Okuno,¹³ W. Ostrowicz,²⁵ H. Ozaki,⁷ H. Palka,²⁵ H. Park,15 N. Parslow,38 L. E. Piilonen,50 H. Sagawa,7 S. Saitoh,7 Y. Sakai,7 T. R. Sarangi,49 M. Satapathy,46 A. Satpathy, 7.3 O. Schneider, 16 A. J. Schwartz, 3 S. Semenov, 11 K. Senvo, 20 R. Seuster, 6 M. E. Sevior, 19 H. Shibuya, 40 T. Shidara,⁷ B. Shwartz, ¹V. Sidorov,¹ N. Soni,³⁰ S. Stanič,^{48,†} M. Starič,¹² A. Sugiyama,³⁴ T. Sumiyoshi,⁴⁵ S. Suzuki,⁵¹ F Takasaki,⁷ K. Tamai,⁷ N. Tamura,²⁷ M. Tanaka,⁷ M. Tawada,⁷ G. N. Taylor,¹⁹ Y. Teramoto,²⁸ T. Tomura,⁴³ K. Trabelsi,⁶ T. Tsukamoto, 7 S. Uehara, 7 K. Ueno, 24 Y. Unno, 2 S. Uno, 7 G. Varner, 6 K. E. Varvell, 38 C. C. Wang, 24 C. H. Wang, 23 J. G. Wang,⁵⁰ Y. Watanabe,⁴⁴ E. Won,¹⁴ B. D. Yabsley,⁵⁰ Y. Yamada,⁷ A. Yamaguchi,⁴² Y. Yamashita,²⁶ H. Yanai,²⁷ Heyoung Yang, 36 J. Ying, 31 M. Yoshida, 7 C. C. Zhang, 9 Z. P. Zhang, 35 and D. Žontar^{17,12}

(Belle Collaboration)

- Discovery Mode : $B \rightarrow I/\psi \pi^+ \pi^- K$
- $M = 3872.0 \pm$ $0.6 \pm 0.5 \text{ MeV}$
- $\Gamma < 2.3 \text{ MeV}$
 - $I^{PC} =$ 1++ [LHCb] [PRL110, 22201(2013)]

X, Y, Z, P_c and Charmonium States

[S.L. Olsen, T. Skwarnicki, D. Zieminska, arxiv: 1708.04012]

Bottomonium and Bottomonium-like States

[S.L. Olsen, T. Skwarnicki, D. Zieminska, arxiv: 1708.04012]

Models for XYZ Mesons

Quarkonium Tetraquarks

- compact tetraquark
- meson molecule

- diquark-onium
- hadro-quarkonium

• quarkonium adjoint meson

Ja

Diquark Model of Tetra- and Pentaquarks

Diquarks and Anti-diquarks are the building blocks of Tetraquarks Color representation: $3 \otimes 3 = \overline{3} \oplus 6$; only $\overline{3}$ is attractive; $C_{\overline{3}} = 1/2 C_3$

Interpolating diquark operators for the two spin-states of diquarks

 $\begin{array}{rcl} \text{Scalar:} & 0^+ & \mathcal{Q}_{i\alpha} &= & \epsilon_{\alpha\beta\gamma}(\bar{c}_c^\beta\gamma_5 q_i^\gamma - \bar{q}_{i_c}^\beta\gamma_5 c^\gamma) \\ \text{Axial-Vector:} & 1^+ & \vec{\mathcal{Q}}_{i\alpha} &= & \epsilon_{\alpha\beta\gamma}(\bar{c}_c^\beta\vec{\gamma}q_i^\gamma + \bar{q}_{i_c}^\beta\vec{\gamma}c^\gamma) \end{array}$

Diquark Model of Tetra- and Pentaquarks

Diquarks and Anti-diquarks are the building blocks of Tetraquarks Color representation: $3 \otimes 3 = \overline{3} \oplus 6$; only $\overline{3}$ is attractive; $C_{\overline{3}} = 1/2 C_3$

Interpolating diquark operators for the two spin-states of diquarks

Scalar: $0^+ \quad Q_{i\alpha} = \epsilon_{\alpha\beta\gamma} (\bar{c}_c^\beta \gamma_5 q_i^\gamma - \bar{q}_{i_c}^\beta \gamma_5 c^\gamma)$ Axial-Vector: $1^+ \quad \bar{Q}_{i\alpha} = \epsilon_{\alpha\beta\gamma} (\bar{c}_c^\beta \vec{\gamma} q_i^\gamma + \bar{q}_{i_c}^\beta \vec{\gamma} c^\gamma)$ NR limit: States parametrized by Pauli matrices : Scalar: $0^+ \quad \Gamma^0 = \frac{\sigma_2}{\sqrt{2}}$ Axial-Vector: $1^+ \quad \vec{\Gamma} = \frac{\sigma_2 \vec{\sigma}}{\sqrt{2}}$

Diquark Model of Tetra- and Pentaquarks

Diquarks and Anti-diquarks are the building blocks of Tetraquarks Color representation: $3 \otimes 3 = \overline{3} \oplus 6$; only $\overline{3}$ is attractive; $C_{\overline{3}} = 1/2 C_3$

