

Λ_c^+ decays at **BESIII**

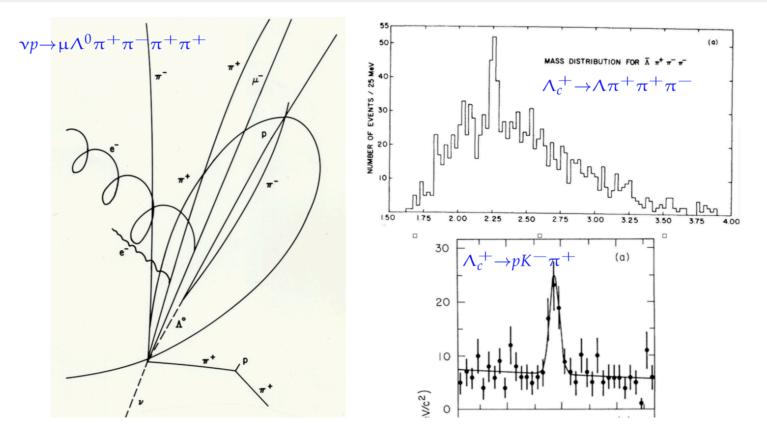
李培荣

On behalf of BESIII Collaboration

¹University of Chinese Academy of Sciences ²LanZhou University

2018.04.20 @ Baryonic spectroscopy Workshop

Outline

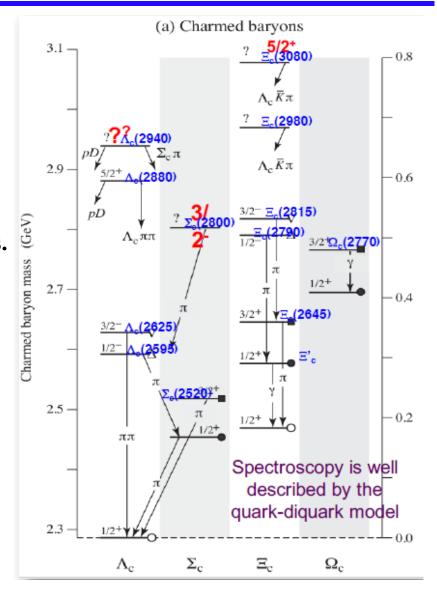

• Introduction to the lightest charm baryon Λ_c^+

• Λ_c^+ hadronic decays

Prospect of next round data taking

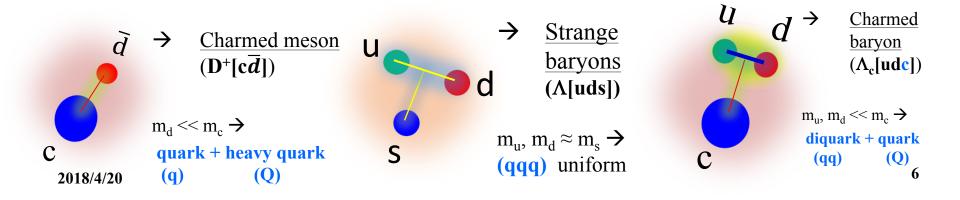
Summary

The discovery of Λ_c^+

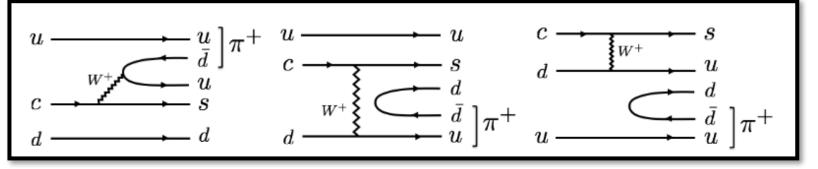


- First hint of charmed baryon $\Sigma_c^{++} \rightarrow \Lambda_c^+ \pi^+$ at BNL in 1975. PRL 34, 1125 (1975)
- The Λ_c^+ is firstly evidenced at Fermi Lab in 1976. PRL 37, 882 (1975)
- MarkII firstly established Λ_c^+ in 1980. PRL 44, 10 (1980)

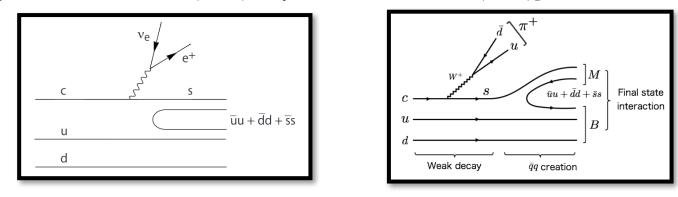
2018/4/20


The charmed baryon family

- Singly charmed baryons • Established ground states: $\Lambda_{\rm c}^+, \Sigma_{\rm c}, \Xi_{\rm c}$, $\Omega_{\rm c}$ • Excited states are being explored Doubly charmed baryons(Ξ_{cc}^{++}) observed recently. No observations of triply charmed baryons. Λ_{c}^{+} decay only weakly, many recent experimental progress since 2014. $\Sigma_c: B(\Sigma_c \to \Lambda_c^+ \pi) \sim 100\%, B(\Sigma_c \to \Lambda_c^+ \gamma)?$
- ✓ Ξ_c : decay only weakly; no absolute BF measured, most relative to $\Xi^- \pi^+(\pi^+)$.
- ✓ Ω_c :decay only weakly; no absolute BF measured.

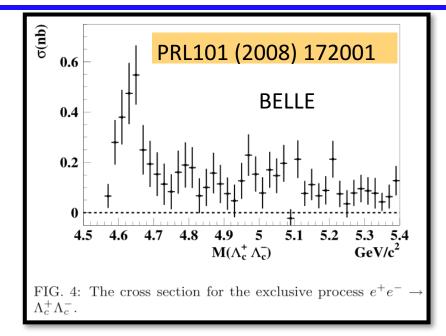

Λ_c^+ :cornerstone of charmed baryon spectroscopy

- The lightest charmed baryon:2286.48MeV.
- Most of the charmed baryons will eventually decay to Λ_c^+ .
- The Λ⁺_c is one of important tagging hadrons in c-quark counting in the productions at high energy experiment.
- Also important input to Λ_b (including Ξ_{cc}^{++}) physics as Λ_b decay preferentially to Λ_c . ==>Important input to B physics and V_{ub} calculations.
- Λ_c^+ may provide more powerful test on internal dynamics than D/Ds does !
- Quark model picture: a heavy quark (c) with an unexcited spin-zero diquark (*u-d*). Diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark(HQET).


Λ_c^+ weak decays

• Contrary to charmed meson, W-exchange contribution is important.(No color suppress and helicity suppress)

• The Λ_c weak decay acts as isospin filter


For example, Oset suggests to study the Λ(1405) through Λ_c→π Λ(1405) and Λ(1405) e v, which filters isospin I=0 from contamination of the I=1.
 [Phys. Rev. C 92, 055204 (2015), Phys. Rev. D 93, 014021 (2016)]

Exotic search in $\Lambda_c^+ \rightarrow \phi p \pi$ an analog to the Pc states in $\Lambda_b \rightarrow J/\psi p K^-_{2018/4/20}$

BESIII data taking $(a) \Lambda_c^+ \Lambda_c^-$ threshold

- In 2014, BESIII took data above Λ_c pair threshold and run machine at 4.6GeV with excellent performance!
- This is a marvelous achievement of **BEPCII** !
- ~ $106 \times 10^3 \Lambda_c^+ \Lambda_c^-$ pairs make sensitivity to 10^{-3} .
- First direct measurement on Λ_c^+ BFs at threshold.
- Collect more Λ_c^+ data are in the schedule.

