Exact Solution of the Instantaneous Bethe-Salpeter Equation for 1⁺ States

> Guo-Li Wang Harbin Institute of Technology

In collaboration with

Qiang Li, Tianhong Wang, Yue Jiang, Chao-Hsi Chang

arXiv: 1802.06351

Outline

- Motivation
- Relativistic potential model
- Introduction to intantaneous Behte– Salpeter equation
- Mixing angles, mass spectra and inversion, decay constants
- Summary

Motivation

- Many new states are found recently, including the P-wave 1⁺ states
- Excited state has larger relativistic correction than ground state
- Mixing angle of 1⁺ states has large uncertainty

${}^{1}P_{1}$ and ${}^{3}P_{1}$ and $\frac{1}{2}^{+}$ and $\frac{3}{2}^{+}$ states

- In a heavy-light axial vector, the heavy quark spin decouple, the angular momentum of light quark is a good quantum number $\vec{j}_{\ell} = \vec{L} + \vec{S}_q$ (j_q=1/2 or 3/2, when L=1).
- So, in j-j coupling, L=1, there are two doublets (wide and narrow) in Heavy Quark Effective Theory (HQET) :

$$j_q^P = \frac{1}{2}^+ S$$
 doublet $(0^+, 1^+)$
 $j_q^P = \frac{3}{2}^+ T$ doublet $(1^+, 2^+)$

There are two 1⁺ states.

Mixing angle

- S-L couping states (relativistic model), ¹P₁ and ³P₁ no longer the physical states, but their mixing.
- We define the rotation matrix :

$$R(\alpha) \equiv \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

• The relation between HQET states and ${}^{1}P_{1}$, ${}^{3}P_{1}$ states $\begin{bmatrix} |1,3/2\rangle \\ |1,1/2\rangle \end{bmatrix} = R(\theta_{H}) \begin{bmatrix} |^{1}P_{1}\rangle \\ |^{3}P_{1}\rangle \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{bmatrix} \begin{bmatrix} |^{1}P_{1}\rangle \\ |^{3}P_{1}\rangle \end{bmatrix}$

where the mixing angle $\theta_H = \arctan \sqrt{1/2} = 35.3^{\circ}$ * Note: Somebody said there are two equivalent mixing angle, the other is -54.7, is this exactly correct?

Exist results from relativistic potential model

Mass spectra

Th	D1	Ex	Th	Ds1	Ex
2469 2426	$D_1(2430)$ $D_1(2420)$	$2427(40) \\ 2423.4(3.1)$	$\begin{array}{c} 2574 \\ 2536 \end{array}$	$D_{s1}(2460)$ $D_{s1}(2536)$	$2459.6(6) \\ 2535.35(60)$
	B1			Bs1	
$5774 \\ 5723$	$B_1(5721)$	5723.4(2.0)	$5865 \\ 5831$	$B_{sJ}^{*}(5850)$ $B_{s1}(5830)$	5853(15)? 5829.4(7)

D. Ebert et al, Eur. Phys. J. C66 (2010) 197

Exist results from relativistic model

Mixing angle
 D. Ebert et al, Eur. Phys. J. C66 (2010) 197

State	D	D_s	В	B_s
1P	35.5	34.5	35.0	36.0
2P	37.5	37.6	37.3	34.0

- Close to 35.3, ideal state in HQET? but the mass difference between c and s (Ds1) is not very large?
- Mixing angle can be calculated from the spin-orbit interaction etc between quarks, see for example: J. L. Rosner, Comm. Nucl. Part. Phys. 15 (1986) 109

Exist results from relativistic potential model

	sū	сū	c s	bū	bs	bīc
State	(<i>K</i>)	(<i>D</i>)	(\boldsymbol{D}_s)	(B)	(\boldsymbol{B}_s)	(\boldsymbol{B}_c)
${}^{3}P_{2}$	1.43	2.50	2.59	5.80	5.88	6.77
$Q_{\rm high}$	1.37	2.47	2.56	5.78	5.86	6.75
$Q_{\rm low}$	1.35	2.46	2.55	5.78	5.86	6.74
${}^{3}P_{0}$	1.24	2.40	2.48	5.76	5.83	6.71
${}^{3}S_{1}$	0.90	2.04	2.13	5.37	5.45	6.34
${}^{1}S_{0}$	0.47	1.88	1.98	5.31	5.39	6.27
${}^{3}P_{1}$	1.37	2.47	2.55	5.78	5.86	6.74
1 p	1.35	2.46	2.55	5.78	5.86	0./3
θ	— 5°	-26°	-38°	-31°	-40°	68°

S. Godfrey, R. Kokoshi, PRD 43 (1991) 1679

- Much difference
- Bc1 has a negative angle?

Exist results from relativistic model

S. Godfrey, K. Moats, PRD 93 (2015) 034035

State		$c\bar{q}$		$c\overline{s}$	
	Mass	eta_{eff}	Mass	β_{eff}	
$1P_1$	2456	0.475, 0.482	2549	0.498	, 0.505
$1P'_{1}$	2467	0.475, 0.482	2556	0.498	0.505
$1^{3}P_{0}$	2399	0.516	2484	0.542	
$ heta_{1P}$	-25.68°		-37.48°		

• The angle of Ds1 close to the HQET result, not D1.

