Effects of triangle singularities in searching for

P_{c} and P_{s}

Feng-Kun Guo

Institute of Theoretical Physics, Chinese Academy of Sciences

$$
\begin{aligned}
& \text { Mini-workshop on Baryon Spectroscopy at } e^{+} e^{-} \text {Colliders, } \\
& \text { IHEP, Apr. 19-20, } 2018
\end{aligned}
$$

- Triangle singularities
- $P_{c}(4450)$ and P_{s}

The search of resonances

In practice, resonance hunting is normally the search of peaks.

Some famous peaks:

$Z_{b}(10610)$ and $Z_{b}(10650)$

$Z_{c}(3900), X(5568), P_{c}(4380,4450)$

Resonances are not always peaks

Life is always harder than ideal
Resonances do not always appear as peaks:

J. R. Taylor, Scattering Theory - The Quantum Theory on Nonrelativistic Collisions

Peaks are not always resonances

- Dynamics \Rightarrow poles in the S-matrix (resonances): genuine physical states. The origins of the poles can be different:

Kinematic effects \Rightarrow branching points of S-matrix
normal two-body threshold cusp
triangle singularity
traps/tools in hadron spectroscopy

Peaks are not always resonances

- Dynamics \Rightarrow poles in the S-matrix (resonances): genuine physical states. The origins of the poles can be different:

- Kinematic effects \Rightarrow branching points of S-matrix
(1) normal two-body threshold cusp
triangle singularity
哩 ...
traps/tools in hadron spectroscopy

Threshold cusp

- There is always a cusp at an S-wave threshold
- Cusp effect as a useful tool for precise measurement:
example of the cusp in $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$
strength of the cusp measures the interaction strength!
Meißner, Müller, Steininger (1997); Cabibbo (2004); Colangelo, Gasser, Kubis, Rusetsky (2006); . .

$\pi^{+} \pi^{-}$cusp in $\Upsilon(3 S) \rightarrow \Upsilon(1 S) \pi^{0} \pi^{0}$

X.-H. Liu, FKG, E. Epelbaum, EPJC73(2013)2284

Triangle singularity

on-shell momentum of m_{2} at the left and right cuts in the A rest frame
Bayar et al., PRD94(2016)074039

- $p_{2}>0, p_{3}=\gamma\left(\beta E_{3}^{*}+p_{2}^{*}\right)>0 \Rightarrow m_{2}$ and m_{3} move in the same direction velocities in the A rest frame:

Conditions (Coleman-Norton theorem):
nes all three intermediate narticles can go on shell simultaneously
เ® $\vec{p}_{2} \mid \vec{p}_{3}$, particle-3 can catch up with particle-2 (as a classical process)
needs very special kinematics \Rightarrow process dependent! (contrary to pole position)

Triangle singularity

$$
\frac{1}{2 m_{A}} \sqrt{\lambda\left(m_{A}^{2}, m_{1}^{2}, m_{2}^{2}\right)} \equiv p_{2, \text { left }}=p_{2, \text { right }} \equiv \gamma\left(\beta E_{2}^{*}-p_{2}^{*}\right)
$$

on-shell momentum of m_{2} at the left and right cuts in the A rest frame
Bayar et al., PRD94(2016)074039

- $p_{2}>0, p_{3}=\gamma\left(\beta E_{3}^{*}+p_{2}^{*}\right)>0 \Rightarrow m_{2}$ and m_{3} move in the same direction
- velocities in the A rest frame: $v_{3}>\beta>v_{2}$

$$
v_{2}=\beta \frac{E_{2}^{*}-p_{2}^{*} / \beta}{E_{2}^{*}-\beta p_{2}^{*}}<\beta, \quad v_{3}=\beta \frac{E_{3}^{*}+p_{2}^{*} / \beta}{E_{3}^{*}+\beta p_{2}^{*}}>\beta
$$

