Study of the baryon Σ*(1/2⁻) in the χ_{c0} decay

En Wang Zhengzhou University PLB753(2016)526,arxiv:1712.07469 Mini-workshop on Baryonic spectroscopy at e⁺e⁻ colliders April 19-20, 2018@IHEP

Exotic states

Quark model, meson and baryon

Exotic states

Tetraquark state, pentaquark state, hadronic molecule, hybrid, glueball, dibaryon.

>exotic quantum number, 0⁻⁻, 0⁺⁻, 1^{-+,} 2⁺⁻, 3⁻⁺,...

Baryon resonances

Expt: extraction of the baryon resonances from experimental data.

- Pion, photon, kaon beams, e+e-
- ► BESIII, CDF, CLAS, Belle, LHCb et. al

Theo: The theoretical work and predictions

- >Quark models over predict the number baryons
 - "the missing resonances"

Effective theories give rise to some dynamically generated states as a consequence of the interaction of two hadrons - hadronic molecule

1/2⁻ baryon nonet with strangeness

Quark model assignments for baryons

REAL PROPERTY AND A STATEMENT OF THE STA

1/2⁻ baryon nonet with strangeness

Large 5-quark mixture picture, Zou NPA835(2010)

uds (L=1) $1/2^- \sim \Lambda^*(1670) \sim [us][ds] \overline{s}$

- uud (L=1) $1/2^- \sim N^*(1535) \sim [ud][us] \overline{s}$
- uds (L=1) $1/2^- \sim \Lambda^*(1405) \sim [ud][su] u$
- uus (L=1) $1/2^- \sim \Sigma^*(1390) \sim [us][ud] \bar{d}$

Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

I(J^P)=1(1/2⁻) state with S=-1

- Mass 1430 MeV
- Predicted with in the coupled-chanel Chiral unitary approach. D. Jido NPA2003, J. Oller, PLB2001.
- A new Σ* (J^P=1/2⁻) is necessary to describe the experimental data of K⁻P->Λπ⁺π⁻. Wu, Dulat, Zou, PRC2010.
- A resonant structure in the I=1 J^P=1/2⁻ around KN threshold is also needed to describe the γp->KπΣ. Roca, Oset, PRC88(2013).
- We would like to propose a reaction to search this state [Σ*(1/2]).

Search Σ*(1/2⁻)

 $\Box \Sigma^{*}(1/2)$ is around the KN threshold

The conventional reactions with KN in the final states mix I=0 and I=1, which makes it difficult to disentangle the I=1 contribution and extract this state.

 $\Box \Sigma^*(1/2)$ shows up strongly in the πΣ-> πΣ amplitude.

Roca. Oset, PRC2013

ΔX_{c0}(1P)-> ΣΣπ

>Reason 1: good filter of isospin I=1 for Σ π .

Reason 2: feasible in present experimental facilities, such BESIII.

$X_{c0}(1P)$ -> $\overline{\Sigma}\Sigma$ is measured by BESIII and CLEO with Br($X_{c0}(1P)$ -> $\overline{\Sigma}\Sigma$) ~10-3.

 $\chi_{c0}(1P)$ DECAY MODES

Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
$ \begin{array}{ccc} \Gamma_{77} & \Sigma^0 \overline{\Sigma}{}^0 \\ \Gamma_{78} & \Sigma^+ \overline{\Sigma}{}^- \end{array} \end{array} $	(4.4 (3.9	± 0.4) $ imes 10^{-4}$ ± 0.7) $ imes 10^{-4}$

ΔX_{c0}(1P)-> ΣΣπ

>Reason 1: good filter of isospin I=1 for $\Sigma\pi$.

Reason 2: feasible in present experimental facilities, such BESIII.

 X_{c0} (1P)-> $\overline{\Sigma}\Sigma$ is measured by BESIII and CLEO with Br(X_{c0} (1P)-> $\overline{\Sigma}\Sigma$) ~10-3.

Br(X_{c0} (1P)-> ppπ) is three times larger than Br(X_{c0} (1P)->pp).

$$(2.25\pm0.09)\times10^{-4}$$

(6.8 ±0.7)×10⁻⁴

ΔX_{c0}(1P)-> ΣΣπ

>Reason 1: good filter of isospin I=1 for $\Sigma\pi$.

Reason 2: feasible in present experimental facilities, such BESIII.

 $X_{c0}(1P)$ -> ΣΣ is measured by BESIII and CLEO with Br($X_{c0}(1P)$ -> ΣΣ) ~10-3.

Br(X_{c0}(1P)-> $pp\pi$) is three times larger than Br(X_{c0}(1P)->pp), without π production.

