A novel method to compute Multi-loop Feynman integrals

Yan-Qing Ma

Peking University

Based on:

X. Liu, Y.Q. Ma, C. Y. Wang, Phys.Lett. B779 (2018) 353 X. Liu, Y.Q. Ma, arXiv:1801.10523

> 2nd Workshop on Heavy Quark Physics IHEP, Apr. 23th, 2018

Outline

I. Introduction

- **II. A series representation**
- **III. New reduction**
- **III. Analytical continuation**
- **IV. Summary**

Perturbative QFT

QFT: the underlying theory of modern physics
 Solving QFT:

 Nonperturbatively (lattice field theory): discretize spacetime, numerical simulation very hard, application limited

 Perturbatively (Feynman diagram expansion): generate and calculate Feynman integrals, relatively easier, the primary method

Super computer

IHEP, Apr. 23th, 2018

Calculation of Feynman loop integrals

> Main task in applying perturbative QFT

$$I(D; \{\nu_{\alpha}\}; \eta) \equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \prod_{\alpha=1}^{N} \frac{1}{(q_{\alpha}^{2} - m_{\alpha}^{2} + \mathrm{i}\eta)^{\nu_{\alpha}}} \qquad \eta = 0^{+}$$
Causality

- Test of the standard model
- Discovery of new physics

IHEP, Apr. 23th, 2018

Multi-loop: a challenge to intelligence

One-loop calculation: (up to 4 legs) satisfactory approaches existed as early as 1970s

't Hooft, Veltman, NPB (1979) Passarino, Veltman, NPB (1979) Oldenborgh, Vermaseren (1990)

Developments of unitarity-based method in the past decade made the

calculation efficient for multi-leg problems

Britto, Cachazo, Feng, 0412103 Ossola, Papadopoulos, Pittau, 0609007 Giele, Kunszt, Melnikov, 0801.2237

> About 40 years later, a satisfactory approach for multi-loop calculation is still missing

Main strategy

1) Reduce any loop integral to master integrals

 Integration-by-parts (IBP) reduction: currently, the only way, main bottleneck
 Chetyrkin, Tkachov, NPB (1981) Laporta, 0102033

 brute force algorithm, extremely inefficient for complicated pro-

brute force algorithm, extremely inefficient for complicated problems

unitarity-based reduction is efficient but cannot give complete reduction

2) Calculate MIs/original integrals

- differential equation (depends on reduction and BCs) Kotikov, PLB (1991)
- difference equation (depends on reduction and BCs) Laporta, 0102033
- sector decomposition (extremely time-consuming) Binoth, Heinrich, 0004013
- Mellin-Barnes representation (hard for nonplanar integrals) Usyukina (1975) Smirnov, 9905323

State-of-the-art computation

- > 2→2 process with massive particles at twoloop order is already the frontier
 - $g + g \rightarrow t + \overline{t}, \ g + g \rightarrow H + H, \ g + g \rightarrow H + g, \dots$

Very time-consuming

IHEP, Apr. 23th, 2018

- Two-loop $g + g \rightarrow H + H(g)$: complete IBP reduction cannot be achieved within tolerable time Borowka et. al., 1604.06447 Jones, Kerner, Luisoni, 1802.00349
- Two-loop decay $Q + \overline{Q} \rightarrow g + g$, MIs cost $O(10^5)$ CPU core-hour Feng, Jia, Sang, 1707.05758
- Four-loop nonplanar cusp anomalous dimension, within tolerable computational expense, calculated MIs have 10% uncertainty Boels, Huber, Yang, 1705.03444

New ideas are badly needed to give a better solution!!!