Exist results from relativistic model

S. Godfrey, et al, PRD 94 (2016) 054025

		GI $b\bar{q}$		GI $b\bar{s}$	A	ARM $b\bar{q}$	A	ARM $b\bar{s}$
State	Mass	eta_{eff}	Mass	eta_{eff}	Mass	eta_{eff}	Mass	eta_{eff}
$1^{3}S_{1}$	5371	0.542	5450	0.595	5316	0.586	5400	0.616
$1^{1}S_{0}$	5312	0.580	5394	0.636	5275	0.628	5366	0.651
$1^{3}P_{2}$	5797	0.472	5876	0.504	5754	0.465	5836	0.487
$1P_1$	5777	0.499, 0.511	5857	0.528,0.538	5738	0.481,0.492	5822	0.500,0.507
$1P_1'$	5784		5861		5753		5830	
$1^{3}P_{0}$	5756	0.536	5831	0.563	5720	0.525	5805	0.531
$ heta_{1P}$	30.28°)	39.12	0	43.6°		37.9°	

Problems of mixing angle

- If the angles 35.3 and -54.7 are equivalent?
- The existing angles are confused, some are positive, others negative, with large range.
- Thus mixing angle is always treated as a free parameter in production or decay process.

Mass problem

broad statenarrow stateK1(1400) heavyK1(1270) lightD1(2430) heavyD1(2420) lightDs1(2460) lightDs1(2536) heavy

- Only narrow B1、Bs1 have been found.
- Low masses of Ds0(2317) and Ds1(2460) : coupledchannel-effect theory can answer this queation.
- Is there other possible effect to make the mass inverse between Ds1(2460) and Ds1(2536)?

Possible mass inversion

• 1978年, Howard J. Schnitzer, PLB 20 (1978) 461

INVERTED CHARMED MESON MULTIPLETS AS A

TEST FOR SCALAR CONFINEMENT

by

Howard J. Schnitzer[†]

which implies that the spin-orbit force receives most of its contribution from the scalar interaction, which is therefore opposite in sign to the spin-orbit force observed in the self-conjugate mesons. The signal of such an effect would be inverted multiplets for the charmed D and F mesons. As we shall show,

Relativistic potential model

- Relativistic Potential between a electron and positron
- Electron and muon exchange a photon

$$M_{fi} = e^{2}(\bar{u}_{1}'\gamma^{\mu}u_{1})D_{\mu\nu}(q)(\bar{u}_{2}'\gamma^{\nu}u_{2}),$$
$$q = p_{1}' - p_{1} = p_{2} - p_{2}';$$

V.B.Berestetskii, E.M. Lifshitz and L.P. Pitaevskii "Quantum Electrodynamics"

Coulomb gauge

• The coulomb gauge is chosen

$$D_{00} = -\frac{4\pi}{q^2}, \qquad D_{0i} = 0, \qquad D_{ik} = \frac{4\pi}{q^2 - \omega^2/c^2 - i0} \left(\delta_{ik} - \frac{q_i q_k}{q^2}\right).$$

• Scattering amplitude:

 $M_{fi} = e^{2} \{ (\bar{u}_{1}'\gamma^{0}u_{1})(\bar{u}_{2}'\gamma^{0}u_{2})D_{00} + (\bar{u}_{1}'\gamma^{i}u_{1})(\bar{u}_{2}'\gamma^{k}u_{2})D_{ik} \}$

- Free spinor: $u = \sqrt{(2m)} \begin{pmatrix} (1 \mathbf{p}^2/8m^2c^2)w \\ (\mathbf{\sigma} \cdot \mathbf{p}/2mc)w \end{pmatrix}$
- First term, expanded

$$\bar{u}_{1}'\gamma^{0}u_{1} = u_{1}'^{*}u_{1} \qquad \text{with } \mathbf{q} = \mathbf{p}_{1}' - \mathbf{p}_{1} = \mathbf{p}_{2} - \mathbf{p}_{2}' \\
= 2m_{1}\left(1 - \frac{\mathbf{p}_{1}'^{2} + \mathbf{p}_{1}^{2}}{8m_{1}^{2}c^{2}}\right)w_{1}'^{*}w_{1} + \frac{1}{2m_{1}c^{2}}w_{1}'^{*}(\boldsymbol{\sigma} \cdot \mathbf{p}_{1}')(\boldsymbol{\sigma} \cdot \mathbf{p}_{1})w_{1} \\
= 2m_{1}w_{1}'^{*}\left\{1 - \frac{\mathbf{q}^{2}}{8m_{1}^{2}c^{2}} + \frac{i\,\boldsymbol{\sigma} \cdot \mathbf{q} \times \mathbf{p}_{1}}{4m_{1}^{2}c^{2}}\right\}w_{1},$$

• Second term

$$\bar{u}_1' \gamma u_1 = u_1'^* \alpha u_1$$

= $(1/c) w_1'^* \{ \boldsymbol{\sigma} (\boldsymbol{\sigma} \cdot \mathbf{p}_1) + (\boldsymbol{\sigma} \cdot \mathbf{p}_1') \boldsymbol{\sigma} \} w_1$
= $(1/c) w_1'^* \{ i \boldsymbol{\sigma} \times \mathbf{q} + 2\mathbf{p}_1 + \mathbf{q} \} w_1,$

• Define potential U:

$$M_{fi} = -2m_1 \cdot 2m_2(w_1'^* w_2'^* U(\mathbf{p}_1, \mathbf{p}_2, \mathbf{q}) w_1 w_2)$$