Interpolating diquark operators for the two spin-states of diquarks

Scalar: $0^+ \quad Q_{i\alpha} = \epsilon_{\alpha\beta\gamma} (\bar{c}^{\beta}_c \gamma_5 q^{\gamma}_i - \bar{q}^{\beta}_{i_c} \gamma_5 c^{\gamma}) \qquad _{\alpha,\beta,\gamma: SU(3)_c \text{ indices}}$ Axial-Vector: $1^+ \vec{Q}_{i\alpha} = \epsilon_{\alpha\beta\gamma}(\bar{c}^{\beta}_{c}\vec{\gamma}q^{\gamma}_{i} + \bar{q}^{\beta}_{i\alpha}\vec{\gamma}c^{\gamma})$ NR limit: States parametrized by Pauli matrices : Scalar: $0^+ \Gamma^0 = \frac{\sigma_2}{\sqrt{2}}$ Axial-Vector: 1^+ $\vec{\Gamma} = \frac{\sigma_2 \vec{\sigma}}{\sqrt{2}}$ Diquark spin $s_{\mathcal{O}} \rightarrow \text{tetraquark total angular momentum } J$: $|Y_{[bq]}\rangle = |s_{\mathcal{Q}}, s_{\bar{\mathcal{Q}}}; J\rangle$ $|0_{\mathcal{Q}}, 0_{\bar{\mathcal{Q}}}; 0_I\rangle = \Gamma^0 \otimes \Gamma^0$ → Tetraquarks: $|1_{\mathcal{Q}}, 1_{\mathcal{Q}}; 0_{J}\rangle = \frac{1}{\sqrt{3}}\Gamma^{i} \otimes \Gamma_{i} \dots$ $|0_{\mathcal{O}}, 1_{\bar{\mathcal{O}}}; 1_I\rangle = \Gamma^0 \otimes \Gamma^i$

7 / 33

Involves constituent diquark mass, spin-spin, spin-orbit, and tensor forces $H = 2m_Q + H_{SS}^{(qq)} + H_{SS}^{(q\bar{q})} + H_{SL} + H_{LL} + H_T$

In the following, assume $\kappa_{q\bar{q}'} \simeq 0$

$$H_{\rm eff}(X,Y,Z) = 2m_{Q} + \frac{B_{Q}}{2}L^{2} + 2A_{Q}(L \cdot S) + 2\kappa_{qQ}[s_{q} \cdot s_{Q} + s_{\bar{q}} \cdot s_{\bar{Q}}] + b_{\rm Y}\frac{S_{12}}{4}$$

Involves constituent diquark mass, spin-spin, spin-orbit, and tensor forces $H = 2m_Q + H_{SS}^{(q\bar{q})} + H_{SL}^{(q\bar{q})} + H_{LL} + H_T$ with
constituent mass

$$= b_{\mathbf{Y}} \left[\Im(\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{n}) (\mathbf{S}_{\bar{\mathcal{Q}}} \cdot \mathbf{n}) - (\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{S}_{\bar{\mathcal{Q}}}) \right]; \ (\mathbf{n} = \text{unit vector})$$

In the following, assume $\kappa_{q\bar{q}'} \simeq 0$

$$H_{\rm eff}(X,Y,Z) = 2m_{Q} + \frac{B_{Q}}{2}L^{2} + 2A_{Q}(L \cdot S) + 2\kappa_{qQ}[s_{q} \cdot s_{Q} + s_{\bar{q}} \cdot s_{\bar{Q}}] + b_{\rm Y}\frac{S_{12}}{4}$$

$$= b_{\mathbf{Y}} \left[\Im(\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{n}) (\mathbf{S}_{\bar{\mathcal{Q}}} \cdot \mathbf{n}) - (\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{S}_{\bar{\mathcal{Q}}}) \right]; \ (\mathbf{n} = \text{unit vector})$$

In the following, assume $\kappa_{q\bar{q}'} \simeq 0$

$$H_{\rm eff}(X,Y,Z) = 2m_{Q} + \frac{B_{Q}}{2}L^{2} + 2A_{Q}(L \cdot S) + 2\kappa_{qQ}[s_{q} \cdot s_{Q} + s_{\bar{q}} \cdot s_{\bar{Q}}] + b_{Y}\frac{S_{12}}{4}$$

In the following, assume $\kappa_{q\bar{q}'} \simeq 0$

$$H_{\rm eff}(X,Y,Z) = 2m_{Q} + \frac{B_{Q}}{2}L^{2} + 2A_{Q}(L \cdot S) + 2\kappa_{qQ}[s_{q} \cdot s_{Q} + s_{\bar{q}} \cdot s_{\bar{Q}}] + b_{\rm Y}\frac{S_{12}}{4}$$