I. Introduction

II. A series representation

III. New reduction

III. Analytical continuation

IV. Summary

Feynman integrals with an auxiliary variable

> Dimensional regularized scalar Feynman loop integral with an auxiliary variable η

$$I(D; \{\nu_{\alpha}\}; \eta) \equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \prod_{\alpha=1}^{N} \frac{1}{(q_{\alpha}^{2} - m_{\alpha}^{2} + \mathrm{i}\eta)^{\nu_{\alpha}}}$$

- Think it as an analytical function of η
- Physical result is defined by

$$I(D; \{\nu_{\alpha}\}; 0) \equiv \lim_{\eta \to 0^+} I(D; \{\nu_{\alpha}\}; \eta)$$

Expansion of propagators

Expansion of propagators around $\eta \rightarrow \infty$

$$\frac{1}{(\ell+p)^2 - m^2 + i\eta} = \frac{1}{\ell^2 + i\eta} \sum_{j=0}^{\infty} \left(-\frac{2\ell \cdot p + p^2 - m^2}{\ell^2 + i\eta} \right)^j$$

• We proved the validity of the expansion rigorously

> After expansion: no external momenta, equal squared masses $-i \eta$

Asymptotic expansion

Essentially Taylor expansion

$$I_0^{\text{bub}}(D;\eta) + \frac{1}{\eta} \sum_k c_{1k} I_{1k}^{\text{bub}}(D+2;\eta) + \frac{1}{\eta^2} \sum_k c_{2k} I_{2k}^{\text{bub}}(D+4;\eta) + \cdots, \quad \eta \to \infty$$

All terms are combinations of vacuum bubble integrals

Example

Sunrise integral

$$\hat{I}_{\nu_{1}\nu_{2}\nu_{3}} \equiv \int \prod_{i=1}^{2} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{1}{\mathcal{D}_{1}^{\nu_{1}}\mathcal{D}_{2}^{\nu_{2}}\mathcal{D}_{3}^{\nu_{3}}} \xrightarrow{\rho} \underbrace{\mathbf{0}}_{\mathbf{0}}$$

$$\mathcal{D}_1 = (\ell_1 + p)^2 - m^2, \ \mathcal{D}_2 = \ell_2^2, \ \mathcal{D}_3 = (\ell_1 + \ell_2)^2$$

$$I_{111} = \eta^{D-3} \left\{ \left[1 - \frac{D-3}{3} \frac{m^2}{i\eta} + \frac{(D+4)(D-3)}{9D} \frac{p^2}{i\eta} \right] I_{2,2}^{\text{bub}} \right\}$$

 $-\mathrm{i}\left[\frac{(D-2)}{3D}\frac{p}{\mathrm{i}\eta}\right]I_{2,1}^{\mathrm{bub}} + \mathcal{O}(\eta^{-2})\bigg\}$

Yan-Qing Ma, Peking University

m

Vacuum bubble integrals

Vacuum bubble integrals up to 3-loop, analytic results are known Davydychev, Tausk, NPB(1993)

Davydychev,Tausk, NPB(1993) Broadhurst, 9803091 Kniehl, Pikelner, Veretin, 1705.05136

Numerical results known to 5-loop order!!!

IHEP, Apr. 23th, 2018

Schroder, Vuorinen, 0503209 Luthe, PhD thesis (2015) Luthe, Maier, Marquard, Ychroder, 1701.07068

Yan-Qing Ma, Peking University

A series representation

> The infinite series at $\eta \rightarrow \infty$ uniquely defines the analytical function $I(\eta)$

$$I(\eta) = \eta^{LD/2 - \nu} \left[I_{\text{bub}}^{(0)} + \frac{1}{\eta} I_{\text{bub}}^{(1)} + \cdots \right]$$

> Analytical continuation defines I(0)

$$I(D; \{\nu_{\alpha}\}; 0) \equiv \lim_{\eta \to 0^+} I(D; \{\nu_{\alpha}\}; \eta)$$

- Physical Feynman integral can be defined as analytical continuation of a calculable series
- The series contains only vacuum integrals, easy to obtain

IHEP, Apr. 23th, 2018

New strategy to calculate Feynman integrals

1) Construct the series representation (Easy)

2) Perform analytical continuation (How?)

