

Weak Decays of Triply Heavy Baryons

Ji Xu Shanghai Jiao Tong University

24.04.2018 Beijing 2nd workshop on heavy quark physics **In collaboration with Wei Wang** arXiv: 1803.01476

Contents:

- Background
- Lifetime and branching ratios
- SU(3) Analysis
- Golden channels
- > Summary

Background

Discovery of Ξ_{cc}^{++}

CERN-EP-2017-156 LHCb-PAPER-2017-018 12 September 2017

Observation of the doubly charmed baryon \varXi_{cc}^{++}

LHCb collaboration[†]

Abstract

A highly significant structure is observed in the $A_{\pm}^+ K^- \pi^+ \pi^+$ mass spectrum, where the A_{\pm}^+ baryon is reconstructed in the decay mode $pK^-\pi^+$. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Ξ_{\pm}^{++} . The difference between the masses of the Ξ_{\pm}^{++} and A_{\pm}^+ states is measured to be 1334.94 ± 0.72 (stat) ± 0.27 (syst) MeV/c^2 , and the Ξ_{\pm}^{-e} mass is then determined to be 3621.40 ± 0.72 (stat) ± 0.27 (syst) $\pm 0.14 (A_{\pm}^+) MeV/c^2$, where the last uncertainty is due to the limited knowledge of the A_{\pm}^+ mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb⁻¹, and confirmed in an additional sample of data collected at 8 TeV.

$m_{\Xi_{cc}^{++}} = (3621.40 \pm 0.72 \pm 0.27 \pm 0.14)$ MeV.

(See talk by Prof. Yu Fu-Sheng: Weak decyas of doubly heavy baryons And Dr. EKLUND Lars: Searching for Xi_cc at LHCb)

LHCD THCD

Quark model

➢ In 1964, Gell-Mann and Zweig proposed a way to build the numerous hadrons out of three fundamental quarks.

The 1974 discovery of the J/ ψ (and thus the charm quark) ushered in a series of breakthroughs which are collectively known as the November Revolution.

Quark model

For baryons with four flavors u,d,s,c, a 20-plet for JP =1/2+ and JP =3/2+, respectively

Baryons with three heavy quarks :

The last missing pieces of the lowest-lying baryon multiplets in quark model !

Lifetime and branching ratios

> Previous studies of triply heavy baryons concentrated on three facets:

(1) Spectroscopy: Y. Jia, JHEP (2006); A. P. Martynenko, Phys. Lett. B (2008); Z. G. Wang, Commun. Theor. Phys. (2012).....

(2) Production: Y. Q. Chen and S. Z. Wu, JHEP 2011; M.A. Gomshi Nobary and R. Sepahvand, Phy.Rev.D(2005);

(3) Decays: C.Q.Geng, Y.K.Hsiao, C.W.Liu and T.H.Tsai, JHEP(2017)

	This work
$\Omega_{ccc}(\frac{3}{2}^+)$	4.99 ± 0.14
$\Omega_{ccb}(\frac{1}{2}^+)$	8.23 ± 0.13
$\Omega_{ccb}(\frac{3}{2}^+)$	8.23 ± 0.13
$\Omega_{bbc}(\frac{1}{2}^+)$	11.50 ± 0.11
$\Omega_{bbc}(\frac{3}{2}^+)$	11.49 ± 0.11
$\Omega_{bbb}(\frac{3}{2}^+)$	14.83 ± 0.10
$\Omega_{ccc}(\frac{3}{2})$	5.11 ± 0.15
$\Omega_{ccb}(\frac{1}{2})$	8.36 ± 0.13
$\Omega_{ccb}(\frac{3}{2})$	8.36 ± 0.13
$\Omega_{bbc}(\frac{1}{2})$	11.62 ± 0.11
$\Omega_{bbc}(\frac{3}{2})$	11.62 ± 0.11
$\Omega_{bbb}(\frac{3}{2}^-)$	14.95 ± 0.11

$$\Omega_{ccc}^{++} \to (\Xi_{cc}^{++} \bar{K}^0, \Omega_{cc}^+ \pi^+, \Xi_c^+ D^+)$$

The cross sections at the LHC with $\sqrt{s} = 7$ TeV are found to reach the 0.1 nb level

(Z. G. Wang, Commun. Theor. Phys. 2012)

- Lifetimes or the total decay widths are among the most fundamental properties of the involved triply heavy baryons.
- A theoretical tools that describes the decay widths of inclusive decays is heavy quark expansion.