Energy(GeV)	lum.(pb ⁻¹)
4.575	~48
4.580	~8.5
4.590	~8.1
4.6	~ 567 8

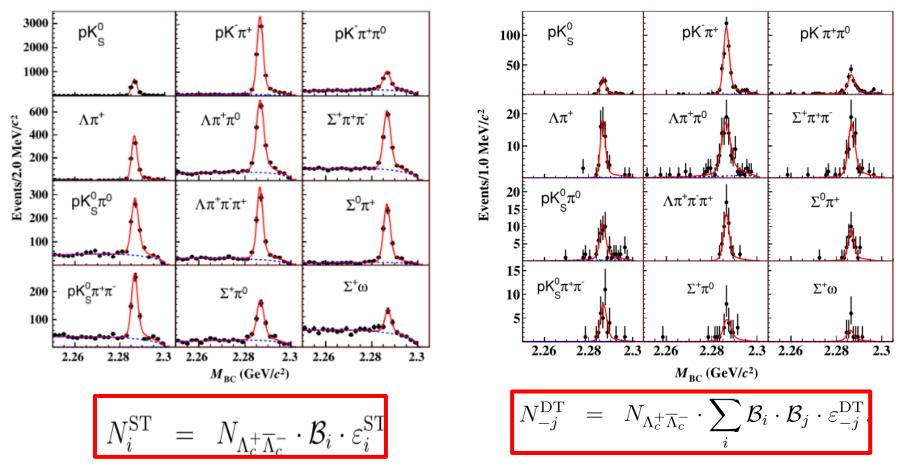
Production near threshold and double tag technique

- E_{cms} -2 $M_{\Lambda c}$ =26MeV only!
- $\Lambda_c^+ \Lambda_c^-$ produced in pairs with no additional accompany hadrons.
 - $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda^+_c \Lambda^-_c$
- Clean backgrounds and well constrained kinematics.
- Typically, two ways to study Λ_c^+ decays:
 - Single Tag(ST): Reconstruct only one of the Λ_c -pair.
 =>relative higher backgrounds
 =>Higher efficiencies
 =>Full reconstruction
 - Double Tag(DT): Find both of $\Lambda_c^+ \Lambda_c^-$
 - =>Smaller backgrounds.
 - =>Missing technique.
 - =>Lower efficiencies.
 - ^{2018/4/29}ystematic in tag side are mostly cancelled.

e⁺

 π^{-}

π


 Λ_c^+

 Λ_c^-

Several popular variables

- $\Delta E = E_{\Lambda c} E_{\text{beam}}$ K- π^{+} **Beam-Constrained-Mass;** р $M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\vec{p}_{\rm Ac}|^2}$ $E_{\text{miss}} = E_{\text{beam}} - E_{\text{h}}$ e+ Λ_c^+ $\vec{p}_{\rm miss} = \vec{p}_{\rm Ac} - \vec{p}_{\rm h}$ Λ_c^- • $\vec{p}_{\Lambda c} = -\vec{p}_{tag} \cdot \sqrt{E_{beam}^2 - m_{\Lambda c}^2}$ $U_{\text{miss}} = E_{\text{miss}} - |\vec{p}_{\text{miss}}|$ X • $M_{\rm miss} = \sqrt{E_{\rm miss}^2 - |\vec{p}_{\rm miss}|^2}$ h
- \hat{p}_{tag} is the direction of the momentum of the singly tagged Λ_c .
- $E_{\rm h}(p_{\rm h})$ are the energy(momentum) of h which are measured in e⁺e⁻ system.
- $m_{2018/4/20}$ is the mass of the Λ_c^+ quoted from the PDG.

Λ_c^+ reconstruction at BESIII

- The BFs are extracted via the double-tag technique.
- BF is determined independent of $N_{\Lambda_c^+\Lambda_c^-}$ and the systematic due to the reconstruction of ST side to be canceled.
- ~15400 ST yields and ~1000 DT yields 2018/4/20

Results of 12 Λ_c^+ hadronic decay BFs

PRL 116, 052	001 (2016)			
I KL 110, 032	Mode	This work (%)	PDG (%)	BELLE B
	_pK_5^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
	$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
	$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
	$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35	
	$pK^{-}\pi^{+}\pi^{0}$	$4.53 \pm 0.23 \pm 0.30$	$\textbf{3.4} \pm \textbf{1.0}$	567pb ⁻¹ @ 4.6 GeV
	$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
	$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
	$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
	$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
	$\Sigma^{+}\pi^{0}$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
	$\Sigma^{+}\pi^{+}\pi^{-}$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
	$\Sigma^+ \omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

- No absolute measurement (Model independently) on Λ_c^+ BFs at threshold after Λ_c^+ discovered(30 years ago).
- A least square global fit taking into account correlations over different modes are performed to improve the precision.
- The precision of $B(pK^-\pi^+)$ are comparable with Belle's
- The precisions of Λ_c decay rates is reaching to the level of charmed mesons!
- N $_{2018/4/20\Lambda_{c}}$ as a byproduct determined to be $(105.9 \pm 4.8 \pm 0.5) \times 10^{3}$

历史上对 Λ_c^+ →pKπ分支比的测量

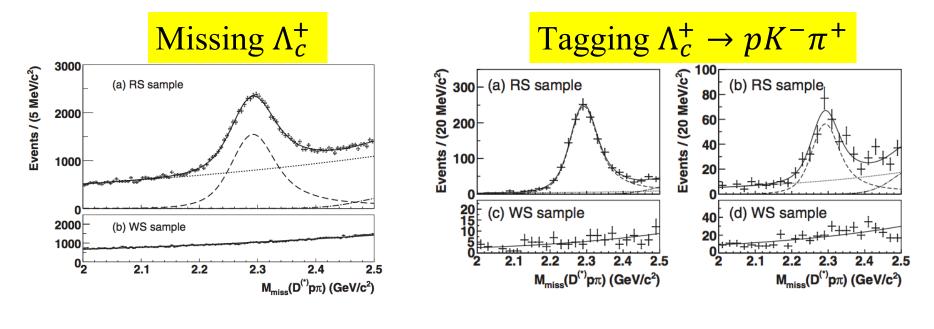
• ARGUS 和 CLEO 1988-1996年进行的测量 $B(\overline{B} \to \Lambda_c^+ X) \cdot B(\Lambda_c^+ \to pK^-\pi^+) = (0.30 \pm 0.12 \pm 0.06)\% \quad (0.273 \pm 0.051 \pm 0.039)\%$ $B(\Lambda_c^+ \to pK^-\pi^+) = (4.14 \pm 0.91)\%$

$$\sigma(e^+e^- \to \Lambda_c^+ X) \cdot B(\Lambda_c^+ \to \Lambda \ell^+ \nu_{\ell}) = (4.15 \pm 1.03 \pm 1.18) \text{ pb and } (4.77 \pm 0.25 \pm 0.66) \text{ pb.}$$

$$\sigma(e^+e^- \to \Lambda_c^+ X) \cdot B(\Lambda_c^+ \to pK^-\pi^+) = (11.2 \pm 1.3) \text{ pb}$$

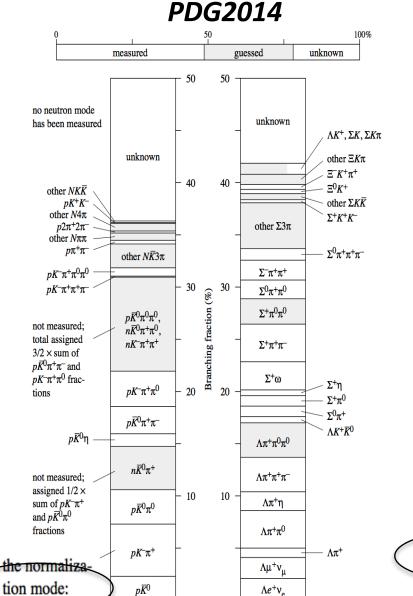
$$R \equiv B(\Lambda_c^+ \to pK^-\pi^+)/B(\Lambda_c^+ \to \Lambda \ell^+ \nu_{\ell}) = 2.40 \pm 0.43$$

$$B(\Lambda_c^+ \to pK^-\pi^+) = RfF \frac{\Gamma(D \to X \ell^+ \nu_{\ell})}{1 + |V_{cd}/V_{cs}|^2} \cdot \tau(\Lambda_c^+) = (7.3 \pm 1.4 \pm 2.2)\%.$$


平均=>B($\Lambda_c^+ \rightarrow pK\pi$)=(5.0±1.3)% (PDG2000)

• 2000年CLEO B($\Lambda_c^+ \rightarrow pK\pi$)=(5.0±1.3)% $\overline{D} \,\overline{p} \,\Lambda_c^+$

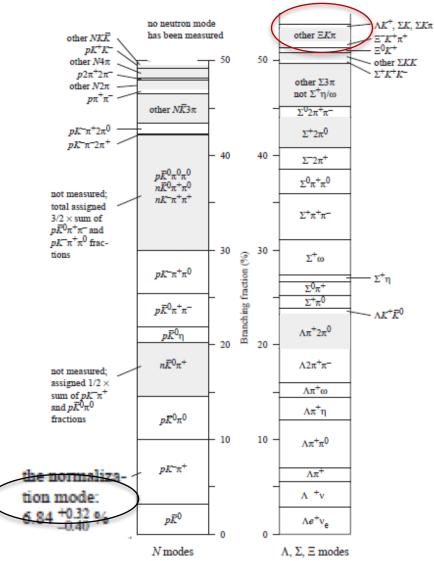
● 均为模型依赖的测量


First precise measurement of $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$

The number of Λc baryons is determined by reconstructing the recoiling $D^{(*)-}\bar{p}\pi^+$ system in events of the type $e^+e^- \rightarrow D^{(*)-}\bar{p}\pi^+\Lambda_c^+$

$$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = \frac{N(\Lambda_c^+ \to pK^-\pi^+)}{N_{\rm inc}^{\Lambda_c} f_{\rm bias} \varepsilon(\Lambda_c^+ \to pK^-\pi^+)} = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$$