Analytical continuation: usually very hard Yet another unsolved problem?

- I. Introduction
- **II. A series representation**
- **III. New reduction**
- **III. Analytical continuation**
- **IV. Summary**

> The Number of Master Integrals is Finite

Smirnov, Petukhov, 1004.4199 Georgoudis, Larsen, Zhang, 1612.04252

- Feynman integrals form a finite dimensional linear space
- Decomposition to bases
 - Suppose the dimension of the linear space is n

$$\sum_{i=1}^{n+1} Q_i(D, \vec{s}, \eta) \mathcal{M}_i(D, \vec{s}, \eta) = 0$$

• Q_i polynomials in D, \vec{s}, η , with mass dimension $2d_i$

$$2d_1 + \operatorname{Dim}(\mathcal{M}_1) = \cdots = 2d_{n+1} + \operatorname{Dim}(\mathcal{M}_{n+1})$$

Perturbative matching

- > Parametrization, finite unknown numbers $Q_i(D, \vec{s}, \eta) = \sum_{(\lambda_0, \vec{\lambda}) \in \Omega_{d_i}^{r+1}} Q_i^{\lambda_0 \dots \lambda_r}(D) \eta^{\lambda_0} s_1^{\lambda_1} \cdots s_r^{\lambda_r}$
- Determine unknown parameters by matching both sides of the relation at large η, using series representation

$$\sum_{i=1}^{n+1} Q_i(D, \vec{s}, \eta) \mathcal{M}_i(D, \vec{s}, \eta) = 0$$

IHEP, Apr. 23th, 2018

Note: although obtained at large η, the relation is valid for any value of η

Reduction: example

37 years later, the second (and more efficient) reduction method is finally available

IHEP, Apr. 23th, 2018

- I. Introduction
- **II. A series representation**
- **III. New reduction**

III. Analytical continuation

IV. Summary

Differential equations

- Perturbative matching reduces any loop integrals to MIs
 - Only need analytical continuation of MIs

IHEP, Apr. 23th, 2018

Perturbative matching can also set up differential equations for MIs

$$\frac{\partial}{\partial \eta} \vec{I}(D;\eta) = A(D;\eta) \vec{I}(D;\eta)$$

> Boundary conditions at $\eta = \infty$: leading term of the series representation, known

Solving the DEs

> DEs

$$\frac{\partial}{\partial \eta} \vec{I}(D;\eta) = A(D;\eta) \vec{I}(D;\eta) \quad \text{With known } \vec{I}(D;\infty)$$

Singularity structure

A 2-loop example

Test for nonplanar 2-loop box integral

with
$$m^2 = 1, s = 4, t = -1$$

- > 168 master integrals, 26 steps to go from $\eta = \infty$ to $\eta = 0^+$, 30 orders in expansion
- The 168 integrals can be evaluated within a few minutes on Mathematica

Result agree with sector decomposition

- $I_{\rm np}(4-2\epsilon) = 0.0520833\epsilon^{-4} (0.131616 0.147262i)\epsilon^{-3}$
 - $-(0.741857 + 0.185602i)\epsilon^{-2} + (3.73984 4.15756i)\epsilon^{-1}$

 $-(4.75677 - 12.0749i) + (23.9674 - 55.4214i)\epsilon + \cdots,$

It takse a few minutes
 To compare with, FIESTA4: 0(10⁴) CPU core-hour

IHEP, Apr. 23th, 2018

Faster by at least 10⁵ **times!!**

Summary

- A series representation of Feynman integrals: analytical continuation of a calculable series, which contains only vacuum integrals
- 1) Construct the series representation
- 2) Perturbative matching to setup reduction relations and DEs (the second reduction method)
- 3) Analytical continuation by solving DEs

IHEP, Apr. 23th, 2018

Why precision is needed?