Involves constituent diquark mass, spin-spin, spin-orbit, and tensor forces $H = 2m_Q + H_{SS}^{(q\bar{q})} + H_{SS}^{(q\bar{q}\bar{q})} + H_{SL} + H_{LL} + H_T$

with

$$\begin{aligned} H_{SS}^{(q\bar{q})} &= 2(\mathcal{K}_{cq})_{\bar{3}}[(\mathbf{S}_{c} \cdot \mathbf{S}_{q}) + (\mathbf{S}_{\bar{c}} \cdot \mathbf{S}_{\bar{q}})] \\ H_{SS}^{(q\bar{q})} &= 2(\mathcal{K}_{c\bar{q}})(\mathbf{S}_{c} \cdot \mathbf{S}_{\bar{q}} + \mathbf{S}_{\bar{c}} \cdot \mathbf{S}_{q}) \\ &+ 2\mathcal{K}_{c\bar{c}}(\mathbf{S}_{c} \cdot \mathbf{S}_{\bar{c}}) + 2\mathcal{K}_{q\bar{q}}(\mathbf{S}_{q} \cdot \mathbf{S}_{\bar{q}}) \\ H_{SL} &= 2A_{\mathcal{Q}}(\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{L} + \mathbf{S}_{\bar{\mathcal{Q}}} \cdot \mathbf{L}) \\ H_{LL} &= B_{\mathcal{Q}} \frac{L_{\mathcal{Q}\bar{\mathcal{Q}}}(L_{\mathcal{Q}\bar{\mathcal{Q}}} + 1)}{2} \\ H_{T} &= b_{\mathbf{Y}} \frac{S_{12}}{4} = b_{\mathbf{Y}} \left[3(\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{n}) (\mathbf{S}_{\bar{\mathcal{Q}}} \cdot \mathbf{n}) - (\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{S}_{\bar{\mathcal{Q}}}) \right]; \quad (\mathbf{n} = \text{unit vector}) \end{aligned}$$

In the following, assume $\kappa_{q\bar{q}'} \simeq 0$

$$H_{\rm eff}(X,Y,Z) = 2m_{Q} + \frac{B_{Q}}{2}L^{2} + 2A_{Q}(L \cdot S) + 2\kappa_{qQ}[s_{q} \cdot s_{Q} + s_{\bar{q}} \cdot s_{\bar{Q}}] + b_{Y}\frac{S_{12}}{4}$$

Low-lying S-Wave Tetraquark States

In the $|s_{qQ}, s_{\bar{q}\bar{Q}}; S, L\rangle_J$ and $|s_{q\bar{q}}, s_{Q\bar{Q}}; S', L'\rangle_J$ bases, the positive parity *S*-wave tetraquarks are listed below; $M_{00} = 2m_Q$

Label	J ^{PC}	$ s_{qQ}, s_{\bar{q}\bar{Q}}; S, L\rangle_J$	$ s_{q\bar{q}}, s_{Q\bar{Q}}; S', L'\rangle_J$	Mass
X ₀	0++	$ 0,0;0,0\rangle_{0}$	$(0,0;0,0\rangle_0 + \sqrt{3} 1,1;0,0\rangle_0)/2$	$M_{00} - 3\kappa_{qQ}$
X'_0	0++	$ 1,1;0,0\rangle_{0}$	$\left(\sqrt{3} 0,0;0,0\rangle_0 - 1,1;0,0\rangle_0\right)/2$	$M_{00} + \kappa_{qQ}$
X_1	1^{++}	$(1,0;1,0\rangle_1 + 0,1;1,0\rangle_1)/\sqrt{2}$	$ 1,1;1,0\rangle_1$	$M_{00} - \kappa_{qQ}$
Ζ	1^{+-}	$(1,0;1,0\rangle_1 - 0,1;1,0\rangle_1)/\sqrt{2}$	$(1,0;1,0\rangle_1 - 0,1;1,0\rangle_1)/\sqrt{2}$	$M_{00} - \kappa_{qQ}$
Z'	1^{+-}	$ 1,1;1,0\rangle_1$	$(1,0;1,0\rangle_1 + 0,1;1,0\rangle_1)/\sqrt{2}$	$M_{00} + \kappa_{qQ}$
X_2	2++	1,1;2,0 ₂	$ 1,1;2,0\rangle_{2}$	$M_{00} + \kappa_{qQ}$

- The spectrum of these states depends on just two parameters, $M_{00}(Q)$ and κ_{qQ} , Q = c, b, hence very predictive
- Some of the states, such as X₀, X'₀, X₂, still missing and are being searched for at the LHC

Charmonium-like and Bottomonium-like Tetraquark Spectrum

Parameters in the Mass Formula

	charmonium-like	bottomonium-like
<i>M</i> ₀₀ [MeV]	3957	10630
κ_{qQ} [MeV]	67	22.5

		charmonium-like		bottomonium-like	
Label	J^{PC}	State	Mass [MeV]	State	Mass [MeV]
X_0	0++		3756		10562
X'_0	0++		4024		10652
X_1°	1++	X(3872)	3890		10607
Ζ	1^{+-}	$Z_c^+(3900)$	3890	$Z_{h}^{+,0}(10610)$	10607
Z'	1+-	$Z_{c}^{+}(4020)$	4024	$\check{Z}_{h}^{+}(10650)$	10652
<i>X</i> ₂	2++		4024		10652

Heavy Quark Symmetry relations involving heavy Mesons, Baryons and Tetraquarks

[See Eichten, Mehen, Karliner @ Quarkonium 2017; S-Q. Luo et al., EPJC 77:709 (2017)]

