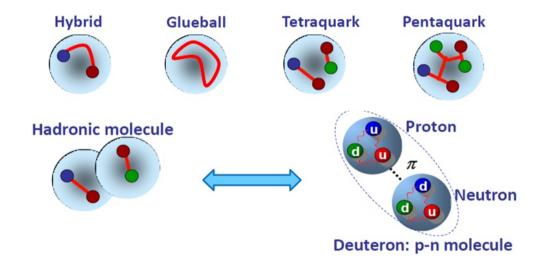


Overview of the $J^{PC} = 1^{--}$ charmonium (-like) states decaying in $B\overline{B}$ @ $B \in SIII$

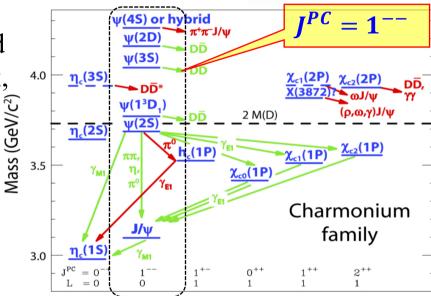
Xiongfei Wang(王雄飞)
IHEP, CAS

Mini-workshop on Baryonic spectroscopy at e+e- colliders

April 19, 2018, IHEP

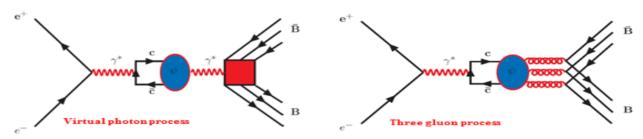

Outline

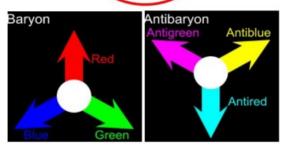
- **□**Introduction
- □ Recent results
 - >Study of J/ ψ , $\psi(3686) \rightarrow B\overline{B}$ (baryon anti-baryon)
 - $1.\,J/\psi,\psi(3686)\to\Xi^-\overline\Xi^+,\Sigma(1385)^{\mp}\overline\Sigma(1385)^{\pm}$
 - 2. J/ψ , $\psi(3686) \rightarrow \Xi^0 \overline{\Xi}^0$, $\Sigma(1385)^0 \overline{\Sigma}(1385)^0$
 - 3. J/ψ , $\psi(3686) \rightarrow \Lambda \overline{\Lambda}$, $\Sigma^0 \overline{\Sigma}^0$
 - 4. J/ψ , $\psi(3686) \rightarrow NN(p\overline{p}, n\overline{n})$
 - 5. $\psi(3686) \rightarrow \Xi(1690/1820)\Xi$
 - ightharpoonup Measurement of cross section of $e^+e^- o B\overline{B}$
 - 1. $e^+e^- \rightarrow p\overline{p}$
 - $2. e^+e^- \rightarrow \Lambda \overline{\Lambda}$
 - 3. $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$
- **□**Summary


Charmonium(-like) states

■ Nonrelativistic $c\bar{c}$ bound states, J/ψ (1³ S_1) is the first member with $J^{PC} = 1^{--}$, other below charm threshold like $\psi(2S)$, etc...

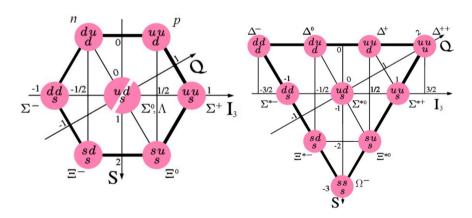
■ Chamonium (-like) states *above charm threshold* like Y(4260), Y(4360), etc., proposed more exotic explanations as hybrids, tetraquark, hadronic molecule, glueball, etc..


■ Potential models and L-QCD, very successful in describing spectra & onium properties!



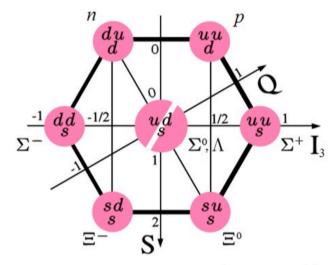
Potential models:

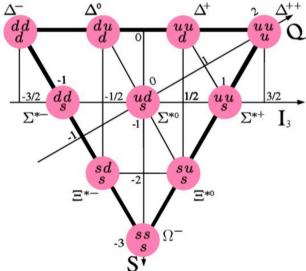
Baryon spectroscopy/production


- Established baryons described by 3-quark configuration with the zero total color charge.
- Production of $B\overline{B}$ in e^+e^- annihilation:

- Provide a favorable test of pQCD and baryonic properties
 - ✓ Test "12%" rule: $Q_h = \frac{Br(\psi(2S) \to X_h)}{Br(I/\psi \to X_h)} = 12\%$ (QCD prediction).
 - ✓ Test SU(3)-flavor symmetry
 - -- Allowed for $\psi \to B_8 \overline{B}_{8}$, $B_{10} \overline{B}_{10}$, forbidden for $\psi \to B_8 \overline{B}_{10}$.
 - ✓ Angular distribution study $(\frac{dN}{d(\cos\theta)} \propto 1 + \alpha\cos^2\theta)$:
 - Quark mass effect, electromagnetic effect, etc.: $0 < \alpha < 1$.
 - $\checkmark B\overline{B}$ threshold effect
 - $-B\overline{B}$ bound states or unobserved meson resonances
 - ✓ Electromagnetic form factor (EMFFs)
 - Further understand the strong interaction
 - -- Measure time-like EMFFs
 - ✓ Search for 1^{--} Y states in $B\overline{B}$ final states above open charm threshold.