> Interpretation of SM physics

IHEP, Apr. 23th, 2018

No significant new physics signal at LHC, precision is needed for NP discovery

Yan-Qing Ma, Peking University

Analytic structure at infinity

Feynman parametric rep.

$$I(\eta) = (-1)^{\nu} \frac{\Gamma\left(\nu - LD/2\right)}{\prod_{i} \Gamma(\nu_{i})} \int \prod_{\alpha} (x_{\alpha}^{\nu_{\alpha}-1} \mathrm{d}x_{\alpha}) \,\delta\left(1 - \sum_{j} x_{j}\right) \frac{\mathcal{U}^{-D/2}}{(\mathcal{F}/\mathcal{U} - \mathrm{i}\eta)^{\nu - LD/2}}$$

- *U*: graph polynomial of 1-tree
- \mathcal{F} : graph polynomial of 2-tree

Observation: |F/U| is bounded in the Feynman parameter space!

 $|\mathcal{F}_i| < |t_i||\mathcal{U}_i| < |t_i||\mathcal{U}|$ and $|\mathcal{F}| < \sum_i |t_i||\mathcal{U}|$

> Thus: $J(D;\eta) \equiv \eta^{\nu-LD/2}I(D;\eta)$ is analytic at $\eta = \infty$

A stupid mathematician

Yan-Qing Ma, Peking University

Review of QCD factorization

- Factorize observables to nonperturbative functions; RGEs for nonperturbative functions $\sigma = \hat{\sigma} \otimes f, \qquad df = C \otimes f$
- > Calculate quantities in perturbative region $\sigma = \sum_{n} \sigma^{(n)} \alpha^{n}$, $df = \sum_{n} (df)^{(n)} \alpha^{n}$, $f = \sum_{n} f^{(n)} \alpha^{n}$
- Perturbative matching to determine coefficients of nonperturbative relations
 - For n = 0: $\sigma^{(0)} = \hat{\sigma}^{(0)} \otimes f^{(0)} \to \hat{\sigma}^{(0)} = \sigma^{(0)} / f^{(0)}$
 - For n = 1: $\sigma^{(1)} = \hat{\sigma}^{(1)} \otimes f^{(0)} + \hat{\sigma}^{(0)} \otimes f^{(1)} \to \hat{\sigma}^{(1)} = (\sigma^{(1)} \hat{\sigma}^{(0)} \otimes f^{(1)})/f^{(0)}$
 - And so on. Similar for $C^{(n)}$
- \succ Everything is determined by BC of f

Transformation

$$J(D;\eta) = \eta^{\nu - LD/2} I(D;\eta)$$

$$\gg \eta \to x^{-1}$$

$$x \frac{\partial}{\partial x} \vec{J}(x) = B_1(x) \vec{J}(x)$$

"Outside of the large circle"

$$\vec{J}(x) = \sum_{n=0}^{\infty} \vec{J}_n x^n, \quad B_1(x) = \sum_{n=0}^{\infty} B_{1n} x^n$$

Recurrence relations

$$(n - B_{10})\vec{J_n} = \sum_{k=0}^{n-1} B_{1n-k}\vec{J_k}$$

 \succ Can be used to determine any order of \vec{J}_n

> Estimation of $\vec{J}(x)$ $\vec{J}(x) \sim \sum_{n=0}^{n_0} \vec{J}_n x^n$ e.g. at $x = \frac{1}{2}r$, $\vec{J}\left(\frac{r}{2}\right) \Rightarrow \vec{I}\left(\frac{2}{r}\right)$

IHEP, Apr. 23th, 2018

Step2: Expansion at analytical points

$$\succ$$
 At $\eta = \eta_k$:

- Expand the differential equation and obtain the recurrence relations
- Solve for high-order expansion coefficients
- Estimate the value of $\vec{I}(\eta)$ at $\eta = \eta_{k+1}$