BELLE

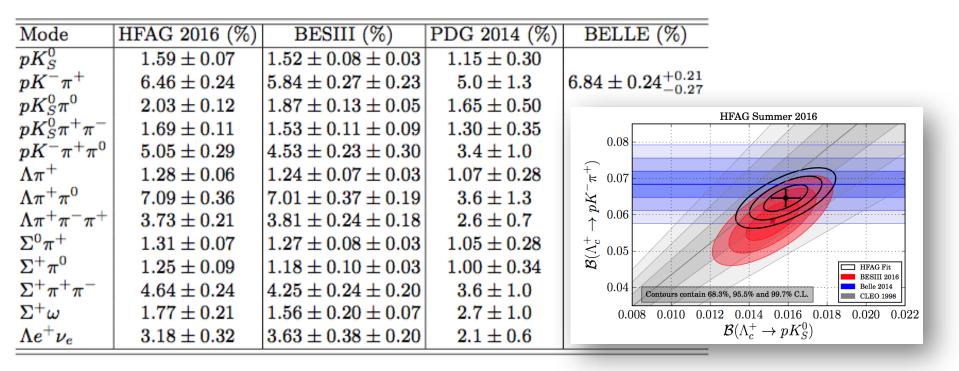


0

N modes

 Λ, Σ, Ξ modes

Total BF overflows after taking into account BEELE's $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$?


2018/4/20

5.0 ± 1.3 %

HFLAV Fit to world BF data

- A fitter to constrain the 12 hadronic BFs and 1 SL BF, based on all the existing experimental data
- Correlated systematics are fully taken into account

Eur. Phys. J. C77, 895 (2017)

The least overall χ^2 /ndf=30.0/23=1.3

Precise $B(pK^{-}\pi^{+})$ is useful for constrain V_{ub} determined via baryonic mode

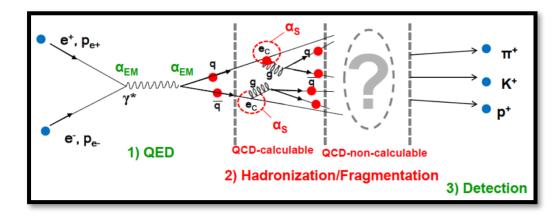
Experimental precision reaches of the charmed hadrons

	Golden hadronic mode	δB/B	Golden SL mode	δΒ/Β
D^0	$B(K\pi)=(3.88\pm0.05)\%$	1.3%	$B(Kev) = (3.55 \pm 0.05)\%$	1.4%
D^+	$B(K\pi\pi)=(9.13\pm0.19)\%$	2.1%	$B(K^0ev) = (8.83 \pm 0.22)\%$	2.5%
D _s	B(KKpi)=(5.39±0.21)%	3.9%	$B(\phi ev) = (2.49 \pm 0.14)\%$	5.6%
Λ_{c}	$B(pK\pi)=(5.0 \pm 1.3)\%(PDG2014)$ =(6.8 ± 0.36)% (BELLE) =(5.84 ± 0.35)% (BESIII) =(6.46 ± 0.24)% (HFAG)	26% 5.3% 6.0% 3.7%	$B(Aev) = (2.1 \pm 0.6)\% (PDG2014)$ = (3.63 ± 0.43)% (BESIII) = (3.18 ± 0.32)% (HFAG)	29% 12% 10%

- The precisions of Ac decay rates is reaching to the level of charmed mesons!
- More data input will further constrain the HFLAV fit.
- However, search for more unknown modes are important 2018/4/20

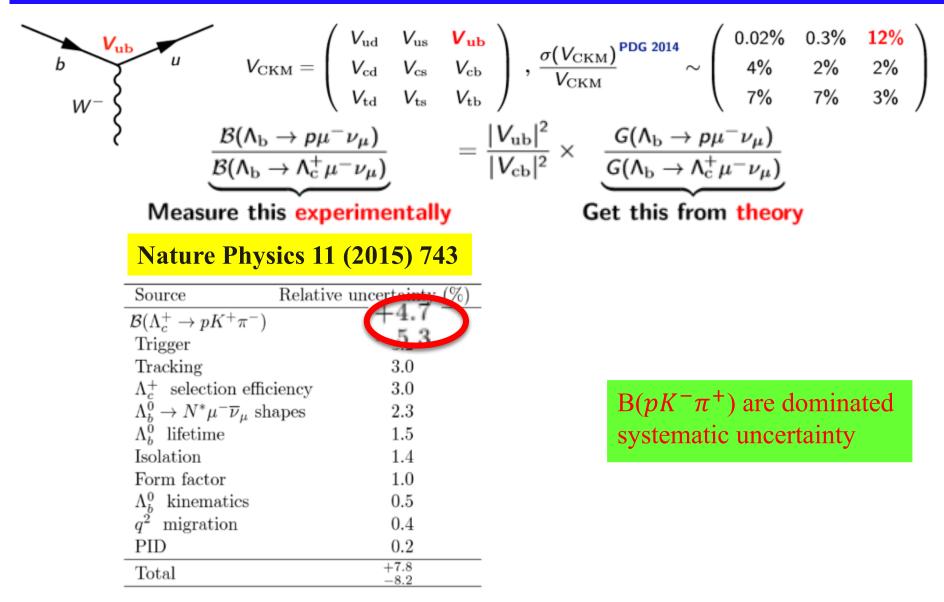
Important Input for b physics

stringent Fragmentation Function of b/c quark to baryon


[Eur. Phys. J. C12, 225 (2000); Eur. Phys. J. C 16, 597 (2000); Phys. Rev. D 85, 032008 (2012), Phys. Rev.D 66, 091101 (2002).]

• Fragmentation Function (FF) is an important probe in experiment to test and calibrate QCD theory.

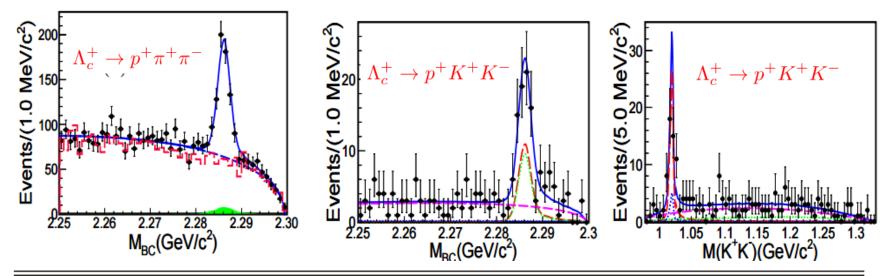
PhysRevD.85.032008


TABLE IV. Systematic uncertainties on the absolute scale of $f_{\Lambda_h}/(f_u + f_d)$.

Source	Error (%)
Bin-dependent errors	2.2
$\mathcal{B}(\Lambda_h^0 \to D^0 p X \mu^- \bar{\nu})$	2.0
Monte Carlo modelling	1.0
Backgrounds	3.0
Tracking efficiency	2.0
$\Gamma_{\rm sl}$	2.0
Lifetime ratio	2.6
PID efficiency	2.5
Subtotal	6.3
$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$	26.0
Total	26.8

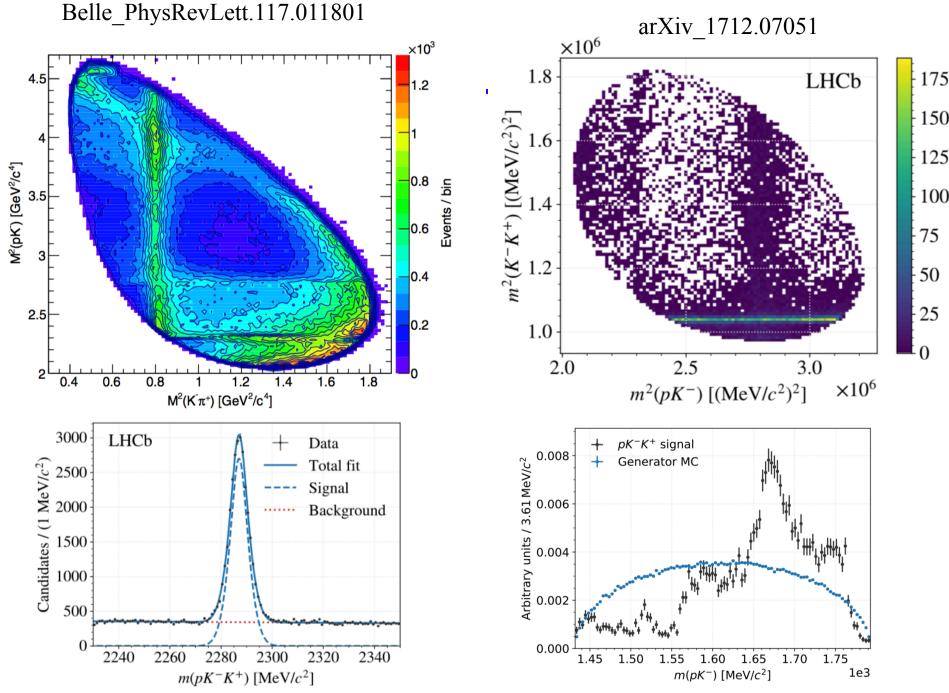
- Now B($pK^{-}\pi^{+}$) are still dominated (6%)
- X5 data=> small than 3%