➤ C_{3,c} = 6.29±0.72 at LO and 11.61±1.55 at NLO. (A. Lenz, Int. J. Mod. Phys. A, 2015)

$$\begin{split} \Gamma(\Omega_{ccc}^{++}) &= \begin{cases} (2.18 \pm 0.25) \times 10^{-12} \text{GeV}, & \text{LO} \\ (4.03 \pm 0.54) \times 10^{-12} \text{GeV}, & \text{NLO} \end{cases}, \\ \tau(\Omega_{ccc}^{++}) &= \begin{cases} (302 \pm 35) \times 10^{-15} s, & \text{LO} \\ (164 \pm 22) \times 10^{-15} s, & \text{NLO} \end{cases}. \end{split}$$

$$\begin{split} \Gamma(\Omega_{bbb}^{-}) &= \begin{cases} (1.47\pm0.01)\times10^{-12} \text{GeV}, & \text{LO} \\ (1.92\pm0.02)\times10^{-12} \text{GeV}, & \text{NLO} \end{cases}, \\ \tau(\Omega_{bbb}^{-}) &= \begin{cases} (0.45\pm0.03)\times10^{-12}s, & \text{LO} \\ (0.34\pm0.04)\times10^{-12}s, & \text{NLO} \end{cases}. \end{split}$$

For process: $\Omega_{ccc}^{++} \rightarrow \Omega_{cc}^{+} \ell^{+} \nu$, leptonic amplitudes can be calculated in electroweak perturbation theory. While the hadronic matrix element can be parametrized in terms of form factors:

The $c \to q\bar{\ell}\nu$ transition is induced by the effective electro-weak Hamiltonian:

For process: $\Omega_{ccc}^{++} \rightarrow \Omega_{cc}^{+} \pi^{+}$, one may use the factorization approach to predict its decay widths. Using the form factors, we have the decay width:

$$\Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) = \frac{\sqrt{\lambda} G_{F}^{2}}{64\pi m_{\Omega_{ccc}^{++}}^{3}} |V_{cs} V_{ud}|^{2} f_{\pi}^{2} \left[|H_{t,-1/2}^{V,1/2}|^{2} + |H_{t,-1/2}^{A,1/2}|^{2} \right]$$

$$\Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) = 6.20 \times 10^{-14} \text{GeV}.$$
$$\mathcal{B}(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) = 1.5\%.$$

Some literature shows that $10^4 - 10^5$ events of triply heavy baryons Ω_{ccc}^{++} can be accumulated for 10 fb⁻¹ integrated luminosity at LHC.

(Y. Q. Chen and S. Z. Wu, JHEP 2011)

$$\Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} l^{+} \nu) = 1.41 \times 10^{-13} \text{GeV}$$
$$\mathcal{B}(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} l^{+} \nu) = 3.6\%$$

 $\Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) = 6.20 \times 10^{-14} \text{GeV}.$ $\mathcal{B}(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) = 1.5\%.$

Events
$$(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) \sim (10^{4} - 10^{5}) \times 1.5\% = (150 - 1500)$$

SU(3) Analysis

SU(3) light flavor symmetry is a powerful tool to analize decays of heavy hadrons.

 m_u ~2.2 MeV m_d ~4.7 MeV m_s ~96 MeV Λ_{QCD} ~225 MeV

$$T_{\mathbf{c}\bar{\mathbf{3}}} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix} .$$

$$M_8 = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^0 \\ K^- & \bar{K}^0 & -2\frac{\eta}{\sqrt{6}} \end{pmatrix}.$$

Triply heavy baryon belongs to SU(3) singlet.

$$\Omega_{ccc}^{++} \quad \Omega_{ccb}^{+} \quad \Omega_{cbb}^{0} \quad \Omega_{bbb}^{-}$$

.