End if we have entered the small circle

Step3: Expansion at $\eta = 0$

$\geq \vec{I}(\eta_0)$ is known. How to determine $\vec{I}(0)$? > DE

$$\eta \frac{\partial}{\partial \eta} \vec{I} = \tilde{A} \vec{I}$$

> Asymptotic behavior

 $\vec{I}(\eta) \sim \eta^{\hat{A}(0)} \vec{v}_0$ with \vec{v}_0 being constant

In general

IHEP, Apr. 23th, 2018

$$\vec{I}(\eta) \equiv P(\eta)\eta^{\tilde{A}(0)}\vec{v}_0$$

Step3: Expansion at $\eta = 0$

Expand and obtain recurrence relations

$$nP_n + [P_n, \tilde{A}_0] = \sum_{k=0}^{n-1} \tilde{A}_{n-k} P_k$$

- \succ Can be used to determine any order of P_n
- $\succ \vec{v}_0$ contains all information of boundary
- > Determine \vec{v}_0 via matching

$$\vec{I}(\eta_0) = P(\eta_0) \eta_0^{\tilde{A}(0)} \vec{v}_0$$

then

IHEP, Apr. 23th, 2018

$$\vec{I}(0) = \lim_{\eta \to 0} \eta^{A(0)} \vec{v}_0$$

Yan-Qing Ma, Peking University

1-Loop Test

Set up DE Duplancic et al. hep-ph/0303814
CI₁^N(D − 2; {ν_β}; η) = ∑_{α=1}^N z_αI₁^N(D − 2; {ν_β − δ_{αβ}}; η) + (D − 1 − ν) z₀I₁^N(D; {ν_β}; η) $\frac{\partial}{\partial \eta}I_1^N(D; {ν_β}; η) = -i\sum_{\alpha} ν_{\alpha}I_1^N(D; {ν_β + δ_{αβ}}; η) = iI_1^N(D − 2; {ν_β}; η)$ $\frac{\partial}{\partial \eta}I_1^N(D; {ν_β}; η) = \frac{i}{C}((D − 1 − ν)z_0I_1^N(D; {ν_β}; η) + \sum_{\alpha} z_{\alpha}I_1^N(D − 2; {ν_β − δ_{αβ}}; η))$ > D₀(D + 4), C₀(D + 2), B₀(D), A₀(D − 2))
> Test for D₀ function

with
$$p_1^2 = 1.2, p_2^2 = 3.1, p_3^2 = m_3^2 =$$

0.75, $p_4^2 = m_4^2 = 7.5, m^2 = 5.4, t =$
 $(p_1 - p_3)^2 = -1$

$$s = (p_1 + p_2)^2 = 4,$$

1-Loop Test

With $s = (p_1 + p_2)^2 = (m_3 + m_4)^2 (1 + \delta) = 19.2(1 + \delta)$ $\eta_{min} \approx 4.5 |\delta|$ and $\eta_{max} \approx 10.2$, we can run around $4.2 + 1.4 \ln(1/|\delta|)$ steps to go from $\eta = \infty$ to $\eta = 0^+$

- ➢ By taking Taylor expansion or asymptotic expansion to 30 orders at each step, we get results with at least 10 correct significant digits for any choice in 10⁻⁷ ≤ |δ| ≤ 1
- > To compare with, sector decomposition FIESTA4 can get result with tolerable uncertainty only for $|\delta| \ge 10^{-3}$

High Order Correction

➢ Higgs → 3 partons (Euclidean Rigion) [R. Bonciani, et.al 2016]

NNLO QCD corrections to the hadronic decay rates of the pseudo-scalar quarkonia [F. Feng, Y. Jia, W.L. Sang 2017]