CKM matrix element V_{ub}



Singly Cabibbo-Suppressed Decays of $\Lambda_{c}^{+} \rightarrow p\pi^{+}\pi^{-}$ and $\Lambda_{c}^{+} \rightarrow pK^{+}K^{-}$

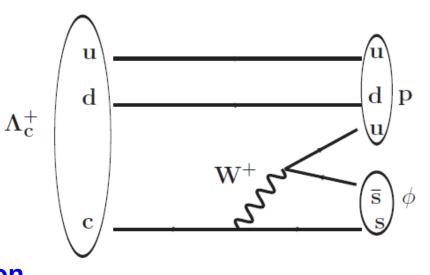
• **ST method:** $\Lambda_c^+ \rightarrow pK^-\pi^+$ as ref. mode


PRL117,232002(2016)

- First observation of SCS decay of $\Lambda_c^+ \rightarrow p \pi^+ \pi^-$
- Improved measurement on the SCS decays $\Lambda_c^+ \rightarrow pK^+K^-$
- $\Lambda_c^+ \rightarrow p\phi$ are sensitive to non-factorable contributions from W-exchange diagrams

Decay modes	$\mathcal{B}_{\mathrm{mode}}/\mathcal{B}_{\mathrm{ref}}$ (This work)	$\mathcal{B}_{mode}/\mathcal{B}_{ref}$ (PDG average)
$\Lambda_c^+ o p \pi^+ \pi^-$	$(6.70 \pm 0.48 \pm 0.25) imes 10^{-2}$	$(6.9 \pm 3.6) \times 10^{-2}$
$\Lambda_c^+ o p {oldsymbol \phi}$	$(1.81 \pm 0.33 \pm 0.13) \times 10^{-2}$	$(1.64 \pm 0.32) imes 10^{-2}$
$\Lambda_c^+ \rightarrow p K^+ K^- \text{ (non-}\phi\text{)}$	$(9.36 \pm 2.22 \pm 0.71) \times 10^{-3}$	$(7 \pm 2 \pm 2) \times 10^{-3}$
-	\mathcal{B}_{mode} (This work)	\mathcal{B}_{mode} (PDG average)
$\Lambda_c^+ o p \pi^+ \pi^-$	$(3.91\pm0.28\pm0.15\pm0.24) imes10^{-3}$	$(3.5 \pm 2.0) imes 10^{-3}$
$\Lambda_c^+ o p {oldsymbol \phi}$	$(1.06\pm0.19\pm0.08\pm0.06) imes10^{-3}$	$(8.2 \pm 2.7) imes 10^{-4}$
$\Lambda_c^+ \to p K^+ K^- \text{ (non-}\phi)$	$(5.47 \pm 1.30 \pm 0.41 \pm 0.33) imes 10^{-4}$	$(3.5 \pm 1.7) \times 10^{-4}$

LHCb_JHEP03(2018)043

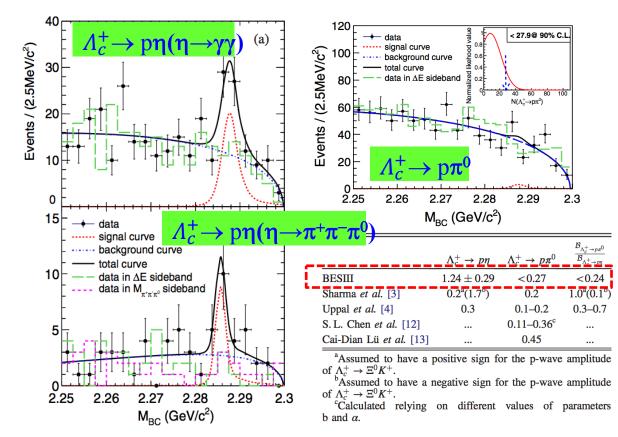

2018/4/20

 $\Lambda_{c}^{+} \rightarrow p\phi$: test large-N_c expansion

• Charmed meson decays

 $a_1 = c_1(\mu) + c_2(\mu) (1/N_c + \chi_1(\mu)),$ $a_2 = c_2(\mu) + c_1(\mu) (1/N_c + \chi_2(\mu)),$

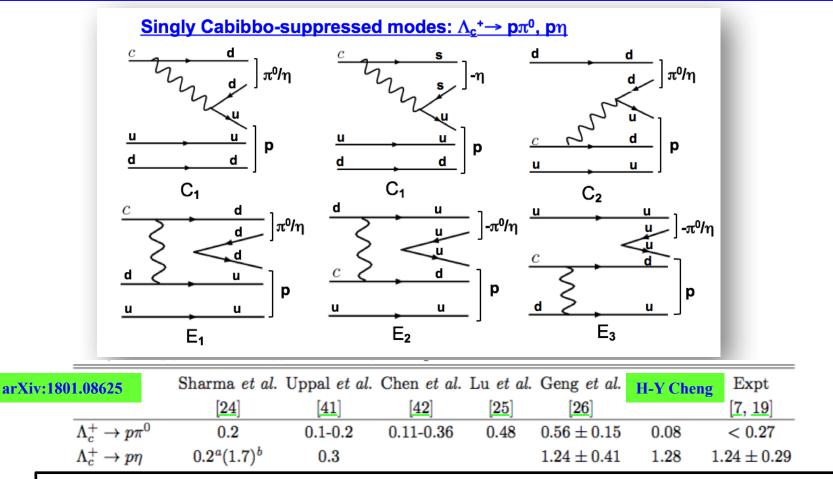
If $\chi_1 = \chi_2 = 0$, naïve factorization If $\chi_1 = \chi_2 \approx -1/N_c$, large-N_c factorization



- $\Lambda_c^+ \rightarrow p\phi$ proceeds **only** through internal W-emission diagram.
- Input BF \Rightarrow $|a_2|=0.45\pm0.03$, Nc \approx 7, close to $a_2(m_c)\approx$ -0.44(from theory)
- 1/N_c is also applicable to charmed baryon sector.
- BESIII measurement are consistent with previous measurement.

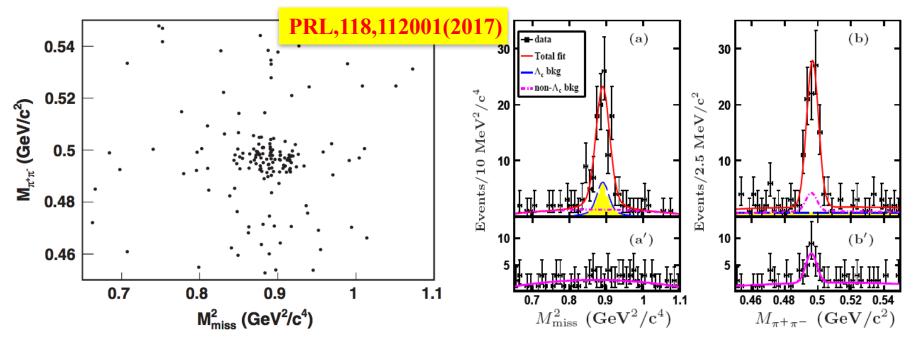
arXiv:1801.08625

Singly Cabibbo-Suppressed Decays of $\Lambda_c^+ \rightarrow p\pi^0$ and $\Lambda_c^+ \rightarrow p\eta$


- $B(\Lambda_c^+ \to p\eta) >> B(\Lambda_c^+ \to p\pi^0)$ in the SU(3) flavor symmetry generated by u,d and s
- Their relative size is essential to understand the interference of different non factorizable diagrams.