• potential between electron-muon in momentum space

$$U(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{q}) = 4\pi e^{2} \left\{ \frac{1}{\mathbf{q}^{2}} - \frac{1}{8m_{1}^{2}c^{2}} - \frac{1}{8m_{2}^{2}c^{2}} + \frac{(\mathbf{q} \cdot \mathbf{p}_{1})(\mathbf{q} \cdot \mathbf{p}_{2})}{m_{1}m_{2}\mathbf{q}^{4}} - \frac{\mathbf{p}_{1} \cdot \mathbf{p}_{2}}{m_{1}m_{2}\mathbf{q}^{2}} + \frac{i\sigma_{1} \cdot \mathbf{q} \times \mathbf{p}_{1}}{4m_{1}^{2}c^{2}\mathbf{q}^{2}} - \frac{i\sigma_{1} \cdot \mathbf{q} \times \mathbf{p}_{2}}{2m_{1}m_{2}c^{2}\mathbf{q}^{2}} - \frac{i\sigma_{2} \cdot \mathbf{q} \times \mathbf{p}_{2}}{4m_{2}^{2}c^{2}\mathbf{q}^{2}} + \frac{i\sigma_{2} \cdot \mathbf{q} \times \mathbf{p}_{1}}{4m_{1}m_{2}c^{2}\mathbf{q}^{2}} - \frac{\sigma_{1} \cdot \sigma_{2}}{4m_{1}m_{2}c^{2}\mathbf{q}^{2}} + \frac{i\sigma_{2} \cdot \mathbf{q} \times \mathbf{p}_{2}}{4m_{1}m_{2}c^{2}\mathbf{q}^{2}} + \frac{i\sigma_{2} \cdot \mathbf{q} \times \mathbf{p}_{1}}{4m_{1}m_{2}c^{2}\mathbf{q}^{2}} - \frac{\sigma_{1} \cdot \sigma_{2}}{4m_{1}m_{2}c^{2}\mathbf{q}^{2}} \right\};$$

Potential between electron and positron $\hat{H} = \frac{\hat{\mathbf{p}}^2}{m} - \frac{e^2}{r} + \hat{V}_1 + \hat{V}_2 + \hat{V}_3,$ $\hat{\mathbf{V}}_{1} = -\frac{\hat{\mathbf{p}}^{4}}{4m^{3}c^{2}} + 4\pi\mu_{0}^{2}\delta(\mathbf{r}) - \frac{e^{2}}{2m^{2}c^{2}r}\left\{\hat{\mathbf{p}}^{2} + \frac{\mathbf{r}\cdot(\mathbf{r}\cdot\hat{\mathbf{p}})\hat{\mathbf{p}}}{r^{2}}\right\},$ $\hat{V}_2 = 6\mu_0^2 \frac{1}{r^3} \hat{\mathbf{l}} \cdot \hat{\mathbf{S}},$ $\hat{\mathbf{V}}_{3} = 6\mu_{0}^{2} \frac{1}{r^{3}} \left\{ \frac{(\hat{\mathbf{S}} \cdot \mathbf{r})(\mathbf{S} \cdot \mathbf{r})}{r^{2}} - \frac{1}{3}\hat{\mathbf{S}}^{2} \right\} + 4\pi\mu_{0}^{2}(\frac{7}{3}\hat{\mathbf{S}}^{2} - 2)\,\delta(\mathbf{r}).$

- where $\hbar \hat{\mathbf{i}} = \mathbf{r} \times \hat{\mathbf{p}}$ $\hat{\mathbf{S}} = \frac{1}{2}(\boldsymbol{\sigma}_{+} + \boldsymbol{\sigma}_{-})$ $\hat{\mathbf{S}}^2 = \frac{1}{2}(3 + \boldsymbol{\sigma}_{+} \cdot \boldsymbol{\sigma}_{-})$
- V1: orbital term, V2: spin-orbit, V3: spin-spin V.B.Berestetskii,E.M. Lifshitz and L.P. Pitaevskii "Quantum Electrodynamics"

Potential between quarks

- D. Ebert, et al, PRD 79 (2009) 114029
- Schordinger equation:

$$\left(\frac{b^2(M)}{2\mu_R} - \frac{\mathbf{p}^2}{2\mu_R}\right)\Psi_M(\mathbf{p}) = \int \frac{d^3q}{(2\pi)^3} V(\mathbf{p}, \mathbf{q}; M)\Psi_M(\mathbf{q})$$

potential

$$V(\mathbf{p},\mathbf{q};M) = \bar{u}_1(p)\bar{u}_2(-p)\mathcal{V}(\mathbf{p},\mathbf{q};M)u_1(q)u_2(-q),$$

$$\mathcal{V}(\mathbf{p},\mathbf{q};M) = \frac{4}{3}\alpha_s D_{\mu\nu}(\mathbf{k})\gamma_1^{\mu}\gamma_2^{\nu} + V_{\text{conf}}^V(\mathbf{k})\Gamma_1^{\mu}\Gamma_{2;\mu} + V_{\text{conf}}^S(\mathbf{k})$$

Coulomb gauge

$$D^{00}(\mathbf{k}) = -\frac{4\pi}{\mathbf{k}^2}, \quad D^{ij}(\mathbf{k}) = -\frac{4\pi}{k^2} \left(\delta^{ij} - \frac{k^i k^j}{\mathbf{k}^2}\right), \quad D^{0i} = D^{i0} = 0$$

Potential between quarks

• Dirac spinor

$$u^{\lambda}(p) = \sqrt{\frac{\epsilon(p) + m}{2\epsilon(p)}} \left(\frac{1}{\sigma \mathbf{p}} \frac{\sigma \mathbf{p}}{\epsilon(p) + m}\right) \chi^{\lambda}$$

$$V(r) = V_{\mathrm{SI}}(r) + V_{\mathrm{SD}}(r)$$

$$V_{\mathrm{SD}}(r) = a_{1} \mathbf{L} \mathbf{S}_{1} + a_{2} \mathbf{L} \mathbf{S}_{2} + b \left[-\mathbf{S}_{1} \mathbf{S}_{2} + \frac{3}{r^{2}} (\mathbf{S}_{1} \mathbf{r}) (\mathbf{S}_{2} \mathbf{r})\right] + c \mathbf{S}_{1} \mathbf{S}_{2} + d (\mathbf{L} \mathbf{S}_{1}) (\mathbf{L} \mathbf{S}_{2})$$

- Note: relativistic potential, non-relativistic wave function, good to study mass spectra, but not good for production and decay.
- Our method with no expansion, the relativistic effect is kept to all orders, we provide more precise results.
- Further, relativistic wave function from a relativistic dynamic equation is suitable to calculate decays and productions, etc.