Octet / decuplet




Outline

□Introduction

□ Recent results

- >Study of J/ ψ , $\psi(3686) \rightarrow B\overline{B}$ (B: baryon)
 - 1. J/ψ , $\psi(3686) \rightarrow \Xi^{-}\overline{\Xi}^{+}$, $\Sigma(1385)^{\mp}\overline{\Sigma}(1385)^{\pm}$
 - 2. $J/\psi, \psi(3686) \to \Xi^0 \overline{\Xi}{}^0, \Sigma(1385)^0 \overline{\Sigma}(1385)^0$
 - 3. $J/\psi, \psi(3686) \rightarrow \Lambda \overline{\Lambda}, \Sigma^0 \overline{\Sigma}^0$
 - 4. J/ψ , $\psi(3686) \rightarrow NN(p\overline{p}, n\overline{n})$
 - 5. $\psi(3686) \rightarrow \Xi(1690/1820)\Xi$
- \triangleright Measurement of cross section of $e^+e^- \rightarrow B \overline{B}$
 - $1. e^+e^- \rightarrow p\bar{p}$
 - $2. e^+e^- \rightarrow \Lambda \overline{\Lambda}$
 - $3. e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$
- **□**Summary

PHYSICAL REVIEW **D** 93, 0732003 (2016)

Study of ψ decays to the $\Xi^-\overline{\Xi}^+$ and $\Sigma(1385)^{\mp}\overline{\Sigma}(1385)^{\pm}$ final states

DIRECTLY accepted for first one at BESIII! Data samples: $225 \times 10^6 J/\psi$ Anything and $106 \times 10^6 \psi(3686)$ (a) $J/\psi(\psi(2S)) \rightarrow \Xi^{-\overline{\Xi}^{+}}, \Sigma(1385)^{\overline{+}\overline{\Sigma}}(1385)^{\pm}$ (a) $J/\psi \rightarrow \Xi^{-}\bar{\Xi}^{+}$ (b) $J/\psi \to \Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$ (c) $J/\psi \to \Sigma(1385)^{+} \overline{\Sigma}(1385)^{-}$ (d) $\psi(3686) \to \Xi^{-} \overline{\Xi}^{+}$ (b) 5000 (e) $\psi(3686) \rightarrow \Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$ 20000 $\int_{C} \left| (E_{c.m.} - E_{\pi\Lambda})^2 - \overrightarrow{p}^2 \right|$ $(f) \psi(3686) \rightarrow \Sigma(1385)^{+} \overline{\Sigma}(1385)^{-}$ 0.1 2000 10000 (c) $J/\psi \rightarrow \pi^* \Lambda \overline{\Sigma} (1385)$ $J/\psi \rightarrow \pi^* \Lambda \Sigma (1385)^*$ ² 5000 0004 (b) (a) (c) $J/\psi \rightarrow \Xi (1530)\overline{\Xi} + c.c$ J/ $\psi \rightarrow \Xi(1530)\overline{\Xi}$ + c.c. (d) M_{r-A} (GeV/c²) $M_{\pi^+\Lambda}^{recoil}$ (GeV/c²) $M_{\pi^+\Lambda}^{recoil}$ (GeV/c²) (d) $\mathbf{M}_{\pi^*\Lambda}^{\text{recoil}}$ (GeV/c2) (GeV/c2) (GeV/c2) cose

PHYSICAL REVIEW **D** 93, 0732003 (2016)

Study of ψ decays to the $\Xi^-\overline{\Xi}^+$ and $\Sigma(1385)^{\mp}\overline{\Sigma}(1385)^{\pm}$ final states

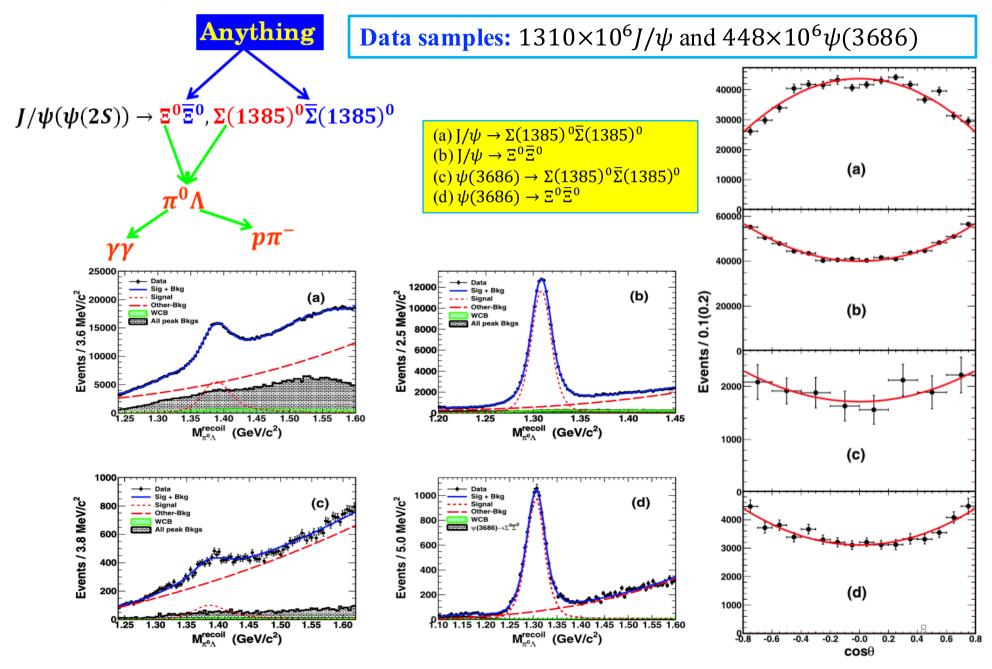
Numerical results $(Br(N_{obs}/N_{\psi} \cdot \epsilon)$ and α values)