PRD,111102(R) (2017)

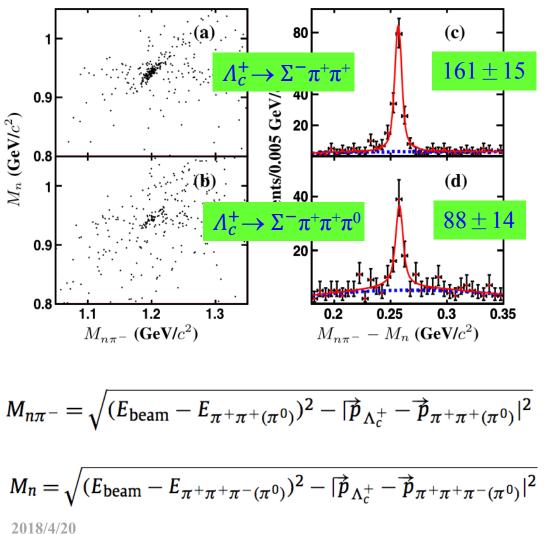
- First evidence for $\Lambda_c^+ \rightarrow p\eta$ with 4.2σ
 - No signal seen in $\Lambda_c^+ \rightarrow p\pi^0$
 - Predicted BFs vary under different theoretical modes(SU(3) symmetry and FSI)


 $B(\Lambda_{c}^{+} \rightarrow p\pi^{0})$ v.s. $B(\Lambda_{c}^{+} \rightarrow p\eta)$

- Large constructive(destructive) interference between the factorizable and nonfactorizable amplitudes for both S- and P-waves.
- More precise comparison of the two BFs are desired to explore the interference of different non-factorizable diagrams
- BESIII result support the theoretic prediction.

Observation of $\Lambda_c^+ \rightarrow n K_s^0 \pi^+$

• First direct measurement of Λ_c^+ decay involving the neutron in the final state.

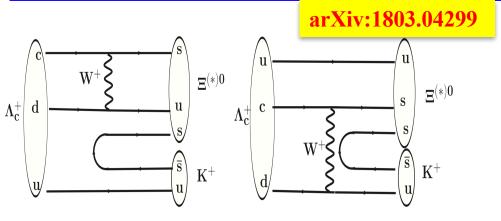

• Peaking background from $\Lambda_c^+ \rightarrow \Sigma^+ (\rightarrow n\pi^+) \pi^+\pi^-$

- 2-D fitting extract 83 ± 11 net signals
- $B[\Lambda_c^+ \rightarrow nK_s^0 \pi^+] = (1.82 \pm 0.23 \pm 0.11)\%$
- $\mathbf{B}[\Lambda_{c}^{+} \rightarrow \mathbf{n}K^{0}\pi^{+}]/\mathbf{B}[\Lambda_{c}^{+} \rightarrow \mathbf{p}K^{-}\pi^{+}] = 0.62 \pm 0.09; \ \mathbf{B}[\Lambda_{c}^{+} \rightarrow \mathbf{n}K^{0}\pi^{+}]/\mathbf{B}[\Lambda_{c}^{+} \rightarrow \mathbf{p}K^{0}\pi^{0}] = 0.97 \pm 0.16$

• A test of final state interactions and isospin symmetry in the charmed baryon sector. [PRD93, 056008 (2016)] 2018/4/20

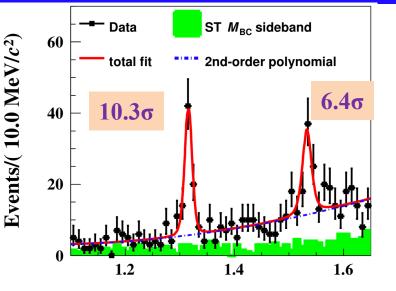
Observation of $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+ \pi^0$

First observation of a large-rate forgotten channel $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^0$ (CF decay)



PLB 772, 388 (2017)

- Λ_c^+ decay involving the neutron in the final state(missing technique).
- $B(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^0) = (2.11 \pm 0.33)$ \$\pm 0.14)%
- $B(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+) = (1.81 \pm 0.17 \pm 0.09)\%$


more precise than old result $(2.3 \pm 0.4)\%$

W-exchange-only process $\Lambda_c^+ \to \Xi^{0(*)}K^+$

- $\Lambda_c^+ \to \Xi^{0(*)} K^+$ decay only through Wexchange.
- W-exchange are non-factorable in theoretic calculation.
- Large cancellation both in S-wave and P-wave.
- First absolute measurement, using world largest on-threshold data at \sqrt{s} =4.6GeV
- Excited states in higher side is more interesting and will be confirmed by next round data taking.

2018/4/20

$$M_{\rm miss}({\rm GeV}/c^2)$$

Decay	Measured $\frac{\mathcal{B}(\Lambda_c^+ \to \Xi^{(*)0} K^+)}{\mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)}$	Predicted $\mathcal{B}(\Lambda_c^+ \to \Xi^{(*)0} K^+)$
$\Xi^0 K^+$	$(7.8 \pm 1.8)\% [18]$ $(5.0 \pm 1.2) \times 10^{-3}$	$\begin{array}{c} 2.6 \times 10^{-3} \ [4] \\ 3.6 \times 10^{-3} \ [6] \\ 3.1 \times 10^{-3} \ [10] \\ 1.0 \times 10^{-3} \ [14] \\ 1.3 \times 10^{-3} \ [15] \end{array}$
$\Xi^{*0}K^+$	$(5.3 \pm 1.9)\% [18] (9.3 \pm 3.2)\% [19, 20] (4.0 \pm 1.0) \times 10^{-3} =$	$ \begin{array}{c} 5.0 \times 10^{-3} \ [4] \\ 0.8 \times 10^{-3} \ [16] \\ 0.6 \times 10^{-3} \ [17] \end{array} $
n ()	$(4.0 \pm 1.0) \times 10^{-5}$	$26 + 0.20 + 10^{-3}$

 $\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+) = (5.90 \pm 0.86 \pm 0.39) \times 10^{-3}$

$$\mathcal{B}(\Lambda_c^+ \to \Xi(1530)^0 \bar{K^+}) = (5.02 \pm 0.99 \pm 0.31) \times 10^{-3}$$
 27

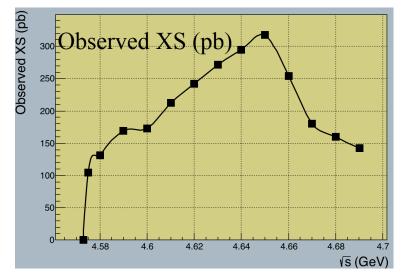
More Λ_c data set ?

A combined data taking proposal of studying Λ_c^+

Proposal of precise study of the charmed baryon Λ_c^+ decays

Hai-Bo Li, Peirong Li, Lei Li, <u>Xiao-Rui Lyu</u>, Haiping Peng, Yangheng Zheng

Analyticity Violation in $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$? A request for additional integrated luminosity at threshold


Rinaldo Baldini, Marco Maggiora, Guangshun Huang, RongGang Ping, Weimin Song, Weiping Wang, Liang Yan, Zhengguo Zhao, Xiaorong Zhou, Kai Zhu, and the BESIII Italian Collaboration Team

BESIII collaboration meeting at SJTU 2015.6.14

We propose one year dedicated data taking at Λ_c threshold

Our proposal

- > A one-year data taking of 3fb⁻¹ above Λ_c^+ pair mass threshold: >= 4.6 GeV
- > This corresponds to 5~10 times of the number of Λ_c^+ pairs in existing data

Energy (MeV)	Observed XS (pb)	Requested Lum. (pb ⁻¹)	Days	Л _с pairs (K)	Times of current data set
4600	172 ± 3	3000	180	510	5.1
4610	210	3000	180	630	6.3
4620	245	3000	180	735	7.3
4630	270	3000	180	810	8.1
4640	320	3000	180	960	9.6

Precision Prospects (1)

Push the precisions to the level of those of D/Ds mesons. Hadronic decays

- PWA analysis of hadronic decays: hadron spectroscopy
- studies of the modes involving $n/\Sigma/\Xi$ particles
- more Cabbibo-suppressed modes, esp. W-exchange only process
 SL decays :
- so far, only $\Lambda e^+ v_e$ mode is measured; How about pK⁻ $e^+ v_e$?
- many more SL modes can be established

	golden mode	δB/B	SL	δB/B
D0	B(Kpi)=(3.88±0.05)%	1.3%	B(K e ν)=(3.55±0.05)%	1.4%
D+	B(Kpipi)=(9.13±0.19)%	2.1%	B(KO e v)=(8.83 \pm 0.22)%	2.5%
Ds	B(Kkpi)=(5.39±0.21)%	3.9%	B(phi e ν)=(2.49±0.14)%	5.6%
$\Lambda_{ m c}$	B(pKpi)=(5.0±1.3)% (PDG2014) =(6.8±0.36)% (BELLE) =(5.84±0.35)% (BESIII) =(5.84±0.18)% (new BESIII)	26% 5.3% 6.0% 3.0%	$B(\Lambda ev) = (2.1 \pm 0.6)\% (PDG2014)$ = (3.63 \pm 0.43)% (BESIII) = (3.63 \pm 0.20)% (new BESIII)	29% 12% 5.4%
18/4/20		<u> </u>		