Introduction to instantaneous Bethe-Salpeter Eequation

• Bethe-Salpeter (BS) equation:

$$(\not p_1 - m_2)\chi(q)(\not p_2 + m_2) = i \int \frac{d^4k}{(2\pi)^4} V(P, k, q)\chi(k)$$

This is relativistic dynamic equation.

• Meson momentum P and relative momentum q:

$$p_1 = \alpha_1 P + q, \quad \alpha_1 = \frac{m_1}{m_1 + m_2}$$

 $p_2 = \alpha_2 P - q, \quad \alpha_2 = \frac{m_2}{m_1 + m_2}$

E.E.Salpeter and H.A.Bethe, Phys. Rev. 84 (1951)1232.

- There is the **difficulty** about the kernel of BS Eq, it is a time-inspired interaction?
- Reduced version is needed, after instantaneous approximation first made by Salpeter, the BS equation become to the Salpeter equation
- We define :

$$\begin{split} q^{\mu} &= q^{\mu}_{\parallel} + q^{\mu}_{\perp} \;, \\ q_{P} &= \frac{(P \cdot q)}{M} \;, \quad q_{T} = \sqrt{q_{P}^{2} - q^{2}} = \sqrt{-q_{\perp}^{2}} \;. \end{split}$$

where

$$q^{\mu}_{\parallel} \equiv (P \cdot q/M^2) P^{\mu} , \quad q^{\mu}_{\perp} \equiv q^{\mu} - q^{\mu}_{\parallel} .$$

In the center of mass system, they turn to q_0 and $|\vec{q}|$

Salpeter Eequation

• The reduced Bethe-Salpeter wave function:

$$\varphi_P(q_{\perp}^{\mu}) \equiv i \int \frac{dq_P}{2\pi} \chi(q_{\parallel}^{\mu}, q_{\perp}^{\mu}) ,$$

$$\eta(q_{\perp}^{\mu}) \equiv \int \frac{k_T^2 dk_T ds}{(2\pi)^2} V(k_{\perp}, q_{\perp}, s) \varphi_p(k_{\perp}^{\mu}) \, ds$$

and the useful notations

$$\omega_{i} = \sqrt{m_{i}^{2} + q_{T}^{2}}, \quad \Lambda_{i}^{\pm}(q_{\perp}) = \frac{1}{2\omega_{i}} \left[\frac{\mathcal{P}}{M} \omega_{i} \pm J(i)(m_{i} + \not{q}_{\perp}) \right]$$
$$\varphi_{P}^{\pm\pm}(q_{\perp}) \equiv \Lambda_{1}^{\pm}(q_{\perp}) \frac{\mathcal{P}}{M} \varphi_{P}(q_{\perp}) \frac{\mathcal{P}}{M} \Lambda_{2}^{\pm}(q_{\perp})$$

E.E.Salpeter, PRD 87 (1952) 328.

Salpeter wave function include four parts $\varphi_P(q_{\perp}) = \varphi_P^{++}(q_{\perp}) + \varphi_P^{+-}(q_{\perp}) + \varphi_P^{-+}(q_{\perp}) + \varphi_P^{--}(q_{\perp})$ And the Salpter equation can be written as:

$$\varphi_P(q_\perp) = \frac{\Lambda_1^+(q_\perp)\eta_P(q_\perp)\Lambda_2^+(q_\perp)}{(M-\omega_1-\omega_2)} - \frac{\Lambda_1^-(q_\perp)\eta_P(q_\perp)\Lambda_2^-(q_\perp)}{(M+\omega_1+\omega_2)} ,$$

Salpeter equation (positive and negative energy wave function)

$$(M - \omega_1 - \omega_2)\varphi_P^{++}(q_\perp) = \Lambda_1^+(q_\perp)\eta_P(q_\perp)\Lambda_2^+(q_\perp) ,$$

$$(M + \omega_1 + \omega_2)\varphi_P^{--}(q_\perp) = -\Lambda_1^-(q_\perp)\eta_P(q_\perp)\Lambda_2^-(q_\perp) ,$$

$$\varphi_P^{+-}(q_\perp) = \varphi_P^{-+}(q_\perp) = 0 \; .$$

E.E.Salpeter, PRD 87 (1952) 328.

Wave function and mixing angle

• The general wave function for 1^+ state is:

$$\begin{aligned} \varphi(1^{+}) &= \frac{q_{\perp} \cdot \xi}{|\vec{q}\,|} \left(f_1 + f_2 \frac{\not\!\!\!P}{M} + f_3 \frac{\not\!\!\!Q_{\perp}}{|\vec{q}\,|} + f_4 \frac{\not\!\!\!P}{M|\vec{q}\,|} \right) \gamma^5 \\ &+ i \frac{\epsilon_{\mu P q_{\perp} \xi}}{M|\vec{q}\,|} \gamma^{\mu} \left(h_1 + h_2 \frac{\not\!\!\!P}{M} + h_3 \frac{\not\!\!\!Q_{\perp}}{|\vec{q}\,|} + h_4 \frac{\not\!\!\!P}{M|\vec{q}\,|} \right) \end{aligned}$$

where, f1, f2, f3, f4 have number of $J^{PC} = 1^{+-}({}^{1}P_{1})$ while h1, h2, h3, h4 are $J^{PC} = 1^{++}({}^{3}P_{1})$