- Conditions (Coleman-Norton theorem): Coleman, Norton (1965); Bronzan (1964) all three intermediate particles can go on shell simultaneously $\vec{p}_{2} \| \vec{p}_{3}$, particle-3 can catch up with particle-2 (as a classical process)
- needs very special kinematics \Rightarrow process dependent! (contrary to pole position)
J.-J. Wu, X.-H. Liu, Q. Zhao and B.-S. Zou, PRL108(2012)081803;
X.-G. Wu, J.-J. Wu, Q. Zhao and B.-S. Zou, PRD87(2013)014023(2013)

Unique consequence: huge isospin breaking, vary narrow $f_{0}(980)$ peak $\sim 10 \mathrm{MeV}$

BESIII, PRL108(2012)182001

LHCb's P_{c}

PRL115(2015)072001 [arXiv:1507.03414]

$$
\begin{gathered}
M_{1}=(4380 \pm 8 \pm 29) \mathrm{MeV}, \\
M_{2}=(4449.8 \pm 1.7 \pm 2.5) \mathrm{MeV},
\end{gathered}
$$

$$
\begin{aligned}
& \Gamma_{1}=(205 \pm 18 \pm 86) \mathrm{MeV}, \\
& \Gamma_{2}=(39 \pm 5 \pm 19) \mathrm{MeV} .
\end{aligned}
$$

- Quantum numbers not fully determined, for ($\left.P_{c}(4380), P_{c}(4450)\right)$): $\left(3 / 2^{-}, 5 / 2^{+}\right),\left(3 / 2^{+}, 5 / 2^{-}\right),\left(5 / 2^{+}, 3 / 2^{-}\right), \ldots$ (more see later slides)
- In $J / \psi p$ invariant mass distribution, with hidden charm
\Rightarrow pentaquarks if they are really hadron states
- Narrow pentaquark-like structures with hidden-charm had been predicted 5 years before (07.2010):
Prediction of narrow N^{*} and Λ^{*} resonances with hidden charm above 4 GeV , J.-J. Wu, R. Molina, E. Oset, B.-S. Zou, Phys. Rev. Lett. 105 (2010) 232001
- Pentaquark candidates! thus important to study in great details

Coincidence of $P_{c}(4450)$ with kinematic singularities

- Mass: $M_{P_{c}(4450)}=(4449.8 \pm 1.7 \pm 2.5) \mathrm{MeV}$
- Our trivial observation: $P_{c}(4450)$ coincides with the $\chi_{c 1} p$ threshold:

$$
M_{P_{c}(4450)}-M_{\chi_{c 1}}-M_{p}=(0.9 \pm 3.1) \mathrm{MeV}
$$

Our non-trivial observation: there is a triangle singularity at the same time! Solving the oquation $m_{2} \ldots-m_{2} \ldots \Rightarrow$
to have a TS at $M_{J / \omega_{p}}=M_{\chi_{c 1}}+M_{p}$, we need $M_{\Lambda *} \simeq 1.89 \mathrm{GeV}$ On shell $\Rightarrow \Lambda^{*}$ must be unstable, the TS is then a finite peak

More possible relevant TSs, see

Coincidence of $P_{c}(4450)$ with kinematic singularities

- Mass: $M_{P_{c}(4450)}=(4449.8 \pm 1.7 \pm 2.5) \mathrm{MeV}$
- Our trivial observation: $P_{c}(4450)$ coincides with the $\chi_{c 1} p$ threshold:

$$
M_{P_{c}(4450)}-M_{\chi_{c 1}}-M_{p}=(0.9 \pm 3.1) \mathrm{MeV}
$$

- Our non-trivial observation: there is a triangle singularity at the same time! Solving the equation $p_{2, \text { left }}=p_{2, \text { right }} \Rightarrow$ to have a TS at $M_{J / \psi p}=M_{\chi_{c 1}}+M_{p}$, we need $M_{\Lambda^{*}} \simeq 1.89 \mathrm{GeV}$ On shell $\Rightarrow \Lambda^{*}$ must be unstable, the TS is then a finite peak