Thus, the Br($X_{c0}(1P)$ -> $\Sigma\Sigma\pi$) should be larger than Br ($X_{c0}(1P)$ -> $\Sigma\Sigma$), and easily accessible at BESIII and CLEO.

The reaction mechanism

- a) the tree diagram, b) final state interaction of $\Sigma \pi$ c) final state interaction of $\overline{\Sigma} \pi$ d) final state interaction of $\overline{\Sigma} \Sigma$
- d) final state interaction of $\Sigma\Sigma$

- Σπ final state interaction
- The effective lagrangian:

 $\mathcal{L} \equiv \tilde{D} \left\langle \bar{B} \left\{ \Phi, B \right\} \right\rangle + \tilde{F} \left\langle \bar{B} \left[B, \Phi \right] \right\rangle$

 The symbol <> stands for the trace of SU(3) matrices.

Isospin coefficients

• The isoscalar coefficients are taken from the SU(3) isoscalar factors in the PDG.

Isospin coefficients

• The isoscalar coefficients are taken from the SU(3) isoscalar factors in the PDG.

SU(3) isoscalar coefficients for the $\langle \bar{\Sigma} | MB \rangle$ matrix elements.

$\bar{\Sigma}$	ĒΝ	$\pi \Sigma$	$\pi\Lambda$	$\eta \Sigma$	KΞ
Đ	$-\sqrt{\frac{3}{10}}$	0	$\sqrt{\frac{1}{5}}$	$\sqrt{\frac{1}{5}}$	$-\sqrt{\frac{3}{10}}$
Ĩ	$\sqrt{\frac{1}{6}}$	$\sqrt{\frac{2}{3}}$	0	0	$-\sqrt{\frac{1}{6}}$

 The sum of the isoscalar coefficients times D and F gives the weights h_i, which go into the primary production of the meson barvon channel.

$$h_{\bar{K}N} = -\sqrt{\frac{3}{10}}\tilde{D} + \sqrt{\frac{1}{6}}\tilde{F}, \qquad h_{K\Xi} = -\sqrt{\frac{3}{10}}\tilde{D} - \sqrt{\frac{1}{6}}\tilde{F},$$
$$h_{\pi\Sigma} = \sqrt{\frac{2}{3}}\tilde{F}, \quad h_{\pi\Lambda} = \sqrt{\frac{1}{5}}\tilde{D}, \quad h_{\eta\Sigma} = \sqrt{\frac{1}{5}}\tilde{D},$$

The amplitude for the transition is,

The amplitude for the transition is,

The meson baryon interaction

• For the coupled channels, KN, $\pi\Sigma,\pi\Lambda$, $\eta\Sigma$, K Ξ , the Bethe Salpeter equation,

$$f = [1 - VG]^{-1}V$$

Take from the lowest order meson baryon chiral lagrangian

$$V_{ij}(l=1) = -F_{ij}\frac{1}{4f^2}(k^0 + {k'}^0),$$

• f=1.15f_{π}, and f_{π}=93 MeV. Oset, NPA636 (1998)

Table 3 F_{ij} coefficients of Eq. (9) for T = 1. $F_{ji} = F_{ij}$

	ĒΝ	$\pi \Sigma$	$\pi \Lambda$	ηΣ	KΞ
ĒΝ	1	-1	$-\sqrt{\frac{3}{2}}$	$-\sqrt{\frac{3}{2}}$	0
$\pi \Sigma$		2	0	0	I.
πA			0	0	$-\sqrt{\frac{3}{2}}$
$\eta \Sigma$				0	$-\sqrt{\frac{3}{2}}$
КΞ					1

• The loop function Gi, with |q_{max}|=630 MeV

$$G_{l} = i \int \frac{d^{4}q}{(2\pi)^{4}} \frac{M_{l}}{E_{l}(q)} \frac{1}{k^{0} + p^{0} - q^{0} - E_{l}(q) + i\epsilon}$$

$$\times \frac{1}{q^{2} - m_{l}^{2} + i\epsilon}$$

$$= \int \frac{d^{3}q}{(2\pi)^{3}} \frac{M_{l}}{2\omega_{l}(q)E_{l}(q)} \frac{1}{k^{0} + p^{0} - q^{0} - E_{l}(q) + i\epsilon}$$

• And the invariant mass distribution for $X_{c0}(1P)$ -> $\Sigma\Sigma\pi$,

$$\frac{d^2\Gamma}{dM_{\pi\Sigma}^2 dM_{\pi\bar{\Sigma}}^2} = \frac{1}{(2\pi)^3} \frac{4M_{\Sigma}^2}{32M_{\chi_{c0}}^3} \left| \mathcal{M}(M_{\pi\Sigma}, M_{\pi\bar{\Sigma}}) \right|^2$$

Results and discussion

• Module squared of $t_{KN,KN}$, and $_{T\pi\Sigma,\pi\Sigma}$,

 $t = [1 - VG]^{-1}V$

• A cusp is found around $\overline{K}N$ threshold.