• Then, mixing angle can be defined as: $\varphi(1^+) = \cos \theta_{nP} \varphi({}^1P_1) + \sin \theta_{nP} \varphi({}^3P_1)$

Mixing angle

• 8 wave functions are not all independent

 $f_3 = -c_-f_1$, $f_4 = -c_+f_2$, $h_3 = c_-h_1$, $h_4 = c_+h_2$

with

$$\omega_i = \sqrt{m_i^2 + \vec{q}^2}, i = 1, 2; c_{\pm} = \frac{|\vec{q}|(\omega_1 \pm \omega_2)}{m_1 \omega_2 + m_2 \omega_1}$$

• Normalization condition

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{A(\omega)}{3M} (f_1 f_2 - 2h_1 h_2) = 1 \qquad A(\omega) = \frac{8\omega_1 \omega_2}{(m_1 \omega_2 + m_2 \omega_1)}$$

• So mixing angle $\cos^2 \theta_{nP} = \int \frac{d\vec{q}}{(2\pi)^3} \frac{A(\omega)}{3M} f_1 f_2,$ $\sin^2 \theta_{nP} = \int \frac{d\vec{q}}{(2\pi)^3} \frac{A(\omega)}{3M} (-2h_1h_2)$

Decay constant

• Definition of decay constant

 $f_{1^+}M\xi^\mu\equiv\langle 0|\bar{q}_1\Gamma^\mu q_2|M,\xi\rangle$

• In this method

$$\langle 0|\bar{q}_1\Gamma^{\mu}q_2|M,\xi\rangle = -\sqrt{N_c} \int \frac{\mathrm{d}^3 q_{\perp}}{(2\pi)^3} \mathrm{Tr}[\varphi(q_{\perp})\Gamma^{\mu}]$$
$$= \frac{4\sqrt{N_c}}{3}\xi^{\mu} \int \frac{\mathrm{d}^3 q_{\perp}}{(2\pi)^3} (f_3 + 2h_4)$$

So

$$f_{1^+} = \frac{4\sqrt{N_c}}{3M} \int \frac{\mathrm{d}^3 \vec{q}}{(2\pi)^3} (f_3 + 2h_4)$$

Potential

• Cornell potential (Coulomb term plus linear one)

$$V(r) = V_s(r) + V_0 + \gamma_0 \otimes \gamma^0 V_v(r)$$

= $\frac{\lambda}{\mu} (1 - e^{-\mu r}) + V_0 - \gamma_0 \otimes \gamma^0 \frac{4}{3} \frac{\alpha_s}{r} e^{-\sigma r}$

• We don't need a "relativistic" potential, because the "relativitic corrections" are already included in the wave function, otherwise "double counting" happens.

Numerical results

• Choice of parameters

 $\sigma = 0.060 \text{ GeV}, \lambda = 0.125 \text{ GeV}^2, \Lambda_{\text{QCD}} = 0.252 \text{ GeV}, \mu = 0.040 \text{ GeV}$ $m_{\mu} = 0.305 \text{ GeV}, m_d = 0.311 \text{ GeV}, m_s = 0.5 \text{ GeV}, m_c = 1.72 \text{ GeV}, m_b = 4.96 \text{ GeV}$

 $V_0 = -0.1$ GeV for $c\bar{q}$ (q = u, d, s), -0.41 GeV for $b\bar{u}(\bar{d})$, -0.18 GeV for $b\bar{s}$, and -0.05 GeV for $b\bar{c}$.

- To see the difference clearly, we choose same parameter V0 for light quarks, if we
- First I show you if we choose different V0, we can give good consistence mass spectra.

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline c\bar{c} & b\bar{b} \\\hline \mathbf{n}J^{PC} = \mathbf{n} \ 0^{-+}({}^{1}S_{0}) & -0.314 & -0.240 \\\hline \mathbf{n}J^{PC} = \mathbf{n} \ 1^{--}({}^{3}S_{1}) & -0.176 & -0.166 \\\hline \mathbf{n}J^{PC} = \mathbf{n} \ 0^{++}({}^{3}P_{0}) & -0.282 & -0.174 \\\hline \mathbf{n}J^{PC} = \mathbf{n} \ 1^{++}({}^{3}P_{1}) & -0.162 & -0.141 \\\hline \mathbf{n}J^{PC} = \mathbf{n} \ 2^{++}({}^{3}P_{2}) & -0.110 & -0.121 \\\hline \mathbf{n}J^{PC} = \mathbf{n} \ 1^{+-}({}^{1}P_{1}) & -0.144 & -0.135 \\\hline \end{array}$$

Wave Fuctions

• The relativistic wave function for a pseudoscalar meson $0^{-}(0^{-+})$

$$\varphi_{{}^{1}S_{0}}(\vec{q}) = M \left[\gamma_{0}\varphi_{1}(\vec{q}) + \varphi_{2}(\vec{q}) + \frac{\not{\!\!\!\!/}_{\perp}}{M}\varphi_{3}(\vec{q}) + \frac{\gamma_{0}\not{\!\!\!\!/}_{\perp}}{M}\varphi_{4}(\vec{q}) \right] \gamma_{5}$$

• Wave function for $0^+(0^{++})$ meson

$$\varphi_{0+}(q_{\perp}) = f_1(q_{\perp}) \not q + f_2(q_{\perp}) \frac{\not P \not q_{\perp}}{M} + f_3(q_{\perp}) M + f_4(q_{\perp}) \not P$$