SEMI-LEPTONIC Ω_{ccc}^{++} DECAY

The $c \to q\bar{\ell}\nu$ transition is induced by the effective electro-weak Hamiltonian:

$$\mathcal{H}_{e.w.} = \frac{G_F}{\sqrt{2}} \left[V_{cq}^* \bar{q} \gamma^\mu (1 - \gamma_5) c \bar{\nu}_\ell \gamma_\mu (1 - \gamma_5) \ell \right] + h.c.,$$

The heavy-to-light quark operators will form an SU(3) triplet , denoted as H3, with the components :

SEMI-LEPTONIC Ω_{ccc}^{++} DECAY

At hadron level, the effective Hamiltonian for three-body and four-body semileptonic Ω_{ccc}^{++} decays can be constructed as:

SEMI-LEPTONIC Ω_{ccc}^{++} DECAY

channel	amplitude	channel	amplitude
$\Omega_{ccc}^{++} \to \Xi_{cc}^+ \ell^+ \nu_\ell$	$a_1 V_{cd}^*$	$\Omega_{ccc}^{++}\to\Lambda_c^+D^0\ell^+\nu_\ell$	$a_3 V_{cd}^*$
$\Omega_{ccc}^{++} \to \Omega_{cc}^+ \ell^+ \nu_\ell$	$a_1 V_{cs}^*$	$\Omega_{ccc}^{++} \to \Xi_c^+ D^0 \ell^+ \nu_\ell$	$a_3 V_{cs}^*$
$\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \pi^- \ell^+ \nu_\ell$	$a_2 V_{cd}^*$	$\Omega_{ccc}^{++} \to \Xi_c^0 D^+ \ell^+ \nu_\ell$	$a_3 V_{cs}^*$
$\Omega_{ccc}^{++}\to \Xi_{cc}^{++} K^- \ell^+ \nu_\ell$	$a_2 V_{cs}^*$	$\Omega_{ccc}^{++} \to \Xi_c^0 D_s^+ \ell^+ \nu_\ell$	$-a_3 V_{cd}^*$
$\Omega_{ccc}^{++} \to \Xi_{cc}^+ \pi^0 \ell^+ \nu_\ell$	$-rac{a_2 V_{cd}^*}{\sqrt{2}}$	$\Omega_{ccc}^{++} \to \Sigma_c^+ D^0 \ell^+ \nu_\ell$	$\frac{a_4 V_{cd}^*}{\sqrt{2}}$
$\Omega_{ccc}^{++} \to \Xi_{cc}^+ \overline{K}^0 \ell^+ \nu_\ell$	$a_2 V_{cs}^*$	$\Omega_{ccc}^{++} \to \Sigma_c^0 D^+ \ell^+ \nu_\ell$	$a_4 V_{cd}^*$
$\Omega_{ccc}^{++}\to \Xi_{cc}^+\eta\ell^+\nu_\ell$	$\frac{a_2 V_{cd}^*}{\sqrt{6}}$	$\Omega_{ccc}^{++}\to \Xi_c^{\prime+} D^0 \ell^+ \nu_\ell$	$\frac{a_4 V_{cs}^*}{\sqrt{2}}$
$\Omega_{ccc}^{++} \to \Omega_{cc}^+ K^0 \ell^+ \nu_\ell$	$a_2 V_{cd}^*$	$\Omega_{ccc}^{++} \to \Xi_c^{\prime 0} D^+ \ell^+ \nu_\ell$	$\frac{\frac{a_4 V_{cs}^*}{\sqrt{2}}}{\frac{a_4 V_{cs}^*}{\sqrt{2}}}$
$\Omega_{ccc}^{++} o \Omega_{cc}^+ \eta \ell^+ u_\ell$	$-\sqrt{\frac{2}{3}}a_2V_{cs}^*$	$\Omega_{ccc}^{++} \to \Xi_c^{\prime 0} D_s^+ \ell^+ \nu_\ell$	$\frac{a_4 V_{cd}^*}{\sqrt{2}}$
		$\Omega_{ccc}^{++} \to \Omega_c^0 D_s^+ \ell^+ \nu_\ell$	$a_4 V_{cs}^*$

- The light pseudoscalar mesons can be replaced by their vector counterparts. For instance the K^0 can be replaced by a K^{*0} , which is reconstructed by the $K^-\pi^+$ final state.
- > Inspired by the experimental data on D meson decays, we can infer that branching fractions for the $c \rightarrow s$ channels are about a few percents.
- > A number of relations for decay widths can be easily read off from this table:

$$\Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^{++} K^- \ell^+ \nu_\ell) = \Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^+ \overline{K}^0 \ell^+ \nu_\ell) = \frac{3}{2} \Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^+ \eta \ell^+ \nu_\ell).$$

NON-LEPTONIC $\Omega^{++}_{\mathbf{ccc}}$ DECAY

Nonleptonic charm quark decays into light quarks are classified into three groups:

$$c \to s \bar{d} u, \quad c \to u \bar{d} d / \bar{s} s, \quad c \to d \bar{s} u.$$

These operators transform under the flavor SU(3) symmetry as $3 \otimes \overline{3} \otimes 3 = 3 \oplus 3 \oplus \overline{6} \oplus 15$.