	Mode		$J/\psi o$			$\psi(3686) \rightarrow$	
		E-Ē+	$\Sigma(1385)^-\bar{\Sigma}(1385)^+$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	E-Ē+	$\Sigma(1385)^-\bar{\Sigma}(1385)^+$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$
	This work	$10.40 \pm 0.06 \pm 0.74$	$10.96 \pm 0.12 \pm 0.71$	$12.58 \pm 0.14 \pm 0.78$	$2.78 \pm 0.05 \pm 0.14$	$0.85 \pm 0.06 \pm 0.06$	$0.84 \pm 0.05 \pm 0.05$
Br-	MarkI [5]	14.00 ± 5.00			< 2.0		
DI	MarkII [6]	$11.40 \pm 0.80 \pm 2.00$	$8.60 \pm 1.80 \pm 2.20$	$10.3 \pm 2.4 \pm 2.5$			
(40-4)	DM2 [7]	$7.00 \pm 0.60 \pm 1.20$	$10.00 \pm 0.40 \pm 2.10$	$11.9 \pm 0.4 \pm 2.5$			
$(\times 10^{-4})$	BESII [8,12	$9.00 \pm 0.30 \pm 1.80$	$12.30 \pm 0.70 \pm 3.00$	$15.0 \pm 0.8 \pm 3.8$	$3.03 \pm 0.40 \pm 0.32$		
` ,	CLEO [9]	•••		•••	$2.40 \pm 0.30 \pm 0.20$		
	BESI [26]	•••		•••	$0.94 \pm 0.27 \pm 0.15$		
•	PDG [3]	8.50 ± 1.60	10.30 ± 1.30	10.30 ± 1.30	1.80 ± 0.60		
	Mode		$J/\psi o$			$\psi(3686) \rightarrow$	
		至-臺+	$\Sigma(1385)^-ar{\Sigma}(1385)^+$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	至-宣+	$\Sigma(1385)^-\bar{\Sigma}(1385)^+$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$
	This work	$0.58 \pm 0.04 \pm 0.08$	$-0.58 \pm 0.05 \pm 0.09$	$-0.49 \pm 0.06 \pm 0.08$	$0.91 \pm 0.13 \pm 0.14$	$0.64 \pm 0.40 \pm 0.27$	$0.35 \pm 0.37 \pm 0.10$
α	BESII [8]	$0.35 \pm 0.29 \pm 0.06$	$-0.54 \pm 0.22 \pm 0.10$	$-0.35 \pm 0.25 \pm 0.06$			
u	MarkIII [6] Claudson	$0.13 \pm 0.55 \\ 0.16$	Negative.	0.11	0.32	0.29	0.29
	et al. [10] Carimalo [1	1] 0.27	Neg 0.20	0.20	0.52	0.50	0.50

 \triangleright Provide more new and precise measurements and experimental evidences, But for the predictions of α values without the consideration of the higher order correction, it is deviated from the measured values.

Ratio of branching fractions $\left(\frac{Br(\psi(3686)\to X_h)}{Br(I/\psi\to X_h)}\right)$

$\mathcal{Z}^{-}\overline{\mathcal{Z}}^{+}$	$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\overline{\Sigma}(1385)^{-}$
(26.73±0.50±2.30)%	(7.76±0.55±0.68)%	(6.68±0.40±0.50)%


12%!

Deviated from

> Theoretical models are expected to be improved to understand the difference.

Physics Letters **B** 770 (2017) 217-225

Study of J/ ψ and $\psi(3686) \rightarrow \Sigma(1385)^0\overline{\Sigma}(1385)^0$ and $\Xi^0\overline{\Xi}^0$

Physics Letters **B** 770 (2017) 217-225

Study of J/ ψ and $\psi(3686) \rightarrow \Sigma(1385)^0\overline{\Sigma}(1385)^0$ and $\Xi^0\overline{\Xi}^0$

Numerical results (Br and α values)