More possible relevant TSs, see
X.-H. Liu, Q. Wang, Q. Zhao, PLB757(2015)231

Trajectories of triangle singularities in complex energy plane

Dalitz plot for $\Lambda_{b} \rightarrow \chi_{c 1} p K^{-}$:

numbers: assumed masses for Λ^{*}
樶 blue: proton and $\chi_{c 1}$ are parallel, in the 2nd Riemann sheet
green: proton and $\chi_{c 1}$ are anti-parallel

$$
M_{\Lambda_{b}}=5.62 \mathrm{GeV}, M_{\chi_{c 1}}=3.51 \mathrm{GeV}, \quad \sqrt{s} \equiv M\left(\chi_{c 1} p\right)
$$

$$
M_{K^{-} p, A}=M_{\Lambda_{b}}-M_{\chi_{c 1}}, \quad M_{K^{-} p, B}=\sqrt{\frac{M_{\Lambda_{b}}^{2} M_{p}+M_{K}^{2} M_{\chi_{c 1}}}{M_{\chi_{c 1}}+M_{p}}-M_{\chi_{c 1}} M_{p}}
$$

TS for $P_{c}(4450)$

FKG et al., PRD92(2015)071502(R); X.-H. Liu, Q. Wang, Q. Zhao, PLB757(2015)231

- When $M_{\Lambda^{*}}=1.89 \mathrm{GeV}$, TS is located exactly at the $\chi_{c 1} p$ threshold, 4.449 GeV !
- Four-star baryon $\Lambda(1890): J^{P}=3 / 2^{+}, \Gamma: 60-200 \mathrm{MeV}$
- triangle loop with S-wave $\chi_{c 1} p: J^{P}=\frac{1}{2}^{+}$or $\frac{3}{2}^{+}$

TS for $P_{c}(4450)$

FKG et al., PRD92(2015)071502(R); X.-H. Liu, Q. Wang, Q. Zhao, PLB757(2015)231

- When $M_{\Lambda^{*}}=1.89 \mathrm{GeV}$, TS is located exactly at the $\chi_{c 1} p$ threshold, 4.449 GeV !
- Four-star baryon $\Lambda(1890): J^{P}=3 / 2^{+}, \Gamma: 60-200 \mathrm{MeV}$
- triangle loop with S-wave $\chi_{c 1} p: J^{P}=\frac{1}{2}^{+}$or $\frac{3}{2}^{+}$

- impossible to produce a narrow peak for $\chi_{c 1} p$ in other partial waves

Bayar et al., PRD94(2016)074039; talk by M. Bayar [Monday]

TS for $P_{c}(4450)$: Comments

- Position of the TS completely fixed; shape also fixed
- but, strength of the TS is unknown
- operative in $J / \psi \pi$ quantum numbers $J^{P}=\frac{1}{2}^{+}$or $\frac{3}{2}^{+}$

$J^{p}(4380,4450)$		$P_{c}(4380)$		$P_{c}(4450)$	
	$(\sqrt{\Delta(-2 \ln \mathcal{L})})^{2}$	M_{0}	Γ_{0}	M_{0}	Γ_{0}
$\left(3 / 2-, 5 / 2^{+}\right)$solution					
$3 / 2^{-}, 5 / 2^{+}$	--	4359	151	4450.1	49
Δ from (3/2-, 5/2 ${ }^{+}$) solution					
$5 / 2^{+}, 3 / 2^{-}$	$-3.6{ }^{2}$	10	-7	-1.6	-6
$5 / 2^{-}, 3 / 2^{+}$	-2.7^{2}	-4	-9	-3.6	-2
$3 / 2^{-}, 5 / 2^{+}$	-	-	-	-	-

from a reanalysis of the LHCb data using an extended Λ^{*} model
N. Jurik, CERN-THESIS-2016-086

TS for $P_{c}(4450)$: Comments

- Position of the TS completely fixed; shape also fixed
- but, strength of the TS is unknown
- operative in $J / \psi \pi$ quantum numbers $J^{P}=\frac{1}{2}^{+}$or $\frac{3}{2}^{+}$