Decays into a doubly-charmed baryon and one light meson

$$\mathcal{H}_{eff} = a_1 \Omega_{ccc} (\overline{T}_{cc})_i (M_8)_j^k (H_{\overline{6}})_k^{ij} + a_2 \Omega_{ccc} (\overline{T}_{cc})_i (M_8)_j^k (H_{15})_k^{ij}.$$

(15:30-15:30 Talk given by Mr. Shi, Yu-Ji)

C

NON-LEPTONIC Ω_{ccc}^{++} DECAY

channel	amplitude	channel	amplitude
Cabibbo-allowed	channels	Singly Cabibbo-suppressed	channels
$\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \overline{K}^0$	$(a_2 - a_1)V_{ud}V_{cs}^*$	$\Omega_{ccc}^{++}\to \Xi_{cc}^{++}\pi^0$	$\frac{(a_2 - a_1)V_{us}V_{cs}^*}{\sqrt{2}}$
$\Omega_{ccc}^{++} o \Omega_{cc}^+ \pi^+$	$(a_1 + a_2)V_{ud}V_{cs}^*$	$\Omega_{ccc}^{++}\to \Xi_{cc}^{++}\eta$	$\sqrt{\frac{3}{2}} \left(a_1 - a_2 \right) V_{us} V_c^*$
Doubly Cabibbo-suppressed	channels	$\Omega_{ccc}^{++}\to \Xi_{cc}^+\pi^+$	$(a_1 + a_2) (-V_{us}V_{cs}^*)$
$\Omega_{ccc}^{++}\to \Xi_{cc}^{++} K^0$	$(a_1 - a_2) (-V_{us}V_{cd}^*)$	$\Omega_{ccc}^{++} \to \Omega_{cc}^+ K^+$	$(a_1 + a_2) V_{us} V_{cs}^*$
$\Omega_{ccc}^{++}\to \Xi_{cc}^+ K^+$	$(a_1 + a_2) V_{us} V_{cd}^*$		

- The light pseudoscalar mesons can be replaced by their vector counterparts.
 Some CKM allowed channels are about a few percents.
- > A number of relations for decay widths can be read off from this table:

$$\Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \eta) = 3\Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \pi^0) \quad \Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^{+} \pi^+) = \Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} K^+)$$

SEMI-LEPTONIC DECAYS

Similar semi-leptonic decays of Ω_{ccb}^+ and Ω_{cbb}^0 have also been considered.

NON-LEPTONIC Ω_{ccc}^{++} DECAY

1.
$$\Omega_{ccc}^{++} \to T_{cc} M$$

2.
$$\Omega_{ccc}^{++} \to T_{cc} \ M \ M$$

3.
$$\Omega_{ccc}^{++} \to T_{c\bar{3},6} D$$

4.
$$\Omega_{ccc}^{++} \to T_{c\bar{3},6} \ D \ M$$

NON-LEPTONIC $\Omega_{\rm bbb}^-$ DECAY

1.
$$\Omega_{bbb}^- \to T_{bb} J/\psi$$

2.
$$\Omega_{bbb}^- \to T_{bb} J/\psi M$$

3.
$$\Omega_{bbb}^- \to T_{b\bar{3},6} J/\psi B$$

4.
$$\Omega_{bbb}^- \to \Omega_{cbb}^0 \overline{D}$$

5.
$$\Omega_{bbb}^{-} \to \Omega_{cbb}^{0} \overline{D} M$$

NON-LEPTONIC $\Omega_{\rm bbb}^-$ DECAY

16.
$$\Omega_{bbb}^{-} \to T_{b\bar{3},6} B$$

17. $\Omega_{bbb}^{-} \to T_{b\bar{3},6} B M$

Similar non-leptonic decays of Ω_{ccb}^+ and Ω_{cbb}^0 have also been considered.