_		Mode	$J/\psi \to \Sigma (1385)^0 \bar{\Sigma} (1385)^0$	$J/\psi \to \Xi^0 \bar{\Xi}^0$	$\psi(3686) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0$	$\psi(3686) \to \Xi^0 \bar{\Xi}^0$
Br		This work	$10.71 \pm 0.09 \pm 0.82$	$11.65 \pm 0.04 \pm 0.43$	$0.69 \pm 0.05 \pm 0.05$	$2.73 \pm 0.03 \pm 0.13$
		BESII [23]	-	$12.0 \pm 1.2 \pm 2.1$	-	-
$(\times 10^{-4})$		CLEO [24]	-	-	-	$2.75 \pm 0.64 \pm 0.61$
		Dobbs et al. [25]	-	-	-	$2.02 \pm 0.19 \pm 0.15$
		PDG [4]	-	12.0 ± 2.4	-	2.07 ± 0.23
	_	Mode	$J/\psi \to \Sigma (1385)^0 \bar{\Sigma} (1385)^0$	$J/\psi \to \Xi^0 \bar{\Xi}^0$	$\psi(3686) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0$	$\psi(3686) \to \Xi^0 \bar{\Xi}^0$
		This work	$-0.64 \pm 0.03 \pm 0.10$	$0.66 \pm 0.03 \pm 0.05$	$0.59 \pm 0.25 \pm 0.25$	$0.65 \pm 0.09 \pm 0.14$
α		Carimalo et al. [6]	-0.64 ± 0.03 ± 0.10 0.11 0.19 Vegative.	0.16	0.28	0.33
		Claudson [7]	0.19	0.28	0.46	0.53

Provide more new and precise measurements and experimental evidences, but for the predictions of α values without the consideration of the higher order correction, it is basically deviated from the measured values.

■ Test of isospin conservation

Mode	$\frac{\mathcal{B}(\psi \! \to \! \Xi^0 \bar{\Xi}^0)}{\mathcal{B}(\psi \! \to \! \Xi^- \bar{\Xi}^+)}$	$\frac{\mathcal{B}(\psi \to \Sigma (1385)^0 \bar{\Sigma} (1385)^0)}{\mathcal{B}(\psi \to \Sigma (1385)^- \bar{\Sigma} (1385)^+)}$	$\frac{\mathcal{B}(\psi \to \Sigma (1385)^{0} \bar{\Sigma} (1385)^{0})}{\mathcal{B}(\psi \to \Sigma (1385)^{+} \bar{\Sigma} (1385)^{-})}$
J/ψ ψ (3686)	$\begin{array}{c} 1.12 \pm 0.01 \pm 0.07 \\ 0.98 \pm 0.02 \pm 0.07 \end{array}$	$0.98 \pm 0.01 \pm 0.08 \\ 0.81 \pm 0.12 \pm 0.12$	$0.85 \pm 0.02 \pm 0.09$ $0.82 \pm 0.11 \pm 0.11$

Deviated from 12%

Within 1σ of

expectation of

isospin symmetry!

Ratio $\left(\frac{Br(\psi(3686)\to X_h)}{Br(J/\psi\to X_h)}\right)$ for testing 12% rule

$$\frac{Br(\psi(2S) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0)}{Br(J/\psi \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0)} = (7.28 \pm 0.56 \pm 0.75)\%, \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(J/\psi \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%,$$

Physical Review D 95, 052003 (2017)

Study of J/ ψ and $\psi(3686)$ decay to $\Lambda \overline{\Lambda}$ and $\Sigma^0 \overline{\Sigma}{}^0$ final states

Data samples: $1310 \times 10^6 J/\psi$ and $448 \times 10^6 \psi(3686)$

-0.5

0.5

 $\cos\theta_{\Sigma^0}$

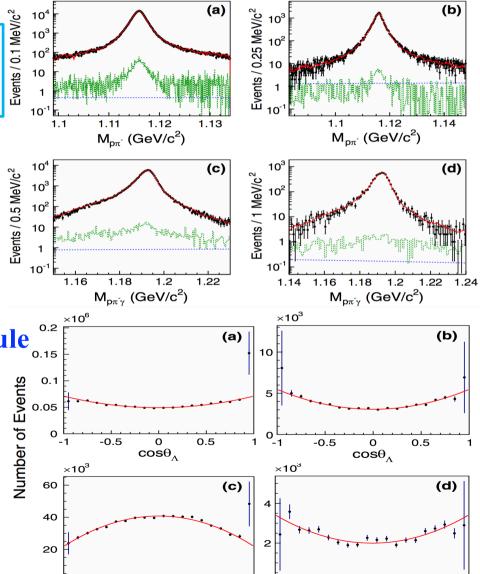
-0.5

 $\cos\theta_{0}$

■ Full reconstruction

$$\begin{array}{c} J/\psi, \psi(3686) \to \Lambda\Lambda, \Sigma^0\overline{\Sigma}{}^0 \to \Lambda\overline{\Lambda}, \gamma\gamma\Lambda\overline{\Lambda} \\ \to p\overline{p}\pi^+\pi^-, \gamma\gamma p\overline{p}\pi^+\pi^- \end{array}$$

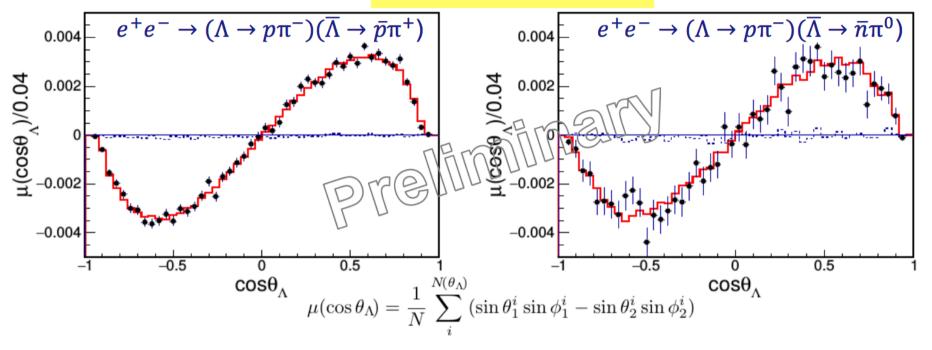
Numerical results (α values and Br)