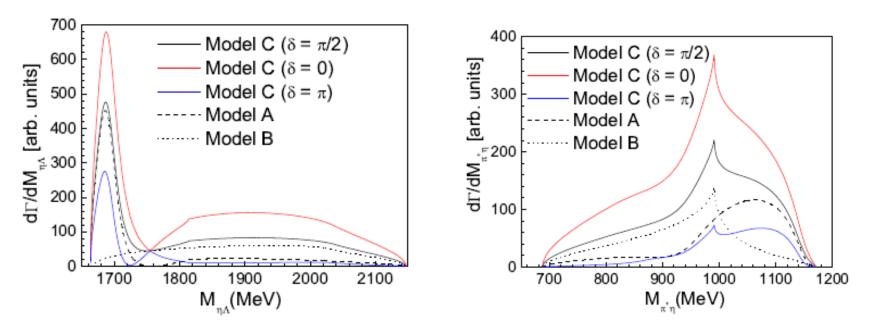
Precision Prospects (2)

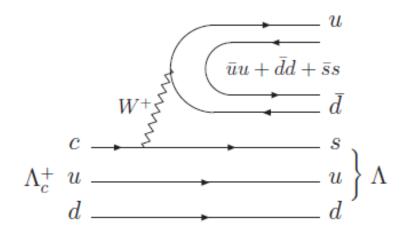
- Prospects with the proposed new Λ_c^+ data set
 - ✓ precise measurement of the W-exchange and W-internalemission only process: to test the quark-diquark configuration *important to understand the non-factorizable contribution*
 - ✓ establishment of more SL and neutron modes: nlv, pKlv, ...
 - \checkmark search for more decay modes unexplored yet in experiment

A good chance for BESIII to systematically enhance our knowledge on Λ_c^+ decays (to the level of D/D_s mesons)

- Better understanding of baryonic structure
- many new observations
- refresh the precisions in old data

Eur.Phys.J. C76 (2016) no.9, 496

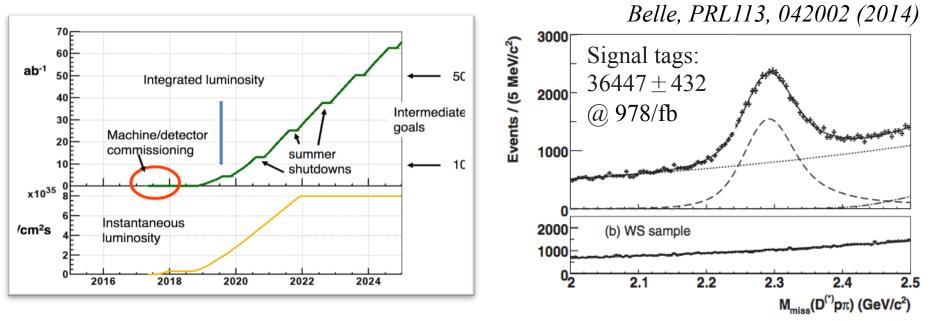

The $a_0(980)$ and $\Lambda(1670)$ in the $\Lambda_c^+ \to \pi^+ \eta \Lambda$ decay


Ju-Jun Xie^{1,2} and Li-Sheng Geng^{3,2,*}

¹Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ²State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China ³School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, China (Dated: April 14, 2016)

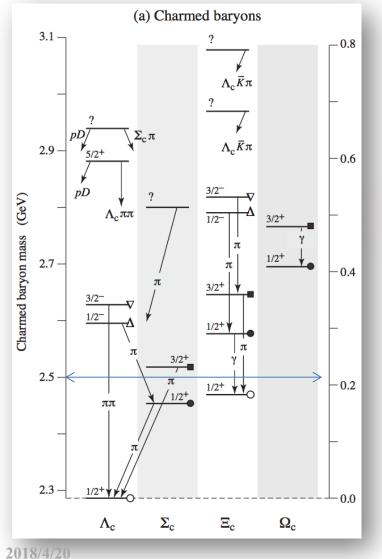
We propose to study the $a_0(980)$ and the $\Lambda(1670)$ resonances in the $\Lambda_c^+ \to \pi^+\eta\Lambda$ decay via the final state interactions of the $\pi^+\eta$ and $\eta\Lambda$ pairs. The weak interaction part proceeds through the c quark decay process: $c(ud) \to (s + u + \bar{d})(ud)$, while the hadronization part takes place in two different mechanisms. In the first mechanism, the sud cluster picks up a $q\bar{q}$ pair from the vacuum to form the $\eta\Lambda$ meson-baryon pair while the ud pair from the weak decay hadronizes into a π^+ . In the second, the sud cluster turns into a Λ , while the $u\bar{d}$ pair from the c decay picks up a $q\bar{q}$ pair and hadronizes into a meson-meson pair ($\pi\eta$ or $K\bar{K}$). Because the final $\pi^+\eta$ and $\eta\Lambda$ states are in pure isospin I = 1 and I = 0 combinations, the $\Lambda_c^+ \to \pi^+\eta\Lambda$ decay can be an ideal process to study the $a_0(980)$ and $\Lambda(1670)$ pesonances. Describing the final state interaction in the chiral unitary approach, we find that the $\pi^+\eta$ and $\eta\Lambda$ invariant mass distributions, up to an arbitrary normalization, show clear cusp and peak structures, which can be associated with the $a_0(980)$ and $\Lambda(1670)$ resonances and can in principle be test by facilities such as BEPCII.

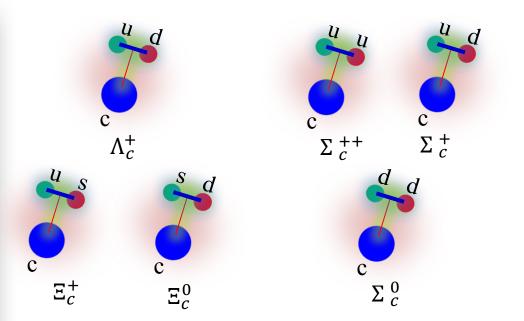
PACS numbers: 13.75.Jz, 14.20.-c, 11.30.Rd



new $\Lambda^*(1670)3/2^- \rightarrow \Lambda \eta$ with width of 1.5 MeV [us]{ds} s

BESIII present data only see some **Hint**, **more data is needed!!**


Competition from Belle & BelleII



- Belle tags ~36K Λ_c^+ , while BESIII now tags 15K Λ_c^+ (567/pb@4.6GeV)
- By middle of 2019, Belle-II will have 5/ab data, 5x of BELLE data;
 → 180K Λ⁺_c tagging; 12x BESIII data
- We shall have 10x more Λ_c^+ pairs before Belle-II begins data taking at the end of 2018
- Many precise measurements at BESIII will reach to the level of systematic dominated
 - → BESIII has advantages on backgrounds and systematics

Energies go up to 5GeV

The charmed baryon spectroscopies

If BEPCII can access energies up to 5GeV, we can study the Λ_c , Σ_c and Ξ_c at threshold.

- Study on the isospin triplet Σ_c
- First absolute measurements of Ξ_c decays

Partiale Width of decay of Σ_c^+

(MeV)

Decay	Expt.	HHChPT	Tawfiq	Ivanov	Huang	Albertus
	[3]	[10]	et al. $\left[25\right]$	et al. [26]	et al. $[27]$	et al. [28]
$\Sigma_c^{++} \to \Lambda_c^+ \pi^+$	$1.89\substack{+0.09\\-0.18}$	input	1.51 ± 0.17	2.85 ± 0.19	2.5	2.41 ± 0.07
$\Sigma_c^+ \to \Lambda_c^+ \pi^0$	< 4.6	$> 2.3^{+0.1}_{-0.2}$	1.56 ± 0.17	3.63 ± 0.27	3.2	2.79 ± 0.08
$\Sigma_c^0 \to \Lambda_c^+ \pi^-$	$1.83\substack{+0.11 \\ -0.19}$	$1.9\substack{+0.1 \\ -0.2}$	1.44 ± 0.16	2.65 ± 0.19	2.4	2.37 ± 0.07
$\Sigma_c(2520)^{++} \to \Lambda_c^+ \pi^+$	$14.8^{+0.3}_{-0.4}$	$14.5_{-0.8}^{+0.5}$	11.77 ± 1.27	21.99 ± 0.87	8.2	17.52 ± 0.75
$\Sigma_c(2520)^+ \to \Lambda_c^+ \pi^0$	< 17	$15.2^{+0.6}_{-1.3}$			8.6	17.31 ± 0.74
$\Sigma_c(2520)^0 \to \Lambda_c^+ \pi^-$	$15.3^{+0.4}_{-0.5}$	$14.7^{+0.6}_{-1.2}$	11.37 ± 1.22	21.21 ± 0.81	8.2	16.90 ± 0.72

Precise determination of $\Gamma(\Sigma_c^+ \to \Lambda_c^+ \pi^0)$ can be used for for testing heavy quark symmetry and chiral symmetry Wise; Yan et al.; Burdman, Donoghue ('92)
 measurements of $\Sigma_c^+ \& \Sigma_c(2520)$ widths by Belle [PRD89, 091102 (2014)]: $\Gamma(\Sigma_c^+ \to \Lambda_c^+ \pi^0)$ is not easy for Belle; BESIII has potential to improve it.