- Heavy quark symmetry relates a singly heavy meson Qq
 q and a doubly heavy antibaryon QQ
 q q

Stable Heavy Tetraquarks $T(QQ\bar{q}\bar{q'}), (QQ = cc, cb, bb)$

[See Eichten, Mehen, Karliner @ Quarkonium 2017; S-Q. Luo et al., EPJC 77:709 (2017)]

I.d.o.f are the same in these hadrons

Quark Model Estimates of the Tetraquark Masses $M(T(QQ\bar{q}\bar{q'}))$

[M. Karliner, J. Rosner, PRL 119, 202001 (2017)]

- Masses of heavy mesons and baryons successfully reproduced in Quark Models using effective Hamiltonians, incorporating spin-spin, spin-orbit, and tensor contributions
- In particular, masses of the doubly heavy J = 1/2 baryons, $M(\Xi_{cc})$, $M(\Xi_{cb})$, $M(\Xi_{bb})$ were estimated in this approach [M. Karliner, J. Rosner, 2014]
- Accurately predicted the mass of the doubly charmed baryon $M(\Xi_{cc}^{++}) = 3627 \pm 12$ MeV, compared to $M(\Xi_{cc}^{++}) = 3621 \pm 0.78$ MeV (LHCb 2017)
- This framework predicts $M(T(bb[\bar{u}\bar{d}])) = 10389 \pm 12 \text{ MeV}$
- The lowest-lying $J^P = 1^+$ tetraquark $T(bb[\bar{u}\bar{d}])$ has a mass 215 MeV below the *BB*^{*} threshold and 170 MeV below the *BB* γ threshold. Thus, $T(bb[\bar{u}\bar{d}])$ is stable against strong decay
- Predict: $M(T(cc[\bar{u}\bar{d}])) = 3882 \pm 12$ MeV, well above th DD^* threshold
- Predict: $M(T(bc[\bar{u}\bar{d}])) = 7133 \pm 13$ MeV; central value about 11 MeV below the BD^* threshold

Distance from Thresholds in MeV for $T(QQ\bar{q}\bar{q'})$, (QQ = cc, cb, bb)

[M. Karliner, J. Rosner, PRL 119, 202001 (2017)

Ahmed Ali (DESY, Hamburg)

Doubly Heavy Tetraquarks $T(QQ\bar{q}\bar{q'})$, (QQ = cc, cb, bb)

[E. Eichten, C. Quigg, PRL 119, 202002 (2017)]

Heavy quark symmetry relations

In the heavy limit, the color of the core Q_iQ_j is 3 the same as a Q

 x. Hence in leading order of M⁻¹ the light degrees of freedom have the same dynamics in the two systems leading to the following relations

$$\begin{split} m(\{Q_iQ_j\}\{\bar{q}_k\bar{q}_l\}) &- m(\{Q_iQ_j\}q_y) = m(Q_x\{q_kq_l\}) - m(Q_x\bar{q}_y) \\ m(\{Q_iQ_j\}[\bar{q}_k\bar{q}_l]) - m(\{Q_iQ_j\}q_y) = m(Q_x[q_kq_l]) - m(Q_x\bar{q}_y) \\ m([Q_iQ_j]\{\bar{q}_k\bar{q}_l\}) - m([Q_iQ_j]q_y) = m(Q_x\{q_kq_l\}) - m(Q_x\bar{q}_y) \\ m([Q_iQ_j][\bar{q}_k\bar{q}_l]) - m([Q_iQ_j]q_y) = m(Q_x[q_kq_l]) - m(Q_x\bar{q}_y) . \end{split}$$

• Finite mass corrections for all the states in these relations:

$$\delta m = S \frac{\vec{S} \cdot \vec{j_{\ell}}}{2\mathcal{M}} + \frac{\mathcal{K}}{2\mathcal{M}}$$

Estia Eichter

QWG12 · Beijing · 11.06.2017 7 / 1

Stable Heavy Tetraquarks $T(QQ\bar{q}\bar{q'}), (QQ = cc, cb, bb)$

[E. Eichten, C. Quigg, PRL 119, 202002 (2017)

- $T(bb[\bar{u}\bar{d}])$ and $T(bb[\bar{q}\bar{s}])$ are stable against strong decay
- Will decay weakly by charged current interactions

Expectations for ground-state tetraquark masses

State	J ^P	$m(Q_i Q_j \bar{q}_k \bar{q}_l)$	Decay Channel	Q [MeV]
{cc}[ūd]	1+	3978	D ⁺ D ^{*0} 3876	102
$\{cc\}[\bar{q}_k\bar{s}]$	1+	4156	$D^+D_s^{*-}$ 3977	179
$\{cc\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	4146, 4167, 4210	D^+D^0, D^+D^{*0} 3734, 3876	412, 292, 476
[bc][ūd]	0+	7229	$B^- D^+ / B^0 D^0$ 7146	83
$[bc][\bar{q}_k\bar{s}]$	0+	7406	B _s D 7236	170
$[bc]{\bar{q}_k\bar{q}_l}$	1+	7439	B*D/BD* 7190/7290	249
{ <i>bc</i> }[<i>ūd</i>]	1+	7272	B*D/BD* 7190/7290	82
$\{bc\}[\bar{q}_k\bar{s}]$	1+	7445	DB _s [*] 7282	163
bc $\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	7461, 7472, 7493	BD/B*D 7146/7190	317, 282, 349
$\{bb\}[\overline{u}\overline{d}]$	1+	10482	$B^-\bar{B}^{*0}$ 10603	-121
$\{bb\}[\bar{q}_k\bar{s}]$	1+	10643	$\bar{B}\bar{B}^{*}_{s}/\bar{B}_{s}\bar{B}^{*}$ 10695/10691	-48
${bb}{\bar{q}_k\bar{q}_l}$	$0^+, 1^+, 2^+$	10674, 10681, 10695	$B^{-}B^{0}, B^{-}B^{*0}$ 10559, 10603	115, 78, 136