$J^{p}(4380,4450)$		$P_{c}(4380)$		$P_{c}(4450)$	
	$(\sqrt{\Delta(-2 \ln \mathcal{L})})^{2}$	M_{0}	Γ_{0}	M_{0}	Γ_{0}
$\left(3 / 2-, 5 / 2^{+}\right)$solution					
$3 / 2^{-}, 5 / 2^{+}$	--	4359	151	4450.1	49
Δ from (3/2-, 5/2 ${ }^{+}$) solution					
$5 / 2^{+}, 3 / 2^{-}$	$-3.6{ }^{2}$	10	-7	-1.6	-6
$5 / 2^{-}, 3 / 2^{+}$	-2.7^{2}	-4	-9	-3.6	-2
$3 / 2^{-}, 5 / 2^{+}$	-	-	-	-	-

from a reanalysis of the LHCb data using an extended Λ^{*} model
N. Jurik, CERN-THESIS-2016-086

- does not exclude the possibility of the existence of a pentaquark in addition

How to distinguish a TS from a genuine resonance?

- Schmid theorem:
C. Schmid, Phys. Rev. 154 (1967) 1363
see also, A. V. Anisovich, V. V. Anisovich, Phys. Lett. B 345 (1995) 321
Triangle singularity cannot produce an additional peak in the invariant mass distribution of the elastic channel when neglecting inelasticity

Nearby the effective singularity:

$$
\mathcal{A}_{(a)+(b)}(s) \sim[1+2 i \rho(s) T(s)] \mathcal{A}_{(a)}(s)=e^{2 i \delta_{\chi_{c 1 p} p}(s)} \mathcal{A}_{(a)}(s)
$$

here $\delta_{\chi_{c 1} p}$ is the elastic $\chi_{c 1} p$ scattering phase shift

- corrections from coupled channels

How to distinguish a TS from a genuine resonance?

- determining quantum numbers unambiguously:

TS as discussed here requires the $\chi_{c 1} p$ in S-wave $\Rightarrow J^{P}=\frac{1}{2}^{+}$or $\frac{3}{2}^{+}$

- processes (such as photoproduction) with a different kinematics
Q. Wang, X.-H. Liu, Q. Zhao, PRD92(2015)034022;
V. Kubarovsky, M. Voloshin, PRD92(2015)031502;
M. Karliner, J. L. Rosner, PLB752(2015)329; . .
- measuring the process $\Lambda_{b}^{0} \rightarrow \chi_{c 1} p K^{-}$
if a narrow near-threshold peak in $\chi_{c 1} p \Rightarrow$ a real exotic resonance recently measured by LHCb in PRL119(2017)062001, no invariant mass distribution reported:

$$
\begin{aligned}
\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \chi_{c 1} p K^{-}\right) & =\left(7.4 \pm 0.4 \pm 0.4 \pm 0.6_{-0.7}^{+1.0}\right) \times 10^{-5} \\
\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}\right) & =\left(3.01 \pm 0.22_{-0.27}^{+0.43}\right) \times 10^{-4}
\end{aligned}
$$

With LHC Run-1 data, statistics not enough N. Jurik, Mitsuyoshi Tanaka Dissertation Award Talk at the APS April Meeting 2018

P_{s} searching

- A ϕp bound state was predicted in several models with a mass $\sim 2 \mathrm{GeV}$
H. Gao, T.S.H. Lee, V. Marinov, PRC63(2001)022201;
F. Huang, Z.-Y. Zhang, Y.-W. Yu, PRC73(2006)025207;
H. Gao, H. Huang, T. Liu, J. Ping, F. Wang, Z. Zhao, PRC95(2017)055202
- Lattice evidence for strangenium-nucleon bound state at a large quark mass
$m_{u, d, s}^{\text {Lat. }}=m_{s}^{\text {ph. }} \quad\left(M_{\pi}^{\text {Lat. }} \simeq 805 \mathrm{MeV}\right)$
S.R. Beane et al. [NPLQCD], PRD91(2015)114503
- Bump observed at $\sqrt{s} \sim 2 \mathrm{GeV}$ by LEPS and CLAS in $\gamma p \rightarrow \phi p$

LEPS, PRL95(2005)182001; CLAS, PRC89(2014)055208, PRC90(2014)019901

- Suggestion to search for P_{s} in $\Lambda_{c} \rightarrow \pi^{0} \phi p$
R. Lebed, PRD92(2015)114030