IHEP, Apr. 23th, 2018

Feynman parametric representation

$$\begin{split} I(D; \{\nu_{\alpha}\}) &\equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \prod_{\alpha=1}^{N} \frac{1}{(q_{\alpha}^{2} - m_{\alpha}^{2})^{\nu_{\alpha}}} \quad \text{where} \quad q_{\alpha} = c_{\alpha}^{i}\ell_{i} + d_{\alpha}^{i}p_{i} \\ I(D; \{\nu_{\alpha}\}) &= (-1)^{\nu} \frac{\Gamma\left(\nu - LD/2\right)}{\prod_{k} \Gamma(\nu_{k})} \int \prod_{\alpha} (x_{\alpha}^{\nu_{\alpha}-1} \mathrm{d}x_{\alpha}) \times \delta\left(x - 1\right) \frac{\mathcal{U}^{\nu - (L+1)D/2}}{\mathcal{F}^{\nu - LD/2}} \end{split}$$

$$\mathcal{U}(\vec{x}) = \sum_{T \in T_1} \prod_{i \notin T_1} x_i$$

$$\mathcal{F}_0(\vec{x}) = -\sum_{T \in T_2} s_T \prod_{i \notin T_2} x_i$$

$$\mathcal{F}(\vec{x}) = \mathcal{F}_0(\vec{x}) + \mathcal{U}(\vec{x}) \sum_{\alpha=1}^N x_\alpha m_\alpha^2$$

 $\mathcal{U} \sim x^L$ $\mathcal{F} \sim x^{L+1}$

Spanning 1-tree, sub UV divergences

See e.g. [Heinrich2008]

Sector decomposition: basic example

$$I = \int_0^1 dx \, \int_0^1 dy \, x^{-1-a\epsilon} \, y^{-b\epsilon} \left(x + (1-x) \, y \right)^{-1}$$

$$I = \int_0^1 dx \, x^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1}$$

$$+ \int_0^1 dy \, y^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-1-a\epsilon} \left(1 + (1-y) \, t\right)^{-1}$$

Yan-Qing Ma, Peking University

Apply to Calculation of Feynman Integrals

- Generate primary sectors
- Generate subsectors iteratively
- Take epsilon expansion

[Binoth, Heinrich 2000]

$$I = (-1)^{\nu} \Gamma(\nu - LD/2) \sum_{i=1}^{N} \sum_{j=1}^{\Lambda(i)} I_{ij}, \quad I_{ij} = \sum_{k=-2L}^{r} C_{ij,k} \epsilon^{k} + \mathcal{O}(\epsilon^{r+1})$$

• Evaluate the finite integrals numerically

$$C_{ij,k} \xrightarrow{\mathrm{M-C}} \mathrm{number}$$

Yan-Qing Ma, Peking University

> History

• 1966 K. Hepp (BPHZ)

"Proof of the Bogoliubov-Parasiuk Theorem on Renormalization"

• 2000 T. Binoth, G. Heinrich

"An automatized algorithm to compute infrared divergent multi-loop integrals"

• 2008 A. Smirnov, M.N. Tentyukov, et.al -> FIESTA

"Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA)"

• 2010 J. Carter, G. Heinrich, et.al -> SecDec

"SecDec: A general program for sector decomposition"

2017 S. Borowka, G. Heinrich, et.al -> pySecDec
 "pySecDec: a toolbox for the numerical evaluation of multi-scale integrals"

Basic Relation

$$\frac{1}{(X+Y)^{\lambda}} = \frac{1}{\Gamma(\lambda)} \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} dz \Gamma(\lambda+z) \Gamma(-z) \frac{Y^z}{X^{\lambda+z}}$$

Rules: Poles of $\Gamma(\dots + z)$ are to the left of the contour. Poles of $\Gamma(\dots - z)$ are to the right of the contour.

Mellin-Barnes Representation

Apply to massive propagator

IHEP, Apr. 23th, 2018

$$\frac{1}{(\ell^2 - m^2)^{\lambda}} = \frac{1}{(\ell^2)^{\lambda}} \frac{1}{\Gamma(\lambda)} \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} dz \Gamma(\lambda + z) \Gamma(-z) \left(-\frac{m^2}{\ell^2}\right)^z$$

The contour is pinched.