QCD dynamics of a doubly heavy tetraquarks $T(QQ\bar{q}\bar{q'})$, (QQ = cc, cb, bb)[P. Bicudo et al., Phys.Rev. D95, 142001 (2017)]

- At very short $\overline{b}\overline{b}$ distances, the interaction is Coulomb-like, given by one-gluon exchange (a)
- At large $\bar{b}\bar{b}$ separations, the light quarks *ud* screen the interaction, and the four quarks form two rather weakly interacting *B B*^{*} mesons (b)
- Using this (Born-Oppenheimer) potential, a coupled-channel Schrödinger equation is solved, leading to a bound state, whose mass is estimated as $M(\mathcal{T}_{[\bar{u}\bar{d}]}^{\{bb\}^-}) = 10545^{+38}_{-30}$ MeV.

Lattice QCD estimates of $bb\bar{u}\bar{d}$ tetraquark mass using NRQCD

[A. Francis et al., PRL 118, 142001 (2017)]

- Chiral extrapolations of the *udbb* and *qsbb* binding energies
- $M(\mathcal{T}^{\{bb\}-}_{[\bar{u}\bar{d}]}) = 10415 \pm 10 \,\mathrm{MeV}$

Both lie below their respective thresholds

Summary of $M(T(bb[\bar{u}\bar{d}]))$

[T. Mehen @Quarkonium 2017]

Stable Doubly Heavy Tetraquarks

 $\begin{array}{lll} \mbox{quark model} & \mbox{M. Karliner, J. Rosner, arXiv:1707.07666} \\ T_{bb\bar{u}\bar{d}} & J^P = 1^+ & I = 0 & 10389 \pm 12 \, {\rm MeV} \\ 215 \, {\rm MeV} & \mbox{below } B\bar{B}^* & \mbox{threshold, stable to strong interaction} \\ \mbox{heavy quark symmetry} & \mbox{E. Eichten, C. Quigg, arXiv:1707.09575} \\ 10468 \, {\rm MeV} & 135 \, {\rm MeV} & \mbox{below threshold} \\ \mbox{lattice QCD} \\ 189 \pm 10 \, {\rm MeV} & \mbox{below threshold} & \mbox{A. Francis, et. al., PRL 118, 142001 (2017)} \\ 60^{+30}_{-38} \, {\rm MeV} & \mbox{below threshold} & \mbox{P. Bicudo, et. al., PRD 95, 142001 (2017)} \\ \end{array}$

no analogous prediction for $T_{cc\bar{q}\bar{q}}, T_{bc\bar{q}\bar{q}}$ tetraquarks

molecular $T_{cc} = DD^*$ D. Janc, M. Rosina, Few Body Syst. **35** (2004) 175

arguments for stability in heavy quark limit

J.-P. Ader, J.-M. Richard, P. Taxil, PRD 25 (1982) 2370

A. Manohar, M. Wise, NPB 399 (1993) 17

 $SU(3)_F$ -triplet of stable double-bottom tetraquarks $T(bb\bar{q}\bar{q'})$

$$S_{\{bb\}}=1, S_{[ar{q}ar{q'}]}=0, J^P=1^+$$

 $SU(3)_F$ -triplet of double charm & double-bottom baryons

Of these, $\Xi_{cc}^{++} = (ccu)$ has been discovered at the LHCb

Great discovery potential at the LHC & Tera-Z factory!

 $SU(3)_F$ -triplet of bottom-charmed baryons

So far, the only known bottom-charmed hadrons are B_c and B_c^*

Likewise, Great discovery potential at the LHC & Tera-Z factory!

Prospects of observing Stable Tetraquarks at a Tera-Z Factory

■ The partonic process at the *Z*-factory is:

 $e^+e^- \rightarrow Z \rightarrow b\bar{b}b\bar{b}$

- Measured at LEP: $\mathcal{B}(Z \rightarrow b\bar{b}b\bar{b}) = (3.6 \pm 1.3) \times 10^{-4}$
- Unlike the inclusive production of hadrons, such as Z → (B, Λ_b, Σ_b) + X, which results from the fragmentation of a single-*b* quark, the production of hadrons with double-*b* quarks requires the topology in which two *b*-quarks have to be in a jet: e⁺e⁻ → Z → (bb)_{Iet} + b̄b
- The $(bb)_{\text{Jet}}$ requires a jet-definition, such as the invariant mass $M(bb)_{\text{Jet}}^2 = (p(b_1) + p(b_2))^2$, with Jet-resolution parameter: $M(T_{[\bar{u}\bar{d}]}^{\{bb\}})^2 \le M(bb)_{\text{Jet}}^2 \le (2m_b + \Delta M)^2$
- For $M(bb)_{\text{Jet}}^2 \gg 4M_B^2$, independent fragmentation of the 2 *b* quarks into two *B*-hadrons, $(bb)_{\text{Jet}} \rightarrow (BB, BB^*, 2\Lambda_b + ...) + X$ dominates, and the probability of a double-*b* hadron production becomes insignificant, $\mathcal{P}(bb \rightarrow T_{[\bar{u}\bar{d}]}^{\{bb\}} + X) \ll 1$