	Channel	α	$\mathcal{B}~(\times 10^{-4})$
	$J/\psi o \Lambda \bar{\Lambda}$	$0.469 \pm 0.026 \pm 0.008$	$19.43 \pm 0.03 \pm 0.33$
(c)	$J/\psi o \Sigma^0 ar{\Sigma}^0$	$-0.449 \pm 0.020 \pm 0.008$	$11.64 \pm 0.04 \pm 0.23$
(b)	$\psi(3686) \to \Lambda \bar{\Lambda}$	$0.82 \pm 0.08 \pm 0.02$	$3.97 \pm 0.02 \pm 0.12$
(d)	$\psi(3686) \to \Sigma^0 \bar{\Sigma}^0$	$0.71 \pm 0.11 \pm 0.04$	$2.44 \pm 0.03 \pm 0.11$

Ratio $(\frac{Br(\psi(3686)\to X_h)}{Br(I/\psi\to X_h)})$ for testing 12% rule

$$\frac{\mathcal{B}(\psi(3686)\to\Lambda\bar{\Lambda})}{\mathcal{B}(J/\psi\to\Lambda\bar{\Lambda})} = (20.43\pm0.11\pm0.58)\%$$

$$\frac{\mathcal{B}(\psi(3686) \to \Sigma^0 \bar{\Sigma}^0)}{\mathcal{B}(J/\psi \to \Sigma^0 \bar{\Sigma}^0)} = (20.96 \pm 0.27 \pm 0.92)\%$$


- ✓ The branching fractions are measured consistently and with high precision compared with the previous experiments.
- The α values are measured with high precision for J/ψ decay, and first measurement for $\psi(2S)$ decay.
- ✓ The Q value is still different with the expectation of pQCD.

Observation of spin polarization in $J/\psi \to \Lambda \overline{\Lambda}$

ΔΦ=42.3°±0.6°±0.5°

Data: $1310 \times 10^6 J/\psi$

Parameters	This work	Previous resu	ılts
$lpha_{m{\psi}}$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027]	BESIII
$\Delta\Phi$ (rad)	$0.740 \pm 0.010 \pm 0.008$	_	
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013	PDG
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08	PDG
$ar{lpha}_0$	$-9.692 \pm 0.016 \pm 0.006$	_	
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021	PDG
$ar{lpha}_0/lpha_+$	$0.913 \pm 0.028 \pm 0.012$	_	

CP asymmetry:

$$A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$$

Physical Review D 86, 032014 (2012), arXiv:1803.02039

Study of J/ ψ and $\psi(3686) \rightarrow N\overline{N}$ final states

Data samples: $225 \times 10^6 J/\psi$ and $448 \times 10^6 \psi(3686)$

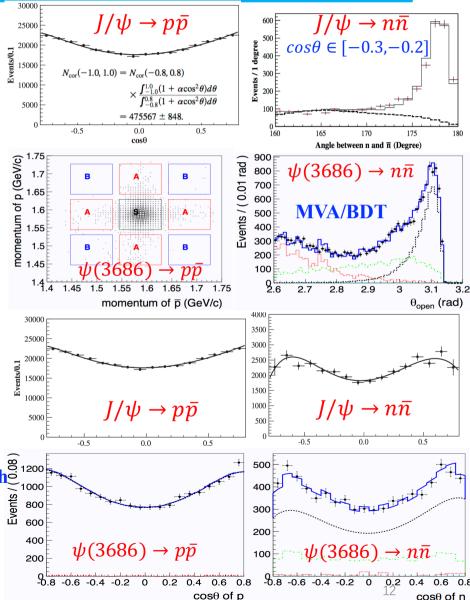
■ Full reconstruction

$J/\psi, \psi(3686) \rightarrow N\overline{N} (p\overline{p}, n\overline{n})$

Numerical results (α values and Br)

Channel	α	<i>Br</i> ×10 ^{−4}
$J/\psi o p\overline{p}$	$0.60 \pm 0.01 \pm 0.02$	$21.12 \pm 0.04 \pm 0.31$
$J/\psi o n\overline{n}$	$0.50 \pm 0.04 \pm 0.21$	$20.70 \pm 0.10 \pm 1.70$
$\psi(3686) \rightarrow p\overline{p}$	$1.03 \pm 0.06 \pm 0.03$	$3.05 \pm 0.02 \pm 0.12$
$\psi(3686) \rightarrow n\overline{n}$	$0.68 \pm 0.12 \pm 0.11$	$3.06 \pm 0.06 \pm 0.14$

Ratio $\left(\frac{Br(\psi(3686)\to X_h)}{Br(J/\psi\to X_h)}\right)$ for testing 12% rule

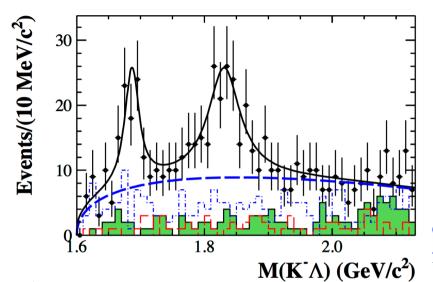

$$\frac{\mathcal{B}(\psi(3686) \to p\bar{p})}{\mathcal{B}(J/\psi \to p\bar{p})} = (14.4 \pm 0.6)\%$$

$$\frac{\mathcal{B}(\psi(3686) \to n\bar{n})}{\mathcal{B}(J/\psi \to n\bar{n})} = (14.8 \pm 1.2)\%$$

- The branching fractions are measured consistently and with high precision compared with the previous experiments.