There is a UV divergence. We need to resolve the singularity.

Mellin-Barnes Representation

Strategy A: MBresolve.m [A. Smirnov, V. Smirnov 2009]

Deform the integration contours.

Strategy B: MB.m [M. Czakon 2005]

Fix the integration contours and tends ϵ to 0.

Practical procedure

- Obtain MB representation
- Resolve epsilon singularities
- Perform epsilon expansion

IHEP, Apr. 23th, 2018

Evaluate the finite integrals numerically

[M. Czakon 2005] [J.Gluza, et.al 2007] [A. Smirnov, V. Smirnov 2009]

Mellin-Barnes Representation

> History

• 1975 N. Usyukina

"On a representation for the three-point function"

• 1999 V. Smirnov

"Analytical result for dimensionally regularized massless on-shell double box"

• 2005 M. Czakon-> MB.m

"Automatized analytic continuation of Mellin-Barnes integrals"

- 2007 J. Gluza, K. Kajda, T. Riemann -> AMBRE.m "AMBRE – a Mathematica package for the construction of Mellin-Barnes representations for Feynman integals"
- 2009 A. Smirnov, V. Smirnov, et.al -> MBresolve.m
 "On the resolution of singularities of multiple Mellin-Barnes integrals"
- **2014 J. Blumlein, I. Dubovyk, et.al** "Non-planar Feynman integals, Mellin-Barnes representations, multiple sums"
- 2015 M. Ochman, T. Riemann -> MBsums.m

"Mbsums – a Mathematica package for the representation of Mellin-Barnes integrals by multiple sums"

Integration-By-Parts (IBP)

> A direct result of DR scheme

 $V = \operatorname{span}\{I_1, I_2, \dots, I_n\}$ Finite-dimension "linear space"!

[A. Smirnov, Petukhov 2011]

Yan-Qing Ma, Peking University

Integration-By-Parts (IBP)

> History

- **1981 K. G. Chetyrkin, F. V. Tkachov** "Integration by parts: the algorithm to calculate beta function in 4 loops"
- 2000 S. Laporta

"High precision calculation of multiloop Feynman integrals by difference equations"

- 2004 C. Anastasiou, A. Lazopoulos -> AIR
 "Automatic Integral Reduction for higher order perturbative calculations"
- 2008 A. Smirnov -> FIRE
 "Algorithm FIRE Feynman Integral REduction"
- 2009 C. Studerus -> Reduze
 "Reduze- Feynman integral reduction in C++"
- 2012 R. Lee -> LiteRed

"Presenting LiteRed: a tool for the Loop InTEgrals REDuction"

- 2015 A. Manteuffel, R. Schabinger "A novel approach to integration by parts reduction"
- 2016 K. Larsen, Y. Zhang "Integration-by-parts reductions from unitarity cuts and algebraic geometry"
- 2017 A. Georgoudis, K. Larsen, Y. Zhang -> AZURITE "AZURITE: an algebraic geometry based package for finding bases of loop integrals"

Unitarity Cuts

Integrand-level reduction

Integrand =
$$\sum c_i \times I_i$$

Physical singularities \implies Coefficients

$$\mathcal{M}^{(1)}(2 \to 2) = \int \frac{\mathrm{d}^{D}\ell}{\mathrm{i}\pi^{D/2}} \left(\frac{\Delta_{4}(\ell)}{\mathcal{D}_{1}\mathcal{D}_{2}\mathcal{D}_{3}\mathcal{D}_{4}} + \sum_{i_{1}i_{2}i_{3}} \frac{\Delta_{3,i_{1}i_{2}i_{3}}(\ell)}{\mathcal{D}_{i_{1}}\mathcal{D}_{i_{2}}\mathcal{D}_{i_{3}}} + \sum_{i_{1}i_{2}} \frac{\Delta_{2,i_{1}i_{2}}(\ell)}{\mathcal{D}_{i_{1}}\mathcal{D}_{i_{2}}} + \mathrm{tadpoles} \right)$$
$$D_{1} = D_{2} = D_{3} = D_{4} = 0 \quad \Rightarrow \quad \Delta_{4}$$
$$D_{i_{1}} = D_{i_{2}} = D_{i_{3}} = 0 \quad \Rightarrow \quad \Delta_{3,i_{1}i_{2}i_{3}}$$