• Wave function for ${}^{3}S_{1}$ 1⁻(1⁻⁻) vector meson

$$\begin{split} \varphi_{1-}^{\lambda}(q_{\perp}) &= q_{\perp} \cdot \epsilon_{\perp}^{\lambda} \left[f_1(q_{\perp}) + \frac{\mathcal{P}}{M} f_2(q_{\perp}) + \frac{\not{q}_{\perp}}{M} f_3(q_{\perp}) + \frac{\mathcal{P}}{M^2} f_4(q_{\perp}) \right] + M \not{e}_{\perp}^{\lambda} f_5(q_{\perp}) \\ &+ \not{e}_{\perp}^{\lambda} \mathcal{P} f_6(q_{\perp}) + (\not{q}_{\perp} \not{e}_{\perp}^{\lambda} - q_{\perp} \cdot \epsilon_{\perp}^{\lambda}) f_7(q_{\perp}) + \frac{1}{M} (\mathcal{P} \not{e}_{\perp}^{\lambda} \not{q}_{\perp} - \mathcal{P} q_{\perp} \cdot \epsilon_{\perp}^{\lambda}) f_8(q_{\perp}), \end{split}$$

• Wave function for $2^+(2^{++})$ meson

$$\Psi_{2^{+}}(\vec{q}) = \varepsilon_{\mu\nu}q_{\perp}^{\nu}\left\{q_{\perp}^{\mu}\left[f_{1}(\vec{q}) + \frac{\mathcal{P}}{M}f_{2}(\vec{q}) + \frac{\not{q}_{\perp}}{M}f_{3}(\vec{q}) + \frac{\mathcal{P}\not{q}_{\perp}}{M^{2}}f_{4}(\vec{q})\right] + \gamma^{\mu}\left[Mf_{5}(\vec{q}) + \mathcal{P}f_{6}(\vec{q}) + \not{q}_{\perp}f_{7}(\vec{q})\right] + \frac{i}{M}f_{8}(\vec{q})\epsilon^{\mu\alpha\beta\gamma}P_{\alpha}q_{\perp\beta}\gamma_{\gamma}\gamma_{5}\right\},$$

$\mathbf{n} \ J^{PC}(^{(2S+1)}L_J)$	$\mathrm{Th}(c\bar{c})$	$\operatorname{Ex}(c\overline{c})$	$\mathrm{Th}(bar{b})$	$\operatorname{Ex}(b\overline{b})$
1 $0^{-+}({}^{1}S_{0})$	2980.3(input)	2980.3	9390.2(input)	9388.9
2 $0^{-+}({}^{1}S_{0})$	3576.4	3637	9950.0	
3 $0^{-+}({}^{1}S_{0})$	3948.8		10311.4	
1 $1^{}({}^{3}S_{1})$	3096.9(input)	3096.916	9460.5(input)	9460.30
2 $1^{}({}^{3}S_{1})$	3688.1	3686.09	10023.1	10023.26
3 $1^{}({}^{3}D_{1})$	3778.9	3772.92	10129.5	
4 $1^{}({}^{3}S_{1})$	4056.8	4039	10368.9	10355.2
5 $1^{}({}^{3}D_{1})$	4110.7	4153	10434.7	
6 $1^{}({}^{3}S_{1})$	4329.4	4421	10635.8	10579.4
7 $1^{}({}^{3}S_{1})$	4545.9		10852.1	10865

$\mathbf{n} \ J^{PC}(^{2S+1)}L_J$	$\mathrm{Th}(car{c})$	$\operatorname{Ex}(c\bar{c})$	$\mathrm{Th}(bar{b})$	$\operatorname{Ex}(b\overline{b})$
1 $0^{++}({}^{3}P_{0})$	3414.7(input)	3414.75	9859.0	9859.44
2 $0^{++}({}^{3}P_{0})$	3836.8		10240.6	10232.5
3 $0^{++}({}^{3}P_{0})$	4140.1		10524.7	
1 $1^{++}({}^{3}P_{1})$	3510.3(input)	3510.66	9892.2	9892.78
2 $1^{++}({}^{3}P_{1})$	3928.7		10272.7	10255.46
3 $1^{++}({}^{3}P_{1})$	4228.8		10556.2	

$\mathbf{n} \ J^{PC}(^{2S+1)}L_J$	$\operatorname{Th}(c\overline{c})$	$\operatorname{Ex}(c\bar{c})$	$\mathrm{Th}(b\bar{b})$	$\operatorname{Ex}(b\overline{b})$
1 $2^{++}({}^{3}P_{2})$	3556.1(input)	3556.20	9914.4	9912.21
2 $2^{++}({}^{3}P_{2})$	3972.4		10293.6	10268.65
3 $2^{++}({}^{3}F_{2})$	4037.9		10374.4	
4 $2^{++}({}^{3}P_{2})$	4271.0		10561.5	
1 $1^{+-}(^{1}P_{1})$	3526.0(input)	3525.93	9900.2	
2 $1^{+-}({}^{1}P_{1})$	3943.0		10280.4	
3 $1^{+-}({}^{1}P_{1})$	4242.4		10562.0	

	Th	Ex		Th	Ex
$D^{-}(1S)$	1869.4	1869.6 ± 0.16	$\bar{D}^0(1S)$	1865.0	$1864.83 {\pm} 0.14$
$D^{-}(2S)$	2560 ± 110		$\bar{D}^0(2S)$	2550 ± 109	$2539.4 \pm 4.5 \pm 6.8$
M(2S) - M(1S)	691 ± 110		M(2S) - M(1S)	685 ± 109	$674.6 \pm 4.5 \pm 6.8$
$B^0(1S)$	5279.5	$5279.5 {\pm} 0.3$	$D_s^-(1S)$	1968.2	$1968.47 {\pm} 0.33$
$B^0(2S)$	5930 ± 279		$D_s^-(2S)$	2641 ± 123	
M(2S) - M(1S)	651 ± 279		M(2S) - M(1S)	673 ± 123	
$B^+(1S)$	5279.0	5279.17 ± 0.29	$B_s^0(1S)$	5367.9	$5366.3 {\pm} 0.6$
$B^+(2S)$	5930 ± 280		$B_s^0(2S)$	6020 ± 281	
M(2S) - M(1S)	651 ± 280		M(2S) - M(1S)	652 ± 281	