 ✓ The α values are measured with high precision for J/ψ

 600
- \checkmark The α values are measured with high precision for J/ψ decay, and first measurement for $\psi(2S)$ decay.
- ✓ The Q value is consistent with the expectation of pQCD 12%.



Physical Review D 86, 032014 (2012)

Observation of $\psi(3686) \rightarrow \Xi(1690/1820)\overline{\Xi}^+ + c.c.$

■ Two resonances are observed in $\psi(3686) \rightarrow K^- \Lambda \overline{\Xi}^+$ process

Data samples: $106 \times 10^6 \psi(3686)$

■ **PDF:** Breit-Wigner ⊗ Gaussian

$$A(m) = \frac{p_{\Lambda}(m)^{(L_{(K^-\Lambda)}+1/2)} p_{\bar{\Xi}^+}(m)^{(L_{(\Xi^{*-}\bar{\Xi}^+)}+1/2)}}{m-M+i\frac{\Gamma}{2}} \cdot \left(\frac{B_{L_{(K^-\Lambda)}}(p_{\Lambda}(m))}{B_{L_{(K^-\Lambda)}}(p'_{\Lambda})}\right) \left(\frac{B_{L_{(\Xi^{*-}\bar{\Xi}^+)}}(p_{\bar{\Xi}^+}(m))}{B_{L_{(\Xi^{*-}\bar{\Xi}^+)}}(p'_{\bar{\Xi}^+})}\right)$$

Mass and width (M, Γ) ; $p_{\Lambda/\Xi}$ momentum; L is orbital angular distribution; $B_L(p)$ Blatt-Weisskopf form factor[1].

■ Fitted results and resonance parameters

	$\Xi(1690)^{-}$	$\Xi(1820)^{-}$
$M({ m MeV}/c^2)$	$1687.7 \pm 3.8 \pm 1.0$	$1826.7{\pm}5.5{\pm}1.6$
$\Gamma({ m MeV})$	$27.1 {\pm} 10.0 {\pm} 2.7$	$54.4 {\pm} 15.7 {\pm} 4.2$
Event yields	$74.4 {\pm} 21.2$	$136.2 {\pm} 33.4$
$Significance(\sigma)$	4.9	6.2
Efficiency(%)	32.8	26.1
$\mathcal{B}(10^{-6})$	$5.21{\pm}1.48{\pm}0.57$	$12.03{\pm}2.94{\pm}1.22$
$\overline{M_{ m PDG}({ m MeV}/c^2)}$	1690 ± 10	1823 ± 5
$\Gamma_{\mathrm{PDG}}(\mathrm{MeV})$	<30	24^{+15}_{-10}

The spin-parities for both resonances have not determined due to the limited statistics.

In the fit, the spin- parities for both resonances assumed to be JP= 1/2-,3/2- with previous experimental results[2,3], the $\Xi^*\bar{\Xi}$ angular momenta $L(\Xi^*\bar{\Xi})$ are set to be 0 for both resonances, while the $K^-\Lambda$ angular momenta $L(K^-\Lambda)$ are 0 and 2.

^[1] B. S. Zou and D. V. Bugg, Eur. Phys. J. A 16, 537 (2003).

^[2] B. Aubert et al., (BABAR Collaboration), Phys. Rev. D604 78, 034008 (2008).

^[3] J. B. Gay et al., Phys. Lett. B 62, 477 (1976).

Outline

- □Introduction
- □ Recent results
 - >Study of J/ ψ , ψ (3686) \rightarrow B \overline{B} (B: baryon)
 - 1. J/ψ , $\psi(3686) \rightarrow \Xi^{-}\overline{\Xi}^{+}$, $\Sigma(1385)^{\mp}\overline{\Sigma}(1385)^{\pm}$
 - 2. J/ψ , $\psi(3686) \rightarrow \Xi^0 \overline{\Xi}^0$, $\Sigma(1385)^0 \overline{\Sigma}(1385)^0$
 - 3. J/ ψ , $\psi(3686) \rightarrow \Lambda \overline{\Lambda}$, $\Sigma^0 \overline{\Sigma}^0$
 - 4. J/ψ , $\psi(3686) \rightarrow NN(p\overline{p}, n\overline{n})$
 - 5. $\psi(3686) \rightarrow \Xi(1690/1820)\Xi$
 - ightharpoonup Measurement of cross section of $e^+e^- o B\overline{B}$
 - 1. $e^+e^- \rightarrow p\overline{p}$
 - 2. $e^+e^- \rightarrow \Lambda \overline{\Lambda}$
 - 3. $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$
- **□**Summary

Calculation of Born cross sections and FFs

Experimentally, Born cross sections of $e^+e^- \rightarrow B\overline{B}$ are calculated by:

$$\sigma^B = \frac{N_{obs}}{2 \mathcal{L}(1+\delta)(1+\Pi)\epsilon \mathcal{B}r(B \to \text{hadrons})},$$

where N_{obs} number of observed events, \mathcal{L} luminosity, $\mathbf{1} + \boldsymbol{\sigma}$ ISR factor, $\mathbf{1} + \boldsymbol{\Pi}$ vacuum polarization factor, **Br** the branching fraction.