IHEP, Apr. 23th, 2018

Yan-Qing Ma, Peking University

Unitarity Cuts

> History

- **1994 Z. Bern, L. Dixon, D. Dunbar, D. Kosower** "One-loop n-point gauge theory amplitudes, unitarity and collinear limits"
- 2005 R. Britto, F. Cachazo, B. Feng "Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills"
- 2007 G. Ossola, C. Papadopoulos, R. Pittan -> OPP method "Reducing full one-loop amplitudes to scalar integrals at the integrand level"
- 2008 G. Ossola, C. Papadopoulos, R. Pittan -> CutTools
 "CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes"
- 2011 P. Mastrolia, G. Ossola

"On the integrand-reduction method for two-loop scattering amplitudes"

• 2012 Y. Zhang

"Integrand-level reduction of loop amplitudes by computational algebraic geometry methods"

• 2017 J. Bosma, M. Sogaard, Y. Zhang

"Maximal cuts in arbitrary dimension"

Differential Equation Method

Differential Equation + Boundary Condition

$$\underbrace{s=p^2}_{m} \underbrace{I(D;\{1,1\})}_{m} = \int \frac{\mathrm{d}^D \ell}{\mathrm{i}\pi^{D/2}} \frac{1}{(\ell^2 - m^2)[(\ell+p)^2 - m^2]}$$

$$\frac{\partial}{\partial m^2} I(D; \{1, 1\}) = I(D; \{2, 1\}) + I(D; \{1, 2\})$$

$$\stackrel{\text{BP}}{=} \frac{2(D-3)}{4m^2 - s} I(D; \{1,1\}) - \frac{D-2}{m^2(4m^2 - s)} I(D; \{1,0\})$$

 $\frac{\partial}{\partial m^2} I(D; \{1, 0\}) = I(D; \{2, 0\})$

$$\stackrel{\text{IBP}}{=} \frac{D-2}{2m^2} I(D; \{1, 0\})$$

$$I(D; \{1,1\})|_{m^2=0} = \Gamma(2-D/2)(-s)^{D/2-2} \frac{\Gamma(D/2-1)^2}{\Gamma(D-2)}, \quad I(D; \{1,0\})|_{m^2=0} = \cdots$$

0

Differential Equation Method

Step1: Set up the differential equation

- Differentiate w.r.t. invariants, such as m^2 , p^2
- **IBP relations** $\frac{\partial}{\partial x}\vec{I}(x;\epsilon) = A(x;\epsilon)\vec{I}(x;\epsilon)$

Step2: Calculate boundary condition

• Calculate integrals at special value of m^2 , p^2

Step3: Solve the differential equation

• Canonical form $\partial_x ec{I}(x;\epsilon) = \epsilon A(x) ec{I}(x;\epsilon)$ [J. Henn 2013]

Differential Equation Method

> History

• 1991 A. Kotikov

"Differential equations method: the calculation of N point Feynman diagrams"

• 1991 A. Kotikov

"Differential equations method: new technique for massive Feynman diagrams calculation"

• 1997 E. Remiddi

"Differential equations for Feynman graph ampltides"

- 2000 T. Gehrmann, E. Remiddi "Differential equations for two-loop four-point functions"
- 2013 J. Henn -> Canonical form

"Multiloop integrals in dimensional regularization made simple"

• 2014 R. Lee

"Reducing differential equations for multiloop master integrals"

• 2017 L. Adams, E. Chaubey, S. Weinzierl "Simplifying differential equations for multiscale Feynman integrals beyond multiple polylogarithms"