- No clear evidence was found in Belle searching

P_{s} searching

- A ϕp bound state was predicted in several models with a mass $\sim 2 \mathrm{GeV}$ H. Gao, T.S.H. Lee, V. Marinov, PRC63(2001)022201;
F. Huang, Z.-Y. Zhang, Y.-W. Yu, PRC73(2006)025207;
H. Gao, H. Huang, T. Liu, J. Ping, F. Wang, Z. Zhao, PRC95(2017)055202
- Lattice evidence for strangenium-nucleon bound state at a large quark mass
$m_{u, d, s}^{\text {Lat. }}=m_{s}^{\text {ph. }} \quad\left(M_{\pi}^{\text {Lat. }} \simeq 805 \mathrm{MeV}\right) \quad$ S.R. Beane et al. [NPLQCD], PRD91(2015)114503
- Bump observed at $\sqrt{s} \sim 2 \mathrm{GeV}$ by LEPS and CLAS in $\gamma p \rightarrow \phi p$

LEPS, PRL95(2005)182001; CLAS, PRC89(2014)055208, PRC90(2014)019901

- Suggestion to search for P_{s} in $\Lambda_{c} \rightarrow \pi^{0} \phi p$
R. Lebed, PRD92(2015)114030

- No clear evidence was found in Belle searching

Belle, PRD96(2017)051102(R)

- Difficult to search for P_{s} in $\Lambda_{c} \rightarrow \pi^{0} \phi p$

TS and P_{s} in $\Lambda_{c} \rightarrow p \phi \pi^{0}$

Model I: the $B V$ interaction model (P_{s} generated) of
A. Ramos, E. Oset, PLB727(2013)287; Model II: no resonance, constant interaction; Model III: phase space

P_{s} (continued)

- TS produces a bump at around 2.02 GeV , width mainly from that of K^{*}
- P_{s}, if exists, could distort the line shape, but difficult to be distinguished from TS in this process
- A measurement of $\Lambda_{c} \rightarrow \Sigma^{*} K^{*}$ can help constrain the TS strength
- To search for resonances in processes with different kinematics, and to measure the quantum numbers
- To estimate the strength of the TS contributions, a first try is being done in quark model by T. Burns and E. Swanson for the P_{c} talk by E. Swanson at the workshop "Bound states in strongly coupled systems"
- Analysis framework incorporating kinematic singularities

THANK YOU FOR YOUR ATTENTION!

Backup slides

Triangle singularity - literature

- Some recent works using triangle singularity to explain (part of) peak structures [$\left.\eta(1405 / 1475), a_{1}(1420), \ldots\right]$:
J.-J. Wu, X.-H. Liu, Q. Zhao and B.-S. Zou, PRL108(2012)081803;
X.-G. Wu, J.-J. Wu, Q. Zhao and B.-S. Zou, PRD87(2013)014023(2013);
Q. Wang, C. Hanhart and Q. Zhao, PLB725(2013)106;
M. Mikhasenko, B. Ketzer and A. Sarantsev, PRD91(2015)094015;
X.-H. Liu, M. Oka and Q. Zhao, PLB753(2016)297;
A. P. Szczepaniak, PLB747(2015)410; PLB757(2016)61;
F. Aceti, L.-R. Dai and E. Oset, PRD94(2016)096015;
A. E. Bondar and M. B. Voloshin, PRD93(2016)094008
V. R. Debastiani, F. Aceti, W.-H. Liang, E. Oset, PRD95(2017)034015

Recent reviews:

Q.Zhao, JPS Conf.Proc.13(2017)010008; FKG et al., arXiv:1705.00141

Recent lecture notes by one of the key players:
I. J. R. Aitchison, arXiv:1507.02697 [hep-ph], Unitarity, Analyticity and Crossing Symmetry in Two- and Three-hadron Final State Interactions

Landau equation for TS

- Triangle singularity: leading Landau singularity for a triangle diagram, anomalous threshold
studied extensively in 1960s
- Solutions of Landau equation:

$$
1+2 y_{12} y_{23} y_{13}=y_{12}^{2}+y_{23}^{2}+y_{13}^{2}, \quad y_{i j} \equiv \frac{m_{i}^{2}+m_{j}^{2}-p_{i j}^{2}}{2 m_{i} m_{j}}
$$

quadratic equation of $y_{i j}$, always two solutions

- Do they affect the physical amplitude?