BESIII will search for the EM decay

Decay	HHChPT	Ivanov	Bañuls	Tawfiq	Dey	Majethiya	Fayyazuddin	Aliev
	+QM	et al.	et al.	et al.	et al.	et al.	et al.	et al.
$\Sigma_c^+ \to \Lambda_c^+ \gamma$	88	60.7 ± 1.5		87	98.7	60.1 - 85.6	89.0	

(keV)

Ξ_c (usc): 3-star particle in PDG

No absolute branching fractions have been measured/calculated

	Mode	Fraction (Γ_i / Γ)		Mode	Fraction (Γ_i / Γ)
$\Sigma^{-}\pi$	blute branching fractions have been me t^+ .Cabibbo-favored ($S = -2$) decays –		• No :	absolute branching fractions have been (2) decays – relative to $\mathcal{Z}^- \pi^+$	measured.The following are I
Γ ₁	$p \ge K_S^0$	0.087 ± 0.021	Γ_1	$pK^-K^-\pi^+$	0.34 ± 0.04
Γ ₂	$\Lambda \overline{K}^0 \pi^+$		F .	-	
Γ_3	$\Sigma(1385)^+\overline{K}^0$	1.0 ± 0.5	Γ_2	$pK^{-}\overline{K}^{*}(892)^{0}$	0.21 ± 0.05
Γ_4	$\Lambda K^{-}2 \pi^{+}$	0.323 ± 0.033	Γ_3	$pK^-K^-\pi^+$ (no \overline{K}^{*0})	0.21 ± 0.04
Γ_5	$\Lambda \overline{K}^* (892)^0 \pi^+$	< 0.16			20
Γ_6	<i>Σ</i> (138.	Very limited kr	nowledge	on their decay	C 28
Γ ₇	$\Sigma^+ K^- \pi^+$		lowledge	on then accay	3
		•	U	•	
-		ave onnortunity	to firstly f	fill un the deca	v tables
Г9	$\Sigma^+\overline{K}^*$ We have	ave opportunity	to firstly f	ill up the deca	y tables
Γ ₈ Γ ₉ Γ ₁₀	$\sum_{\substack{\Sigma^{0}K^{-}2\pi\\\Xi^{0}\pi^{+}}}^{\Sigma^{+}\overline{K}^{*}} We ha$	0.55 ± 0.16	-	•	
Γ ₉ Γ ₁₀ Γ ₁₁	$\sum_{\substack{\Sigma^{0}K^{-}2\pi\\ \Xi^{0}\pi^{+}\\ \Xi^{-}2\pi^{+}}}^{\Sigma^{+}\overline{K}^{+}} We ha$	•	Γ_8	$\Xi^-\pi^+$	DEFINEDAS
Γ_9 Γ_{10} Γ_{11} Γ_{12}	$\sum_{\substack{\Sigma^{0}K^{-}2\pi\\\Xi^{0}\pi^{+}\\\Xi^{-}2\pi^{+}\\\Xi(1530)^{0}\pi^{+}}}^{\Sigma^{+}\overline{K}^{*}}$ We have	0.55 ± 0.16 DEFINEDAS1 < 0.10	-	•	
Γ_9 Γ_{10} Γ_{11} Γ_{12} Γ_{13}	$\sum_{\substack{\Sigma^{+}\overline{K}^{*}\\\Sigma^{0}K^{-}2\pi\\\Xi^{0}\pi^{+}\\\Xi^{-}2\pi^{+}\\\Xi(1530)^{0}\pi^{+}\\\Xi^{0}\pi^{+}\pi^{0}}$	0.55 ± 0.16 DEFINEDAS1 < 0.10 2.3 ± 0.7	Γ_8	$\Xi^-\pi^+$	DEFINEDAS
Γ_9 Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14}	$\sum_{\substack{\Sigma^{0}K^{-}2\pi\\\Xi^{0}\pi^{+}\\\Xi^{-}2\pi^{+}\\\Xi(1530)^{0}\pi^{+}\\\Xi^{0}\pi^{+}\pi^{0}\\\Xi^{0}\pi^{-}2\pi^{+}}$	0.55 ± 0.16 DEFINEDAS1 < 0.10 2.3 \pm 0.7 1.7 \pm 0.5	Г ₈ Г9	$\frac{\Xi^{-}\pi^{+}}{\Xi^{-}\pi^{+}\pi^{-}}$	DEFINEDAS 3.3 ± 1.4
Γ_9 Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14} Γ_{15}	$\sum_{\substack{\Sigma^+\overline{K}^*\\\Sigma^0K^-2\pi\\\Xi^0\pi^+\\\Xi^-2\pi^+\\\Xi(1530)^0\pi^+\\\Xi^0\pi^+\pi^0\\\Xi^0\pi^-2\pi^+\\\Xi^0e^+\nu_e}$	0.55 ± 0.16 DEFINEDAS1 < 0.10 2.3 ± 0.7 1.7 ± 0.5 2.3 $^{+0.7}_{-0.8}$	Γ_8 Γ_9 Γ_{10} Γ_{11}	$\Xi^{-}\pi^{+}$ $\Xi^{-}\pi^{+}\pi^{-}$ $\Omega^{-}K^{+}$ $\Xi^{-}e^{+}\nu_{e}$	$\begin{array}{c} \textbf{DEFINEDAS:} \\ 3.3 \pm 1.4 \\ 0.297 \pm 0.024 \\ 3.1 \pm 1.1 \end{array}$
Γ_9 Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14} Γ_{15} Γ_{16}	$\Sigma^{+}\overline{K}^{*}($ $\Sigma^{0}K^{-}2\pi$ $\Xi^{0}\pi^{+}$ $\Xi^{-}2\pi^{+}$ $\Xi(1530)^{0}\pi^{+}$ $\Xi^{0}\pi^{+}\pi^{0}$ $\Xi^{0}\pi^{-}2\pi^{+}$ $\Xi^{0}e^{+}\nu_{e}$ $\Omega^{-}K^{+}\pi^{+}$	0.55 ± 0.16 DEFINEDAS1 < 0.10 2.3 ± 0.7 1.7 ± 0.5 2.3 $^{+0.7}_{-0.8}$ 0.07 ± 0.04	$\Gamma_8 \\ \Gamma_9 \\ \Gamma_{10} \\ \Gamma_{11} \\ \Gamma_{12}$	$\Xi^{-}\pi^{+}$ $\Xi^{-}\pi^{+}\pi^{-}$ $\Omega^{-}K^{+}$ $\Xi^{-}e^{+}\nu_{e}$ $\Xi^{-}\ell^{+} \text{ anything}$	$\begin{array}{c} \textbf{DEFINEDASS} \\ 3.3 \pm 1.4 \\ 0.297 \pm 0.024 \\ 3.1 \pm 1.1 \\ 1.0 \pm 0.5 \end{array}$
Γ_9 Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14} Γ_{15} Γ_{16} cabibbo	$\sum_{\substack{\Sigma^+\overline{K}^*\\\Sigma^0K^-2\pi\\\Xi^0\pi^+\\ \overline{\Sigma}^-2\pi^+\\ \overline{\Sigma}(1530)^0\pi^+\\ \overline{\Sigma}^0\pi^+\pi^0\\ \overline{\Sigma}^0\pi^-2\pi^+\\ \overline{\Sigma}^0e^+\nu_e$	0.55 ± 0.16 DEFINEDAS1 < 0.10 2.3 ± 0.7 1.7 ± 0.5 2.3 $^{+0.7}_{-0.8}$ 0.07 ± 0.04	Γ_8 Γ_9 Γ_{10} Γ_{11} Γ_{12} \checkmark Cat	$\Xi^{-}\pi^{+}$ $\Xi^{-}\pi^{+}\pi^{-}$ $\Omega^{-}K^{+}$ $\Xi^{-}e^{+}\nu_{e}$	$\begin{array}{c} \textbf{DEFINEDAS}\\ 3.3 \pm 1.4\\ 0.297 \pm 0.024\\ 3.1 \pm 1.1\\ 1.0 \pm 0.5 \end{array}$
Γ_9 Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14} Γ_{15} Γ_{16}	$\sum^{F+\overline{K}^{*}} ($ $\sum^{0}K^{-2}\pi$ $E^{0}\pi^{+}$ $E^{-2}\pi^{+}$ $E(1530)^{0}\pi^{+}$ $E^{0}\pi^{+}\pi^{0}$ $E^{0}\pi^{-}2\pi^{+}$ $E^{0}e^{+}\nu_{e}$ $\Omega^{-}K^{+}\pi^{+}$ posuppressed decays – relative to E^{-}	0.55 ± 0.16 DEFINEDAS1 	$\Gamma_8 \\ \Gamma_9 \\ \Gamma_{10} \\ \Gamma_{11} \\ \Gamma_{12}$	$\Xi^{-}\pi^{+}$ $\Xi^{-}\pi^{+}\pi^{-}$ $\Omega^{-}K^{+}$ $\Xi^{-}e^{+}\nu_{e}$ $\Xi^{-}\ell^{+} \text{ anything}$	$\begin{array}{c} \textbf{DEFINEDAS}\\ 3.3 \pm 1.4\\ 0.297 \pm 0.024\\ 3.1 \pm 1.1\\ 1.0 \pm 0.5 \end{array}$
Γ_9 Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14} Γ_{15} Γ_{16} Cabibboo Γ_{17}	$\sum^{k+\overline{K}^{*}} We ha$ $\sum^{0}K^{-}2\pi$ $E^{0}\pi^{+}$ $\overline{E^{-}2\pi^{+}}$ $\overline{E(1530)^{0}\pi^{+}}$ $\overline{E^{0}\pi^{+}2\pi^{+}}$ $\overline{E^{0}e^{+}\nu_{e}}$ $\Omega^{-}K^{+}\pi^{+}$ o-suppressed decays – relative to $\overline{E^{-}x}$ $pK^{-}\pi^{+}$	0.55 ± 0.16 DEFINEDAS1 	Γ_8 Γ_9 Γ_{10} Γ_{11} Γ_{12} \checkmark Cat	$\Xi^{-}\pi^{+}$ $\Xi^{-}\pi^{+}\pi^{-}$ $\Omega^{-}K^{+}$ $\Xi^{-}e^{+}\nu_{e}$ $\Xi^{-}\ell^{+} \text{ anything}$ bibbo-suppressed decays - relative to Ξ	$DEFINEDASI 3.3 \pm 1.4 0.297 \pm 0.024 3.1 \pm 1.1 1.0 \pm 0.5 3.7 \pi^+$