Theoretically, Born cross section can be expressed as:
$$\sigma^B = \frac{4\pi\alpha^2 C\beta}{3s} \left[|G_M|^2 + \frac{2m_B^2}{s} |G_E|^2 \right].$$

$$\sigma^B = \frac{4\pi\alpha^2 C\beta}{3s} \left[|G_M|^2 + \frac{2m_B^2}{s} |G_E|^2 \right].$$
The effective form factor defined by

The effective form factor defined by

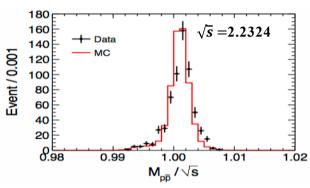
is proportional to the square root of the baryon pair born cross section

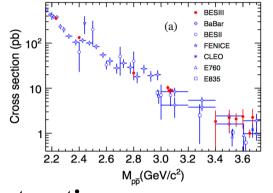
$$\left|G_{eff}(s)\right| = \sqrt{\frac{3s\sigma^B}{4\pi\alpha^2C\beta(1+\frac{2m_B^2}{s})}}.$$

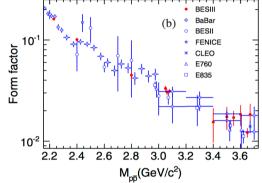
■ The electric and magnetic form factor G_E , G_M can be expressed by the following

$$\frac{d\sigma^B(s)}{d\cos\theta} \propto 1 + \eta\cos^2\theta$$
 $R = \sqrt{\frac{\tau(1-\eta)}{1+\eta}}$ $R = |\frac{G_E(s)}{G_M(s)}|$

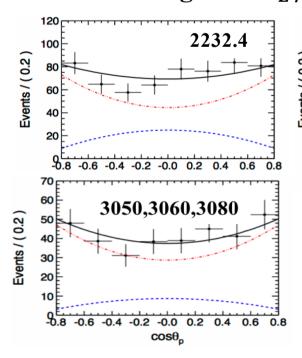
Physical Review D 91, 112004(2015)

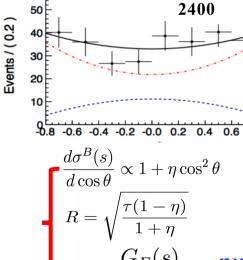

Measurement of the proton form factor in $e^+e^- \rightarrow p\overline{p}$

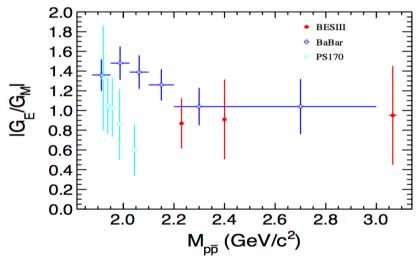

- **■** Full reconstruction method
- Signal yields extraction by counting


number of events

Data samples: $\sqrt{s} = 2.2324 \ to \ 3.671 \ GeV$


■ Born cross section and effective FFs



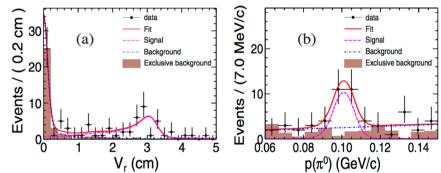


■ Electromagnetic G_E/G_M ratio extraction

Provide more experimental evidences about nucleon internal structure and dynamics!

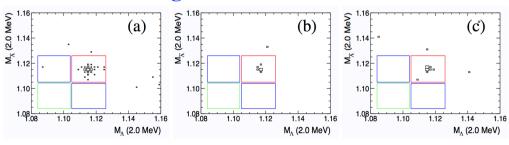
Physical Review D 97, 032013 (2018)

Measurement of cross section near mass threshold for $e^+e^- \to \Lambda \overline{\Lambda}$


■ Reconstruction

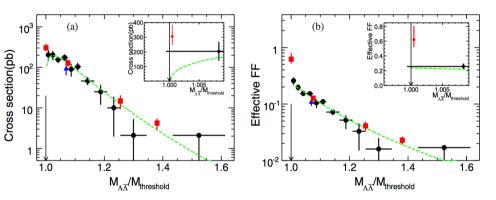
1.
$$e^+e^- \rightarrow \Lambda \overline{\Lambda} \rightarrow \overline{p}\pi^+\pi^-, \overline{n}\pi^0 X @2.2324$$

2.
$$e^+e^- \rightarrow \Lambda \overline{\Lambda} \rightarrow p\overline{p}\pi^+\pi^-$$
@others


■ Signal yields extraction @2.2324

- ✓ Fit to the distance from IP to the beam pipe
- \checkmark Fit to π^0 momentum for $\bar{n}\pi^0$ **X**
- ✓ A boosted decision tree (BDT) technique are used to distinguish between \bar{n} and γ

■ Signal yields extraction **@others**


✓ Counting

Data samples

\sqrt{s} GeV	Lumi. (pb ⁻¹)
2.2324	2.63
2.40	3.42
2.80	3.75
3.08	30.73

■ Born cross section and effective FFs

- The result is larger than the traditional theory expectation for neutral baryon pairs, which predicts a vanishing cross section at threshold.
- The results may help to understand the mechanism of baryon production and test the theory hypotheses based on the threshold enhancement effect.