Notation

- Rotation matrix $R(\alpha) \equiv \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$
- Relation between HQET and ${}^{1}P_{1}$, ${}^{3}P_{1}$ states

$$\begin{bmatrix} |1,3/2\rangle \\ |1,1/2\rangle \end{bmatrix} = R(\theta_H) \begin{bmatrix} |^1P_1\rangle \\ |^3P_1\rangle \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} & 1\\ -1 & \sqrt{2} \end{bmatrix} \begin{bmatrix} |^1P_1\rangle \\ |^3P_1\rangle \end{bmatrix}$$

- Physics states $\begin{bmatrix} |nP_l\rangle \\ |nP_h\rangle \end{bmatrix} = R(\theta_{nP}) \begin{bmatrix} |n^1P_1\rangle \\ |n^3P_1\rangle \end{bmatrix} = R(\theta_{nH}) \begin{bmatrix} |3/2\rangle \\ |1/2\rangle \end{bmatrix}$
- In the limit of HQET,

 $\theta_{nP} = 35.3^{\circ} \text{ if } |\frac{3}{2}\rangle$ is the lower mass state $\theta_{nP} = \theta_H - 90 = -54.7^{\circ} \text{ if } |\frac{1}{2}\rangle$ is the lower mass one

Numerical results of 1⁺ wave functions Two sets of eigenvalues and wave functions

FIG. 1: Radial wave functions for 1^+ state $D_1^{(\prime)}$ mesons.

Mixing angles, mass spectra and inversion, decay constants

Table 1	1: $\theta_{nH} = \theta_r$	$_{nP} - 35.3$, wl	here θ_{nH} is u	nder basis -	$\left \frac{3}{2}\right\rangle$ and $\left \frac{1}{2}\right\rangle$,	while θ_{nP} is	
under	basis $ ^1\!P_1 angle$ a	nd $ ^{3}P_{1}\rangle$.			2		
Q ar q	$c ar{u}$	$c ar{d}$	$car{s}$	$b ar{u}$	$b ar{d}$	$bar{s}$	$bar{c}$
M_{1l}	2398_{+72}^{-72}	2405_{+72}^{-72}	2600^{-79}_{+79}	5710_{+177}^{-176}	5717^{-177}_{+177}	5810^{-179}_{+179}	6819^{-211}_{+211}
M_{1h}	2403_{+73}^{-73}	2409_{+74}^{-73}	2604_{+78}^{-78}	5724_{+175}^{-174}	5732_{+175}^{-175}	5826^{-177}_{+177}	6830^{-210}_{+210}
M_{2l}	2687^{-75}_{+75}	2695_{+75}^{-75}	2915_{+81}^{-81}	5998^{-177}_{+177}	6007^{-177}_{+177}	6122^{-180}_{+180}	7143_{+212}^{-212}
M_{2h}	2701_{+75}^{-75}	2709^{-75}_{+75}	2920_{+81}^{-81}	6006^{-177}_{+177}	6015_{+178}^{-178}	6123_{+179}^{-179}	7149_{+211}^{-212}
f_{1l}	$70.2^{-8.4}_{+53.6}$	$72.1_{+87.2}^{-9.4}$	$250.5_{+8.9}^{-8.6}$	$228.8^{-8.2}_{+8.3}$	$229.2_{+8.3}^{-8.2}$	$214.5_{+7.2}^{-7.2}$	$176.0_{+6.3}^{-6.2}$
f_{1h}	$247.1^{-22.0}_{+7.5}$	$246.7_{+7.7}^{-44.9}$	$48.3_{+7.4}^{-46.1}$	$21.8^{-1.9}_{+2.0}$	$22.1_{+2.1}^{-1.9}$	$25.7^{-2.0}_{+2.2}$	$43.9^{-2.5}_{+2.5}$
f_{2l}	$65.4_{+4.2}^{-4.1}$	$66.1_{+4.2}^{-4.2}$	$90.0^{-7.5}_{+11.8}$	$28.8^{-2.6}_{+3.1}$	$29.3_{+3.3}^{-2.6}$	$190.0^{-136.1}_{+6.3}$	$176.4_{+6.0}^{-6.0}$
f_{2h}	$198.1_{+5.5}^{-5.6}$	$198.5_{+5.5}^{-5.5}$	$202.2_{+5.7}^{-6.1}$	$181.1_{+6.4}^{-6.4}$	$181.7_{+6.4}^{-6.4}$	$5.9^{-4.2}_{+177.0}$	$45.1^{-2.4}_{+2.4}$
θ_{1P}	$36.7^{-1.5}_{+13.1}$	$37.0^{-1.7}_{+22.1}$	$-62.1^{-10.6}_{+1.8}$	$-55.3^{-0.2}_{+0.1}$	$-55.3_{\pm 0.1}^{-0.2}$	$-55.5^{-0.1}_{+0.1}$	$-57.9^{-0.4}_{+0.4}$
$ heta_{2P}$	$35.2^{-0.3}_{+0.4}$	$35.2^{-0.3}_{\pm 0.4}$	$38.0^{-1.7}_{+3.4}$	$35.9^{-0.3}_{+0.5}$	$36.0^{-0.3}_{+0.5}$	$-62.5^{-20.8}_{+140.4}$	$-58.7_{+0.4}^{-0.5}$
θ_{1H}	$1.4^{-1.5}_{+13.1}$	$1.7^{-1.7}_{+22.1}$	$82.4^{-10.6}_{+1.8}$	$89.4_{\pm 0.1}^{-0.2}$	$89.4_{\pm 0.1}^{-0.2}$	$89.2^{-0.1}_{+0.1}$	$86.8^{-0.4}_{+0.4}$
$ heta_{2H}$	$-0.1^{+0.3}_{+0.4}$	$-0.1^{-0.3}_{+0.4}$	$2.7_{+3.4}^{-1.7}$	$0.6_{\pm 0.5}^{-0.3}$	$0.7^{-0.3}_{+0.5}$	$82.2^{-20.8}_{+140.4}$	$86.0_{\pm 0.4}^{-0.5}$