arXiv: 1803.01476

Golden channels

► Based on the above analysis, we first give a collection of the CKM allowed decay channels for the Ω_{ccc}^{++}

channel	channel	channel	channel
$\Omega_{ccc}^{++} \to \Omega_{cc}^+ \ell^+ \nu_\ell$	$\Omega_{ccc}^{++} \to \Xi_c^{\prime+} D^0 \ell^+ \nu_\ell$	$\Omega_{ccc}^{++} \to \Xi_c^0 D^+ \ell^+ \nu_\ell$	$\Omega_{ccc}^{++} \to \Xi_{cc}^+ \overline{K}^0 \ell^+ \nu_\ell$
$\Omega_{ccc}^{++} \to \Xi_c^+ D^0 \ell^+ \nu_\ell$	$\Omega_{ccc}^{++} \to \Xi_c^{\prime 0} D^+ \ell^+ \nu_\ell$	$\Omega_{ccc}^{++} \to \Xi_{cc}^{++} K^- \ell^+ \nu_\ell$	$\Omega_{ccc}^{++} \to \Omega_c^0 D_s^+ \ell^+ \nu_\ell$
$\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \overline{K}^0$	$\Omega_{ccc}^{++} \to \Omega_{cc}^+ \pi^+$		
$\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \overline{K}^0 \pi^0$	$\Omega_{ccc}^{++} \to \Xi_{cc}^+ \pi^+ \overline{K}^0$	$\Omega_{ccc}^{++} \to \Xi_{cc}^{++} K^- \pi^+)$	$\Omega_{ccc}^{++} \to \Omega_{cc}^+ K^+ \overline{K}^0$
$\Omega_{ccc}^{++} \to \Xi_c^+ D^+$	$\Omega_{ccc}^{++}\to \Xi_c^{\prime+}D^+$		
$\Omega_{ccc}^{++} \to \Lambda_c^+ D^+ \overline{K}^0$	$\Omega_{ccc}^{++} \to \Xi_c^+ D_s^+ \overline{K}^0$	$\Omega_{ccc}^{++}\to \Xi_c^+ D^+ \pi^0$	$\Omega_{ccc}^{++}\to \Xi_c^0 D^+\pi^+$
$\Omega_{ccc}^{++}\to \Xi_c^+ D^0 \pi^+$			
$\Omega_{ccc}^{++} \to \Sigma_c^{++} D^0 \overline{K}^0$	$\Omega_{ccc}^{++}\to \Xi_c^{\prime 0} D^+ \pi^+$	$\Omega_{ccc}^{++}\to \Xi_c^{\prime+} D^0 \pi^+$	$\Omega_{ccc}^{++} \to \Omega_c^0 D^+ K^+$
$\Omega_{ccc}^{++} \to \Sigma_c^{++} D^+ K^-$	$\Omega_{ccc}^{++} \to \Xi_c^{\prime+} D_s^+ \overline{K}^0$	$\Omega_{ccc}^{++}\to \Xi_c^{\prime+} D^+ \pi^0$	$\Omega_{ccc}^{++} \to \Omega_c^0 D_s^+ \pi^+$
$\Omega_{ccc}^{++} \to \Sigma_c^+ D^+ \overline{K}^0$			

Nonleptonic Ω_{ccc}^{++} decay such as $\Omega_{ccc}^{++} \to \Xi_{cc}^{++} K^- \pi^+$ might be used to search for Ω_{ccc}^{++} especially at LHC, since their branching fractions are sizable, and the final state can be easily to identify. This will make use of the doubly heavy baryon Ξ_{cc}^{++} which has been just discovered by LHCb.