Typical topology of $Z \rightarrow (bb)_{\text{Jet}} + \bar{b}\bar{b}$

Double-*b*-hadrons, such as the tetraquark $T^{\{bb\}}_{[\bar{u}\bar{d}]}$ and double-*b* baryons $\Xi^{q}_{bb'}$ are the fragmentation products of the $(bb)_{\text{Jet}}$

They are anticipated to populate low-*M_{bb}* invariant mass region

Estimates of the $(bb)_{\text{Iet}}$ -parameter ΔM

[AA, A. Parkhomenko, Qin Qin, Wei Wang, to be published]

■ We model ΔM by using a similar (but not identical) process which involves the fusion $b\bar{c} \rightarrow B_c$ from $e^+e^- \rightarrow Z \rightarrow b\bar{b}c\bar{c}$, leading to $e^+e^- \rightarrow Z \rightarrow B_c + \bar{b} + c$, using [Z. Yang, X. G. Wu, G. Chen, Q. L. Liao and J. W. Zhang, Phys. Rev. D **85**, 094015 (2012)] and the Monte Carlo generator MadGraph

Input quark masses (GeV): $(m_b, m_c) = (4.9, 1.5)$ (central); $(m_b, m_c) = (5.3, 1.2)$ (upper), $(m_b, m_c) = (4.8, 1.5)$

Quark masses	$\sigma(B_c b \bar{c})$ [pb]	$\sigma(b\bar{b}c\bar{c})$ [pb]	$f(\bar{b}c \to B_c)$	ΔM [GeV]
central	5.19	64.50	8.05%	2.82
upper	11.41	76.79	14.86%	4.22
lower	2.77	56.75	4.88%	2.22

This gives an estimate of ΔM , which we use for simulating $e^+e^- \rightarrow Z \rightarrow (bb)_{\text{Jet}} + \bar{b}\bar{b}$

Estimates of the $(bb)_{\text{Iet}}$ -parameter ΔM

[AA, A. Parkhomenko, Qin Qin, Wei Wang, to be published]

- Processes simulated: $e^+e^- \rightarrow Z \rightarrow b\bar{b}b\bar{b}$ (inclusive 4*b*-production)& $e^+e^- \rightarrow Z \rightarrow T^{\{bb\}}_{[\bar{n}\bar{d}]}\bar{b}\bar{b} + \dots$ (semi-inclusive),, with the invariant mass cut $M(T^{\{bb\}}_{[\bar{n}\bar{d}]})^2 \leq M(bb)^2_{\text{Jet}} \leq (2m_b + \Delta M)^2$
- Generated 10^4 showered $e^+e^- \rightarrow b\bar{b}b\bar{b}$ events at the *Z* mass with MadGraph and Pythia6 using NLO
- MadGraph (NLO) yields: $\mathcal{B}(Z \to b\bar{b}b\bar{b}) = 4.26 \times 10^{-4}$ for $m_b = 4.9$ GeV, consistent with the LEP measurements $(3.6 \pm 1.3) \times 10^{-4}$
- This yields the fraction $f((bb)_{\text{Jet}}(\Delta M) \rightarrow H_{bb} + X) = (8.8^{+4.6}_{-1.9})\%$
- We assume that the double-*b* hadron H_{bb} consists of $T^{\{bb\}}_{[\bar{q}\bar{q}']}$ (tetraquark) or $\Xi(bbq)$ (double-*b* baryon)

Using heavy quark symmetry, anticipate $\frac{f(bb \to T_{[\bar{u}\bar{d}]}^{(bb)} + X)}{f(bb \to \Xi_{bb} + X)} = \frac{f_{\Lambda_b}}{f_{B_u} + f_{B_d}} \simeq 0.3$

Estimate (Preliminary): $\mathcal{B}(Z \to T^{\{bb\}}_{[\bar{n}\bar{d}]} + X) = (4.5^{+2.6}_{-1.6}) \times 10^{-6}$

Estimates of the lifetime for $T_{[\bar{u}\bar{d}]}^{\{bb\}}$

[AA, A. Parkhomenko, Qin Qin, Wei Wang, to be published]