Results and discussion

$\boldsymbol{\cdot}\,\boldsymbol{\pi}\boldsymbol{\Sigma}$ invariant mass distribution

 $\mathcal{M}(M_{\pi\Sigma}, M_{\pi\bar{\Sigma}}) = V_p \left(h_{\pi\Sigma} + T_{\pi\Sigma} + T_{\pi\bar{\Sigma}} \right)$

Different value of R

• R=F/D

• For positive R, we have a strong cusp structure around KN threshold, but for negative R, the cusp is inverted.

Different value of R

$\chi_{c0}(1P) \to \bar{\Lambda}\Sigma\pi$

$$\mathcal{M} = V_p \left[h_{\pi\Sigma} + \sum_i h_i G_i(M_{\pi\Sigma}) t_{i,\pi\Sigma}(M_{\pi\Sigma}) \right]$$
$$+ \tilde{V}_p \sum_j \tilde{h}_j \tilde{G}_j(M_{\pi\bar{\Lambda}}) \tilde{t}_{j,\pi\bar{\Lambda}}(M_{\pi\bar{\Lambda}})$$
$$= \mathcal{M}_{\text{tree}} + \mathcal{M}_{\pi\Sigma} + \mathcal{M}_{\pi\bar{\Lambda}}$$

Sigma(1380), M=1380MeV, Width=120MeV

$$\mathcal{M} = V_p \left(h_{\pi\Sigma} + T_{\pi\Sigma} + T_{\pi\bar{\Lambda}} + T_{\pi\bar{\Lambda}} \right),$$
$$T_{\pi\bar{\Lambda}} = \frac{\alpha M_{\Sigma(1380)}}{M_{\pi\bar{\Lambda}} - M_{\Sigma(1380)} + i\Gamma_{\Sigma(1380)}/2}$$

• Sigma(1385)??

Two poles of Lambda(1405)

• Sigma*, with 1/2-

• R dependence

Summary

- We propose that the reaction $X_{c0}(1P)$ -> $\Sigma\Sigma\pi$ can be used to test/search I=1, S=-1, J^P=1/2⁻ resonance (Σ^*) close to the KN threshold. This state appears in the theoretical work using the chiral unitary approach, and is necessary to describe the experimental data.
- The results depend on the ratio of R=F/D. For a positive R, we predict a strong cusp structure, and for a negative R, the cusp is inverted, and a strong dip is found.
- The reaction of $X_{c0}(1P)$ -> $\overline{\Sigma}\Sigma\pi$ is easier to be used to test/search this state than J/ ψ -> $\overline{\Sigma}\Sigma\pi$.
- Our suggestion is easily accessible at BESIII.

Summary

• We also suggest that $X_{c0}(1P)$ -> $\Lambda\Sigma\pi$ can be used to search/distinguish the $\Sigma^*(1/2-)$ 1430 MeV and 1380 MeV, and also to check the role of $\Lambda(1405)$ in the mass distribution.

- 5th workshop on XYZ particles
- •时间: 2018年10月中下旬
- •地点:河南郑州大学
- 主办单位:中科院高能所,北京大学,北京航空航天大学, 郑州大学
- •联系人:苑长征,朱世琳
- 沈成平: <u>shencp@buaa.edu.cn</u>
- 王 恩: <u>wangen@zzu.edu.cn</u>
- •第一届:2013年5月在北京
- •第二届: 2013年11月20-22日在安徽
- 第三届: 2015年4月1-3日在高能所
- •第四届: 2016年11月23-25日在北京航空航天大学

郑州大学强子物理简介

- 物理学一级博士学位点
- •目前人员:

理论: 李德民, 王恩

实验:杜书先,刘海东

• 拟引进博士,博士后

方向: 强子物理理论, 实验

1.优秀博士,安家费20万,科研启动费20万

2.校拔尖人才,安家费30万,科研启动费50万,年 薪20-30万

3.优青,青年,年薪40-60万,面议

•热烈欢迎大家到郑州大学指导工作!