Numerical results

	The exact solution include		
•	The exact solution menude	Qar q	$car{u}$
	two states	M_{1l}	2398_{+72}^{-72}
		M_{1h}	2403_{+73}^{-73}
		M_{2l}	2687^{-75}_{+75}
		M_{2h}	2701_{+75}^{-75}

- Broad state with large decay f_{1l} $70.2^{-8.4}_{+53.6}$ constant, narrow state with f_{1h} $247.1^{-22.0}_{+7.5}$ small one
- There are negative value of mixing angle

 θ_{1P} 36.7^{-1.5}_{+13.1} 37.0^{-1.7}_{+22.1} -62.1^{-10.6}_{+1.8}

Negative mixing angle means the mass inversion

• Keep the charm mass unchanged, vary the light quark mass

Mass inversion

• Bottom mass unchanged, varying the light quark mass

(a)Mixing angle versus m_q for $1P(b\bar{q})$.

Decay costant inversion

(b)Decay constant versus m_q for $1P(c\bar{q})$.

Decay costant inversion

(b)Decay constant versus m_q for $1P(b\bar{q})$.

Large range because of the peak structure

$Q \bar{q}$	$c \bar{u}$	$c ar{d}$	$c\bar{s}$	$bar{u}$	$b ar{d}$	$bar{s}$	$bar{c}$
θ_{1P}	$36.7^{-1.5}_{+13.1}$	$37.0^{-1.7}_{+22.1}$	$-62.1^{-10.6}_{+1.8}$	$-55.3^{-0.2}_{+0.1}$	$-55.3^{-0.2}_{+0.1}$	$-55.5^{-0.1}_{\pm 0.1}$	$-57.9^{+0.4}_{+0.4}$
θ_{2P}	$35.2_{\pm 0.4}^{-0.3}$	$35.2_{\pm 0.4}^{-0.3}$	$38.0_{+3.4}^{-1.7}$	$35.9_{+0.5}^{-0.3}$	$36.0_{+0.5}^{-0.3}$	$-62.5^{-20.8}_{+140.4}$	$-58.7_{+0.4}^{-0.5}$
$ heta_{1H}$	$1.4^{-1.5}_{+13.1}$	$1.7^{-1.7}_{+22.1}$	$82.4^{-10.6}_{+1.8}$	$89.4_{\pm 0.1}^{-0.2}$	$89.4_{\pm 0.1}^{-0.2}$	$89.2_{\pm 0.1}^{-0.1}$	$86.8_{\pm 0.4}^{-0.4}$
θ_{2H}	$-0.1^{-0.3}_{+0.4}$	$-0.1^{-0.3}_{+0.4}$	$2.7^{-1.7}_{+3.4}$	$0.6_{+0.5}^{-0.3}$	$0.7^{-0.3}_{+0.5}$	$82.2^{-20.8}_{+140.4}$	$86.0_{\pm 0.4}^{-0.5}$

- Varying the parameters (6%), large ranges are obtained.
- But except Bs1(2P) case, the relations are un-changed.

Mention

S. Godfrey, R. Kokoshi, PRD 43 (1991) 1679

	$s\overline{u}$	$c\overline{u}$	$C\overline{S}$	$b\overline{u}$	$b\overline{s}$	$b\overline{c}$
State	(<i>K</i>)	(<i>D</i>)	(\boldsymbol{D}_s)	(B)	(\boldsymbol{B}_s)	(\boldsymbol{B}_c)
${}^{3}P_{2}$	1.43	2.50	2.59	5.80	5.88	6.77
Q_{high}	1.37	2.47	2.56	5.78	5.86	6.75
$Q_{\rm low}$	1.35	2.46	2.55	5.78	5.86	6.74
${}^{3}P_{0}$	1.24	2.40	2.48	5.76	5.83	6.71
${}^{3}S_{1}$	0.90	2.04	2.13	5.37	5.45	6.34
${}^{1}S_{0}$	0.47	1.88	1.98	5.31	5.39	6.27
${}^{3}P_{1}$	1.37	2.47	2.55	5.78	5.86	6.74
¹ p	1.35	2.46	2.55	5.78	5.86	5./3
θ	— 5°	-26°	-38°	-31°	-40°	68°

• Mixing angle with large range come from the inverted effect.

• Bc1 has a negative mixing angle, means the mass inversion.

Summary

- Exact solution to the instantaneous BS equation for 1⁺ state, two physical states are obtained.
- Precise study show that there are the inverted mass phenomenon or mixing angle inversion, which result in large range of mixing angle.
- Mixing angles 35.3 and -54.7 are not equivalent, means different mass order of two 1⁺ states.
- The result show that the mass of Ds1(2460) is lower than Ds1(2536).
- The not found Bottom axial vectors are the lower mass broad states.

Thank you