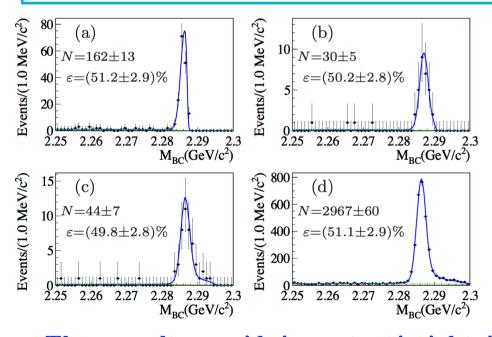
Accepted by PRL/arXiv:1710.00150

Precision measurement of the $e^+e^- \to \Lambda_c \overline{\Lambda}_c$ cross section near threshold

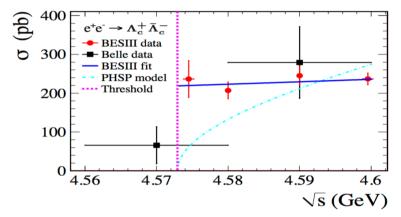
Reconstruction method $M_{\rm BC}c^2 \equiv \sqrt{E_{\rm beam}^2 - p^2c^2}$

$$M_{\rm BC}c^2 \equiv \sqrt{E_{\rm beam}^2 - p^2c^2}$$

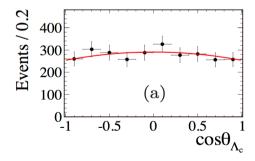
Data samples

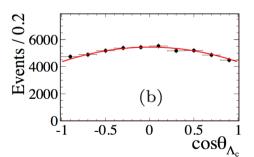

\sqrt{s} (GeV)	\mathcal{L}_{int} (pb ⁻¹)
4.5745	47.67
4.580	8.545
4.590	8.162
4.5995	566.9

≥10 Cabibbo-favored hadronic modes:


$$pK^{-}\pi^{+}, pK_{s}^{0}, \Lambda\pi^{+}, pK^{-}\pi^{+}\pi^{0}, pK_{s}^{0}\pi^{0},$$

$$\Lambda\pi^{+}\pi^{0}, pK_{s}^{0}\pi^{+}\pi^{-}, \Lambda\pi^{+}\pi^{+}\pi^{-}, \Sigma^{0}\pi^{+}, \Sigma^{+}\pi^{+}\pi^{-}$$


> c.c. mode is included by default



■ Comparison of Born cross section

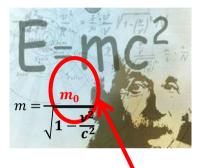
■ Measurements of α and G_M/G_E ratio

These results provide important insights in	nto
the production mechanism and structure of	•
the Λ_c baryons.	

$\sqrt{s} \; (\mathrm{MeV})$	$lpha_{\Lambda_c}$	$ G_E/G_M $
4574.5	$-0.13 \pm 0.12 \pm 0.08$	$1.14 \pm 0.14 \pm 0.07$
4599.5	$-0.20 \pm 0.04 \pm 0.02$	$1.23 \pm 0.05 \pm 0.03$

Summary

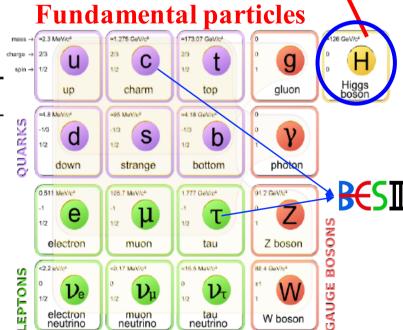
- **■BESIII** is successfully operating since 2008.
 - \checkmark Collected large data samples in the τ -charm threshold region
 - ✓ Continues to take data until 2022 at least
- ■Many results for $B\overline{B}$ in 1^{--} state decay have been obtained:
 - \checkmark Precise measurement of Br/α for $J/\psi, \psi(2S) \rightarrow B\overline{B}$
 - ✓ New observation/measurement of J/ψ , $\psi(2S) \rightarrow B\overline{B}$
 - ✓ Born cross section of $e^+e^- \rightarrow B\overline{B}$ near threshold measured.
 - \checkmark "12% rule" is violated compared with the expectation of pQCD with exception of $\psi \rightarrow N \overline{N}$.
 - ✓ The threshold effect of production cross section observed.
 - ✓ Need theoretical model further explain above difference
- More new results for $B\overline{B}$ in 1^{--} state decay are on the way!


Thanks for your attention!

Backup

Standard Model of Particle Physics

□ Since time immemorial, human has begun to explore the world around us, "Where Do We Come From? What Are We? Where Are We Going?"



■ SM of Particle Physics:

Fundamental Interactions

	Strong	Electromagnetic	Weak
Source	Color charge	Charge	Flavor
Object	Quarks, Gluons	Charged particles, Photon	Quarks, Leptons
Mediator	Gluons (g)	Photons (γ)	W^\pm, Z^0
Force range (m)	10^{-15}	∞	10^{-18}
Strength	10^{38}	10^{36}	10^{25}
Lifetime (s)	10^{-23}	10^{-20}	10^{-10}
Cross section	mb	μ b	pb
Current theory	QCD	QED	EW