■ The decay rate of *T*^{bb} into an inclusive final state *X* can be expressed as:

$$\begin{split} \Gamma(T^{\{bb\}}_{[\bar{q}\bar{q}']} \to X) &= \frac{1}{2m_{T^{\{bb\}}_{[\bar{q}\bar{q}']}}} \sum_{X} \int \prod_{i} \left[\frac{d^{3}p_{i}}{(2\pi)^{3}2E_{i}} \right] \\ &\times (2\pi)^{4} \delta^{(4)}(p_{T^{\{bb\}}_{[\bar{q}\bar{q}']}} - \sum_{i} p_{i}) |\langle X| \mathcal{H}^{ew}_{eff}|T^{\{bb\}}_{[\bar{q}\bar{q}']} \rangle|^{2} \end{split}$$

H^{ew}_{eff} is the effective electroweak Hamiltonian governing the weak decays. Using the optical theorem, one can rewrite the total rate as

$$\Gamma(T^{\{bb\}} \to X) = \frac{1}{2m_{T^{\{bb\}}}} \langle T^{\{bb\}} | \mathcal{T} | T^{\{bb\}} \rangle$$

with the transition operator defined as:

$$\mathcal{T} = \operatorname{Im} i \int d^4 x T[\mathcal{H}_{e\!f\!f}^{e\!w}(x), \mathcal{H}_{e\!f\!f}^{e\!w}(0)]$$

Estimates of the lifetime for $T^{\{bb\}}_{[n\bar{d}]}$ using heavy quark expansion

■ HQE simplifies the inclusive decay widths. Up to dimension 6 :

$$\begin{split} \mathcal{T} &= \frac{G_F^2 m_b^5}{192 \pi^3} |V_{CKM}|^2 \bigg[c_{3,b} \bar{b} b + \frac{c_{5,b}}{m_b^2} \bar{b} g_s \sigma_{\mu\nu} G^{\mu\nu} b \\ &+ 2 \frac{c_{6,b}}{m_b^3} (\bar{b} q)_\Gamma (\bar{q} b)_\Gamma + ... \bigg] \end{split}$$

• At leading order in $1/m_b$, only the $\bar{b}b$ operator contributes: $\Gamma(T^{\{bb\}}_{[\bar{q}\bar{q}']}) = \frac{G_F m_b^5}{192\pi^3} |V_{CKM}|^2 c_{3,b} \frac{\langle T^{\{bb\}}_{[\bar{q}\bar{q}']} |\bar{b}b| T^{\{bb\}}_{[\bar{q}\bar{q}']} \rangle}{2m_{T^{\{bb\}}_{[\bar{q}\bar{q}']}}}$

 $\frac{\langle T^{\{bb\}}_{[\bar{q}\bar{q}']}|\bar{b}b|T^{\{bb\}}_{[\bar{q}\bar{q}']}\rangle}{2m_{T^{\{bb\}}_{[\bar{q}\bar{q}']}}} \text{ corresponds to the bottom-quark number in } T^{\{bb\}}_{[\bar{q}\bar{q}']}, \text{ and is twice the matrix element for } B \text{ meson and } \Lambda_b \text{ baryon}$

Hence, expect
$$\tau(T^{\{bb\}}_{[\bar{u}\bar{d}]}) \simeq 1/2\tau(B)$$
:
 $\tau(T^{\{bb\}}_{[\bar{q}\bar{q}']}) \sim \frac{1}{2} \times 1.6 \times 10^{-12} s = 800 \times 10^{-15} s$

Weak Decays of $T^{\{bb\}}_{[\bar{u}\bar{d}]}$

Effective Weak Hamiltonian

$$\mathcal{H}_{eff}^{(cc)} = \frac{4G_F}{\sqrt{2}} V_{cb} V_{ud}^* \left\{ C_1 \left[\bar{c}_{\alpha} \gamma_{\mu} P_L b^{\alpha} \right] \left[\bar{d}_{\beta} \gamma^{\mu} P_L u^{\beta} \right] \right. \\ \left. + C_2 \left[\bar{c}_{\beta} \gamma_{\mu} P_L b^{\alpha} \right] \left[\bar{d}_{\alpha} \gamma^{\mu} P_L u^{\beta} \right] \right\}$$

$$+ \frac{4G_F}{\sqrt{2}} V_{cb} V_{cs}^* \left\{ C_1 \left[\bar{c}_{\alpha} \gamma_{\mu} P_L b^{\alpha} \right] \left[\bar{s}_{\beta} \gamma^{\mu} P_L c^{\beta} \right] \right. \\ \left. + C_2 \left[\bar{c}_{\beta} \gamma_{\mu} P_L b^{\alpha} \right] \left[\bar{s}_{\alpha} \gamma^{\mu} P_L c^{\beta} \right] \right\} + h. c.$$

Two-Body Baryonic Decays from $b \rightarrow c + d + \bar{u}$ (left panel) and $b \rightarrow c + s + \bar{c}$ (right panel)