•学科网站: http://www5.zzu.edu.cn/particle/

i www5.zzu.edu.cn/particle/		□ ★ 🗲
« 🎼 🚾 🛧 🛧		
新州大学 China·Zhengzhou University 学科简介	研究方向 团队介绍 学习交流 资料下载 联系	我们 English
粒子物理核物理学科	中心新闻	公告通知
	18.01」• 粒子物理核物理学科2018年新年联欢晚会	• 2017级研究生春季课程表
	17.08」· 我院成功举办 "郑州大学2017年粒子物理	• 关于浙江大学宁波理工学院夏铖君博
	17.07] • 我院成功举办 "强子谱和强子结构"研	• 关于北京航空航天大学闫文成博士学
	·17.06 · 郑州大学2017年 "粒子物理与核物理"研	_ • 2018年物理工程学院博士招生目录
	17.05 • 祝贺杨鹏等同学顺利通过研究生毕业答辩	• 关于刘占伟副教授、孙志峰副教授、
	17.05 - 2017届粒子物理核物理学科硕士毕业答辩	• 郑州大学2017年攻读博士学位研究生
	17.05 - 2017届粒子物理核物理学科博士毕业答辩	
	■17.04」 ■ LHCb发现可能偏离标准模型的新提示	
	教师介绍	

Thanks for your attentions!

More discussion - $\overline{\Sigma}\Sigma$

- In addition to the above contributions, we also consider the effect of $\Sigma\Sigma$ to pp.
- The pp has an enhancement close to the threshold that is attributed to the resonance X(1835), which is seen in the decays of J/ψ->ppγ. BESIII, PRL2012.
- The $\overline{\Sigma}\Sigma$ will couple to _pp in the couple channels, so any pole in the pp -> pp will be also presented in the pp-> $\overline{\Sigma}\Sigma$ amplitude.

$$\mathcal{M}(M_{\pi\Sigma}, M_{\pi\bar{\Sigma}}) = V_p \left(h_{\pi\Sigma} + T_{\pi\Sigma} + T_{\pi\bar{\Sigma}} + T_{p\bar{p}} \right),$$

$$T_{p\bar{p}} = \frac{a}{M_{\Sigma\bar{\Sigma}} - M_X + i\frac{\Gamma_X}{2}} \qquad \text{M=1835 MeV} \\ \Gamma=100 \text{ MeV}$$

More discussion

44

- In addition to the X(1835) intermediate, the ΣΣ interaction could have some sharp structure at threshold, bound state or cusp structure.
- the amplitude for ΣΣ scattering,

$$t_{\Sigma\bar{\Sigma}} = \frac{1}{V_{\Sigma\bar{\Sigma}}^{-1} - G_{\Sigma\bar{\Sigma}}(M_{\Sigma\bar{\Sigma}})}, \qquad T_{\Sigma\bar{\Sigma}} = h_{\pi\Sigma}G_{\Sigma\bar{\Sigma}}(M_{\Sigma\bar{\Sigma}})t_{\Sigma\bar{\Sigma}}(M_{\Sigma\bar{\Sigma}}),$$

$$\mathcal{M}(M_{\pi\Sigma},M_{\pi\bar{\Sigma}})=V_p\left(h_{\pi\Sigma}+T_{\pi\Sigma}+T_{\pi\bar{\Sigma}}+T_{p\bar{p}}+T_{\Sigma\bar{\Sigma}}\right).$$

$$G_{\Sigma\bar{\Sigma}}(M_{\Sigma\bar{\Sigma}}) = \int \frac{d^3q}{(2\pi)^3} \frac{M_{\Sigma}^2}{E^2(q)} \frac{1}{M_{\Sigma\bar{\Sigma}} - 2E(q) + i\epsilon}, \qquad |\vec{q}_{\max}| = 600 \text{ MeV}$$

• A pole at threshold require $V_{\Sigma\Sigma} = G_{\Sigma\Sigma}(M_{\Sigma\Sigma})$, then we take,

$$V_{\Sigma\bar{\Sigma}}^{-1} = G_{\Sigma\bar{\Sigma}}(2M_{\Sigma}) + \alpha M_{\Sigma}^2,$$

For a>0, we get a bound state.

For a<0, we get a cusp structure.

We take a=0.001 in the following calculation, but the same conclusions are obtained for different value of a.

$\pi\Sigma$ invariant mass distribution

$$\mathcal{M}(M_{\pi\Sigma}, M_{\pi\bar{\Sigma}}) = V_p \left(h_{\pi\Sigma} + T_{\pi\Sigma} + T_{\pi\bar{\Sigma}} + T_{p\bar{p}} + T_{\Sigma\bar{\Sigma}} \right)$$
Full

There is a small effect in the $\pi\Sigma$ invariant mass distribution.

X_{c0} and J/ ψ decay process