Most of the Ξ_c weak decays to BP are missing in experiment.

BFs of Cabibbo-allowed decays

	RQM	Pole	Pole	RQM	Pole	Pole (in	units of %)
Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	Expt.
	Krämer ('92)	Kamal ('92)	Tseng ('93)	et al. ('98)	('94)	Verma ('99)	
$\Xi_c^+ \to \Sigma^+ \bar{K}^0$	6.45	0.44	0.84	3.08	1.56	0.04	
$\Xi_c^+\to \Xi^0\pi^+$	3.54	3.36	3.93	4.40	1.59	0.53	0.55 ± 0.16^a
$\Xi_c^0 o \Lambda \bar{K}^0$	0.12	0.37	0.27	0.42	0.35	0.54	seen
$\Xi^0_c\to \Sigma^0 \bar{K}^0$	1.18	0.11	0.13	0.20	0.11	0.07	
$\Xi_c^0\to \Sigma^+ K^-$	0.12	0.12		0.27	0.36	0.12	
$\Xi_c^0\to \Xi^0\pi^0$	0.03	0.56	0.28	0.04	0.69	0.87	
$\Xi_c^0 \to \Xi^0 \eta$	0.24			0.28	0.01	0.22	
$\Xi_c^0 ightarrow \Xi^0 \eta'$	0.85			0.31	0.09	0.06	
$\Xi_c^0\to \Xi^-\pi^+$	1.04	1.74	1.25	1.22	0.61	2.46	seen
$\Omega_c^0\to \Xi^0\bar K^0$	1.21		0.09	0.02			

Most of the Ξ_c weak decay asymmetries are missing in experiment.

Decay asymmetry α for Cabibbo-allowed decays

Longitudinal pol. of daughter baryon from unpol. parent baryon

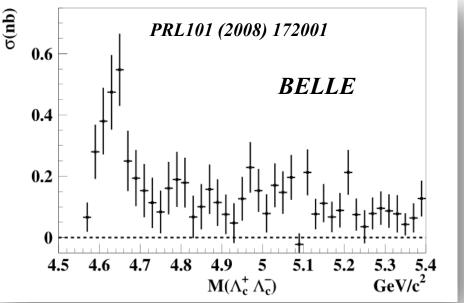
 \Rightarrow information on the relative sign between s- and p-waves

Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	Expt.
	Krämer ('92)	Kamal ('92)	Tseng ('93)	et al. ('98)	('94)	Verma ('99)	
$\Xi_c^+\to \Sigma^+ \bar{K}^0$	-1.0	0.24	-0.09	-0.99	1.00	0.54	
$\Xi_c^+\to\Xi^0\pi^+$	-0.78	-0.81	-0.77	-1.0	1.00	-0.27	
$\Xi_c^0 o \Lambda \bar{K}^0$	-0.76	1.0	-0.73	-0.75	-0.29	-0.79	
$\Xi_c^0\to \Sigma^0 \bar{K}^0$	-0.96	-0.99	-0.59	-0.55	-0.50	0.48	
$\Xi_c^0\to \Sigma^+ K^-$	0	0		0	0	0	
$\Xi_c^0 \to \Xi^0 \pi^0$	0.92	0.92	-0.54	0.94	0.21	-0.80	
$\Xi_c^0 \to \Xi^0 \eta$	-0.92			-1.0	-0.04	0.21	
$\Xi_c^0 ightarrow \Xi^0 \eta'$	-0.38			-0.32	-1.00	0.80	
$\Xi_c^0\to\Xi^-\pi^+$	-0.38	-0.38	-0.99	-0.84	-0.79	-0.97	-0.6 ± 0.4
$\Omega_c^0 \to \Xi^0 \bar{K}^0$	0.51		-0.93	-0.81			l

Charm-flavor-conserving weak decays

Light quarks undergo weak transitions, while c quark behaves as a "spectator" e.g. $\Xi_c \rightarrow \Lambda_c \pi$. Can be studied using HHChPT.

$$\begin{array}{l} \mathsf{Br}(\Xi_c^{\ 0} \to \Lambda_c^{\ +}\pi^{-}) = 2.9 \times 10^{-4} \\ \mathsf{Br}(\Xi_c^{\ +} \to \Lambda_c^{\ +}\pi^{0}) = 6.7 \times 10^{-4} \end{array} \right\} \begin{array}{l} \begin{array}{l} \mathsf{s} \to W^{-}u \\ \underline{\mathsf{can \ be \ firstly \ explored \ at \ BESIII}} \\ \underline{\mathsf{cheng, \ Cheung, \ Lin, \ Lin, \ Yan, \ Yu \ ('92)}} \end{array}$$


Semileptonic decays

-	→ NI	RQM	\leftarrow	RQM L	FQM	QSR	QSR	
Process	Pérez-Marcial	Singleton	Cheng,	Ivanov	Luo	Marques de Carvalho	Huang,	Expt.
	et al. [85]	[86]	Tseng [81]	et al. [87]	[88]	et al. [89]	Wang [90]	[3]
$\Xi_c^0 \rightarrow \Xi^- e^+ \nu_e$	18.1 (12.5)	8.5	7.4	8.16	9.7			seen
$\Xi_c^+\to \Xi^0 e^+ \nu_e$	18.4 (12.7)	8.5	7.4	8.16	9.7			seen

in units of 10¹⁰ s⁻¹

Other interesting charm topics above 4.6GeV

- Threshold effect of charged $\Xi_c^+ \overline{\Xi}_c^-$ and neutral $\Xi_c^0 \overline{\Xi}_c^0$ pairs
- Production of excited states of $D_{(s)}$, such as $D_1(2420)$, $D_2(2460)$, $D_{s0}(2317)$, $D_{s1}(2460)$, $D_{s1}(2536)$, and $D_{s2}(2573)$
 - ✓ potentials to establish the absolute BFs of their decays
 - ✓ potentials to precisely measure their masses and widths

Summary

Threshold data at BESIII opens a new door to direct measurements of the decays \rightarrow precise study of Λ_c decays

- kinematics does not allow additional particle produced along with the $\Lambda_c^+ \Lambda_c^-$ pair
- fully reconstruct the pairs and take their yield ratios to measure the BFs:
- low backgrounds and high detection efficiency

Era of precision study of the Λ_c decays:

- provide more data for theorists to develop more reliable models
- precise measurement of the W-exchange and W-internal-emission only process: to test the quark-diquark configuration important to understand the non-factorizable contribution
- explore as-yet-unmeasured channels and understand full picture of intermediate structures
- We are proposing to take a larger data set;
 a golden opportunity to thoroughly improve our knowledge on Λc decays