An order of magnitude estimate

Involve non-factorizable Amplitudes . For the $J^P = 1^+$ tetraquark, the general form of the decay amplitude is:

$$\mathcal{M}(T^{\{bb\}-}_{[\bar{u}\bar{d}]} \to \Xi^{0}_{bc}\bar{p}) = \bar{v}(p_{p}) \left[f_{1}^{\Xi_{bc}\bar{p}} q_{\mu} + f_{2}^{\Xi_{bc}\bar{p}} \gamma_{\mu} \right. \\ \left. + f_{3}^{\Xi_{bc}\bar{p}} \sigma_{\mu\nu} \frac{q^{\nu}}{M_{T}} + g_{1}^{\Xi_{bc}\bar{p}} \gamma_{5} q_{\mu} + g_{2}^{\Xi_{bc}\bar{p}} \gamma_{\mu}\gamma_{5} \right. \\ \left. + g_{3}^{\Xi_{bc}\bar{p}} \sigma_{\mu\nu} \gamma_{5} \frac{q^{\nu}}{M_{T}} \right] u(p_{\Xi_{bc}}) \varepsilon^{\mu}_{T}(p_{T})$$

Inspired by the *B* meson decay data

$$\begin{aligned} \mathcal{B}(\overline{B}^0 \to D^+ \pi^-) &= (2.52 \pm 0.13) \times 10^{-3} \\ \mathcal{B}(\overline{B}^0 \to D^+ D_s^-) &= (7.2 \pm 0.8) \times 10^{-3} \end{aligned}$$

Infer that B(T^{{bb}-}_[ūd] → Ξ⁰_{bc} p̄) and B(T^{{bb}-}_[ūd] → Ω⁰_{bc} Λ̄⁻_c) are of O(10⁻³)
 Needs reconstructing the doubly heavy baryons Ξ⁰_{bc} and Ω⁰_{bc}, such as through Ξ⁰_{bc} → Λ_bK⁻π⁺, expect the two-body baryonic decay modes of T^{{bb}-}_[ūd] can have branching fractions of order 10⁻⁶
 Ahmed Ali (DESY, Hamburg) 30 /

Three-body Mesonic Decay Modes of $T^{\{bb\}-}_{[\bar{u}\bar{d}]}$

Feynman diagrams due to the *b*-quark decay $b \rightarrow c + d + \bar{u}$

The factorizable amplitudes of these decays can be written as:

$$\mathcal{M}(T_{[\bar{u}\bar{d}]}^{\{bb\}^{-}} \to B^{-} D^{+} \pi^{-}) = i \frac{G_{F}}{\sqrt{2}} V_{cb} V_{ud}^{*} a_{1}^{\text{eff}} f_{\pi} p_{\pi}^{\mu} \\ \times \langle (BD)_{J_{BD}}^{0}(p_{BD}) | \bar{d}\gamma_{\mu} (1 - \gamma_{5}) u | T_{[\bar{u}\bar{d}]}^{\{bb\}^{-}}(p_{T}) \rangle, \\ \mathcal{M}(T_{[\bar{u}\bar{d}]}^{\{bb\}^{-}} \to \bar{B}^{0} D^{0} \pi^{-}) = i \frac{G_{F}}{\sqrt{2}} V_{cb} V_{ud}^{*} a_{1}^{\text{eff}} f_{\pi} p_{\pi}^{\mu} \\ \times \langle (BD)_{J_{BD}}^{0}(p_{BD}) | \bar{s}\gamma_{\mu} (1 - \gamma_{5}) c | T_{[\bar{u}\bar{d}]}^{\{bb\}^{-}}(p_{T}) \rangle \\ \mathcal{B}(T_{[\bar{u}\bar{d}]}^{\{bb\}} \to B^{-} D^{+} \pi^{-}) = \mathcal{B}(T_{[\bar{u}\bar{d}]}^{\{bb\}} \to \bar{B}^{0} D^{0} \pi^{-}) \sim 0.5 \times 10^{-3}$$

Hidden-Charm final states in $T^{\{bb\}-}_{[\bar{u}\bar{d}]}$ decays

In some decays hidden-charm mesons, such as J/ψ , ψ' , can be produced

$$\begin{split} T^{\{bb\}}_{[\bar{u}\bar{d}]} &\to J/\psi \overline{K}^0 B^-, \\ T^{\{bb\}}_{[\bar{u}\bar{d}]} &\to J/\psi K^- \overline{B}^0 \end{split}$$

Their decay branching ratios can be comparable with the $\mathcal{B}(B \to J/\psi K)$: $\mathcal{B}(\overline{B}^0 \to J/\psi \overline{K}^0) = (8.73 \pm 0.32) \times 10^{-4}$

• Expect that the product branching ratios to measure the mass of $T^{\{bb\}-}_{[\bar{u}\bar{d}]}$ are at most of $O(10^{-5})$

Summary

- A new facet of QCD is opened by the discovery of the exotic states *X*, *Y*, *Z*, P(4380), P(4450)
 - Important puzzles remain in the complex:

- What is the nature of $Y_c(4260)$? A tetraquark? or a $c\bar{c}g$ hybrid? Is $Y_c(4260)$ split? How many *P* states are there? We do expect a tower of radial and orbital excited states in the diquark picture!
- CEPC running as a Z factory will advance the multiquark sector of QCD decisively, in particular, the entire pentaquark spectrum with hidden charm can be measured from the production and decays of the *b*-baryons
- Also CEPC has great potential to discover doubly heavy tetraquarks, establishing diquarks as a building block in QCD. First results from the simulation at a Tera-Z factory presented here. Likewise, an entire spectrum of doubly-heavy baryons can be measured
- We look forward to decisive experimental results from BESIII, Belle-II, LHC, and the CEPC