> Based on the above analysis, we first give a collection of the CKM allowed decay channels for the Ω_{bbb}^{-}

channel	channel	channel	channel
		$\Omega_{bbb}^{-} \to \Omega_{bb}^{-} D_s^+ \ell^- \bar{\nu}_{\ell}$	$\Omega_{bbb}^{-} \to \Omega_{bc}^{0} \overline{B}_{s}^{0} \ell^{-} \bar{\nu}_{\ell}$
$\Omega_{bbb}^{-} \to \Xi_{bb}^{-} D^+ \ell^- \bar{\nu}_{\ell}$	$\Omega_{bbb}^{-} \to \Xi_{bc}^{0} \overline{B}^{0} \ell^{-} \bar{\nu}_{\ell}$		
$\Omega_{bbb}^{-}\to\Omega_{bb}^{-}J/\psi$		$\Omega_{bbb}^{-}\to \Xi_{bb}^0 K^- J/\psi$	
$\Omega_{bbb}^{-}\to \Xi_{b}^{0}B^{-}J/\psi$	000 0	$\Omega_{bbb}^{-} \to \Xi_{bb}^{-} \overline{K}^0 J/\psi$	$\Omega_{bbb}^{-} \to \Xi_{b}^{-} \overline{B}^{0} J/\psi$
$\Omega_{bbb}^{-}\to\Omega_{bbc}^{0}D_{s}^{-}$	$\Omega_{bbb}^{-} \to \Omega_{bbc}^{0} D^{-} \overline{K}^{0}$	$\Omega_{bbb}^{-}\to \Omega_{bbc}^{0}\overline{D}^{0}K^{-}$	
$\Omega_{bbb}^{-}\to\Omega_{bbc}^{0}\pi^{-}$	$\Omega_{bbb}^{-}\to \Omega_{bbc}^{0}K^{0}K^{-}$		
$\Omega_{bbb}^{-}\to \Xi_{bb}^{-}D^0$	$\Omega_{bbb}^{-}\to \Xi_{bb}^{-}D^{+}\pi^{-}$	$\Omega_{bbb}^{-}\to \Xi_{bb}^{-} D^0 \pi^0$	$\Omega_{bbb}^{-} \to \Omega_{bb}^{-} D^0 K^0$
$\Omega_{bbb}^{-}\to \Lambda_b^0 B^- D^0$	$\Omega_{bbb}^{-} \to \Sigma_{b}^{-} B^{-} D^{+}$	$\Omega_{bbb}^{-}\to \Xi_{b}^{-} \overline{B}_{s}^{0} D^{0}$	$\Omega_{bbb}^{-} \to \Xi_{b}^{\prime -} B^{-} D_{s}^{+}$
$\Omega_{bbb}^{-}\to \Xi_{bb}^{0} D^0 \pi^-$	$\Omega_{bbb}^{-} \to \Sigma_{b}^{-} \overline{B}^{0} D^{0}$	$\Omega_{bbb}^{-}\to\Omega_{bb}^{-}D_{s}^{+}\pi^{-}$	$\Omega_{bbb}^{-}\to \Xi_{b}^{\prime-} \overline{B}_{s}^{0} D^{0}$
$\Omega_{bbb}^{-}\to \Xi_b^- B^- D_s^+$	$\Omega_{bbb}^{-} \to \Xi_{bb}^{-} D_s^+ K^-$	$\Omega_{bbb}^{-}\to \Sigma_{b}^{0}B^{-}D^{0}$	

For nonleptonic decays of Ω_{bbb}^{-} , the largest branching fraction might reach 10^{-3} . Taking into account its daughter decays, we expect the branching fraction for Ω_{bbb}^{-} decaying into charmless final state is at most 10^{-9} . Thus the triply bottom baryon can be only observed with a large amount of data in future, such as the high luminosity LHC.

Summary

Summary

- On experimental side, light hadrons with no heavy quark, singly heavy baryons, and doubly heavy baryons have been established, but triply heavy baryons are still missing.
- In this work we study semileptonic and nonleptonic weak decays of triply heavy baryons Ω_{ccc}^{++} Ω_{ccb}^{+} Ω_{cbb}^{0} Ω_{bbb}^{-} by using SU(3) flavor symmetry.
- We point out that branching fractions for Cabibbo allowed processes showed below may reach a few percents,

$$\Omega_{ccc}^{++} \to (\Xi_{cc}^{++}\overline{K}^0, \Xi_{cc}^{++}K^-\pi^+, \Omega_{cc}^+\pi^+, \Xi_c^+D^+, \Xi_c'D^+, \Lambda_c D^+\overline{K}^0, \Xi_c^+D^0\pi^+, \Xi_c^0D^+\pi^+)$$

➤We suggest our experimental colleagues to perform a search at hadron colliders and the electron and positron collisions in future, which will presumably lead to discoveries of triply heavy baryons and complete the baryon multiplets.

Thank you !