Some details

$$
\begin{aligned}
I & \propto \int_{0}^{\infty} d q \frac{q^{2}}{P^{0}-\omega_{1}(q)-\omega_{2}(q)+i \epsilon} f(q) \\
f(q) & =\int_{-1}^{1} d z \frac{1}{A(q, z)} \equiv \int_{-1}^{1} d z \frac{1}{p_{23}^{0}-\omega_{2}(q)-\sqrt{m_{3}^{2}+q^{2}+p_{23}^{2}-2 p_{23} q z}+i \epsilon}
\end{aligned}
$$

Singularities of the integrand of I in the rest frame of initial particle $\left(P^{0}=M\right)$:

- 1st cut: $M-\omega_{1}(l)-\omega_{2}(l)+i \epsilon=0 \Rightarrow$

$$
q_{\mathrm{on} \pm} \equiv \pm\left(\frac{1}{2 M} \sqrt{\lambda\left(M^{2}, m_{1}^{2}, m_{2}^{2}\right)}+i \epsilon\right)
$$

Some details

$$
\begin{aligned}
I & \propto \int_{0}^{\infty} d q \frac{q^{2}}{P^{0}-\omega_{1}(q)-\omega_{2}(q)+i \epsilon} f(q) \\
f(q) & =\int_{-1}^{1} d z \frac{1}{A(q, z)} \equiv \int_{-1}^{1} d z \frac{P}{p_{23}^{0}-\omega_{2}(q)-\sqrt{m_{3}^{2}+q^{2}+p_{23}^{2}-2 p_{23} q z}+i \epsilon}
\end{aligned}
$$

Singularities of the integrand of I in the rest frame of initial particle $\left(P^{0}=M\right)$:

- 1st cut: $M-\omega_{1}(l)-\omega_{2}(l)+i \epsilon=0 \Rightarrow$

$$
q_{\mathrm{on} \pm} \equiv \pm\left(\frac{1}{2 M} \sqrt{\lambda\left(M^{2}, m_{1}^{2}, m_{2}^{2}\right)}+i \epsilon\right)
$$

- 2nd cut: $A(q, \pm 1)=0 \Rightarrow$ endpoint singularities of $f(q)$

$$
\begin{array}{rlrl}
z=+1: & q_{a+} & =\gamma\left(\beta E_{2}^{*}+p_{2}^{*}\right)+i \epsilon, & q_{a-}=\gamma\left(\beta E_{2}^{*}-p_{2}^{*}\right)-i \epsilon, \\
z=-1: & q_{b+} & =\gamma\left(-\beta E_{2}^{*}+p_{2}^{*}\right)+i \epsilon, & q_{b-}=-\gamma\left(\beta E_{2}^{*}+p_{2}^{*}\right)-i \epsilon \\
& \beta & =\left|\vec{p}_{23}\right| / E_{23}, \quad \gamma=1 / \sqrt{1-\beta^{2}}=E_{23} / m_{23}
\end{array}
$$

$E_{2}^{*}\left(p_{2}^{*}\right)$: energy (momentum) of particle-2 in the cmf of the $(2,3)$ system

Some details (continued)

All singularities of the integrand of I :

$$
\begin{array}{lll}
q_{\mathrm{on}+}, & q_{a+}=\gamma\left(\beta E_{2}^{*}+p_{2}^{*}\right)+i \epsilon, & q_{a-}=\gamma\left(\beta E_{2}^{*}-p_{2}^{*}\right)-i \epsilon, \\
q_{\mathrm{on}-}<0, & q_{b-}=-q_{a+}<0(\text { for } \epsilon=0), & q_{b+}=-q_{a-}
\end{array}
$$

(a)

(b)

2-body threshold singularity at

$$
m_{23}=m_{2}+m_{3}
$$

(c)
triangle singularity at

$$
q_{\mathrm{on}+}=q_{a-}
$$

TS: kinematics

Bayar et al., PRD94(2016)074039

- Conditions (Coleman, Norton (1965); Bronzan (1964)): all three intermediate particles can go on shell simultaneously局 $\| \vec{p}_{3}$, particle-3 can catch up with particle-2 (as a classical process)
> particles 2 and 3 move in the same direction in the rest frame of initial particle

volonities in the rest frame of the initial particle
particle 3 moves faster than particle 2 in the rest frame of initial particle

TS: kinematics

Bayar et al., PRD94(2016)074039

- Conditions (Coleman, Norton (1965); Bronzan (1964)):
all three intermediate particles can go on shell simultaneously
副 \| \vec{p}_{3}, particle-3 can catch up with particle-2 (as a classical process)
- $p_{3}=\gamma\left(\beta E_{3}^{*}+p_{2}^{*}\right)>0 \Rightarrow$
particles 2 and 3 move in the same direction in the rest frame of initial particle
- velocities in the rest frame of the initial particle: $v_{3}>\beta>v_{2}$

$$
v_{2}=\beta \frac{E_{2}^{*}-p_{2}^{*} / \beta}{E_{2}^{*}-\beta p_{2}^{*}}<\beta, \quad v_{3}=\beta \frac{E_{3}^{*}+p_{2}^{*} / \beta}{E_{3}^{*}+\beta p_{2}^{*}}>\beta
$$

particle 3 moves faster than particle 2 in the rest frame of initial particle

TS: kinematics

Dalitz plot for $\Lambda_{b} \rightarrow \chi_{c 1} \Lambda^{*} \rightarrow \chi_{c 1} p \bar{K}$:
Starting from a large Λ^{*} mass, in Λ_{b} rest frame

- when $M_{\Lambda^{*}}>M_{\Lambda_{b}}-M_{\chi_{c} 1}$, cannot go on-shell
- at point A, $M_{\Lambda^{*}}=M_{\Lambda_{b}}-M_{\chi_{c} 1}$, $\chi_{c 1}$ is at rest
- at point B, proton and $\chi_{c 1}$ has the same velocity, $p \chi_{c 1}$ threshold
- between A and $\mathrm{B}, \vec{p}_{p} \| \vec{p}_{\chi_{c 1}}$ and proton moves faster than $\chi_{c 1}$

$$
\begin{aligned}
& M_{K^{-} p, A}=M_{\Lambda_{b}}-M_{\chi_{c 1}}, \\
& M_{K^{-} p, B}=\sqrt{\frac{M_{\Lambda_{b}}^{2} M_{p}+M_{K}^{2} M_{\chi_{c 1}}}{M_{\chi_{c 1}}+M_{p}}-M_{\chi_{c 1}} M_{p}}
\end{aligned}
$$

More comments

Strength of the triangle singularity is determined by

- couplings:
ne $\Lambda_{b} \rightarrow \Lambda^{*} \chi_{c 1}$ is from $b \rightarrow c \bar{c} s$, not measured, but should have a sizeable branching fraction:

$$
\begin{aligned}
& \operatorname{Br}\left(B^{+} \rightarrow J / \psi K^{+}\right) \simeq 1 \times 10^{-3}, \\
& \operatorname{Br}\left(B^{+} \rightarrow \chi_{c 1} K^{+}\right) \simeq 0.5 \times 10^{-3}
\end{aligned}
$$

$\Lambda(1890) \rightarrow N \bar{K}$: largest branching fraction, $\mathrm{Br}=20-35 \%$

$\chi_{c 1} p \rightarrow J / \psi p$: unknown, OZI suppressed,
$\mathcal{O}\left(1 / N_{c}\right)$ [recall: OZI suppressed meson-meson scattering: $\mathcal{O}\left(1 / N_{c}^{2}\right)$]

lattice QCD predicts possible $c \bar{c}$-nucleus bound states at $M_{\pi}=805 \mathrm{MeV}$
NPLQCD, PRD91(2015)114503

