

Discussion Topics

Mini-workshop on Baryonic spectroscopy at e+e- colliders, IHEP, April 19 – 20, 2018

Content

- Cross section of baryon pairs
 - Baryon pairs production
 - ➢ Polarization ...
- Missing excited baryons
- Parameters of baryons
 - ➤ Mass and width
 - > Spin and Parity
 - ➤ Hadronic decay
- ➢ More topics ...

Cross section of baryon pairs $e^+e^- \rightarrow B\overline{B}$

The Born cross section for the baryon pairs can be parametrized in terms of electromagnetic form factors (EMFFs), which are important observables for probing the inner structure of hadrons and for understanding the strong interaction.

200

$$S = 1/2$$

$$\sigma_{B\bar{B}}(s) = \frac{4\pi\alpha^2 C\beta}{3s} |G_M(s)|^2 \left(1 + \frac{2m_B^2 c^4}{s} \left|\frac{G_E(s)}{G_M(s)}\right|^2\right).$$

() 10)

Cross section of Baryon pairs

Spin Polarization in $J/\psi \rightarrow \Lambda\Lambda$ $e^+e^- \rightarrow \gamma^* \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$ Δ**Φ**=42.3°±0.6°±0.5° $\rightarrow (\Lambda \rightarrow p\pi^{-})(\overline{\Lambda} \rightarrow \overline{p}\pi^{+})$ $(\Lambda \rightarrow p\pi^{-})(\overline{\Lambda} \rightarrow \overline{n}\pi^{0})$ 0.004 0.004 μ(cosθ_A)/0.04)/0.04 0.002 h(cost -0.002 -0.004 -0.004 -0.5 0.5 0 0.5 -0.5 0 $\cos\theta_{\Lambda}$ $\cos\theta_{\Lambda}$ $\mu(\cos\theta_{\Lambda}) = \frac{1}{N} \sum^{N(\theta_{\Lambda})} (\sin\theta_{1}^{i} \sin\phi_{1}^{i} - \sin\theta_{2}^{i} \sin\phi_{2}^{i})$

Parameters	This work	Previous res	ults	
$lpha_{\psi}$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 .	BESIII	
$\Delta \Phi$ (rad)	$0.740 \pm 0.010 \pm 0.008$	_		
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013	PDG	
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	$-0.71 {\pm} 0.08$	PDG	CP asymmetry.
$ar{m{lpha}}_0$	$-9.693 \pm 0.016 \pm 0.006$	_		$A_{\rm cp} = \frac{\alpha + \alpha_+}{\alpha + \alpha_+}$
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021	PDG	$\alpha_{-} - \alpha_{+}$
$ar{lpha}_0/lpha_+$	$0.913 \pm 0.028 \pm 0.012$	_		

- 1													1		
	p	$1/2^{+}$	****	$\Delta(1232)$	$3/2^{+}$	****	Σ^+	$1/2^{+}$	****	<u>=</u> 0	$1/2^{+}$	****	Λ_c^+	$1/2^{+}$	****
	п	$1/2^{+}$	****	$\Delta(1600)$	$3/2^{+}$	***	Σ^0	$1/2^{+}$	****	Ξ-	$1/2^{+}$	****	$\Lambda_{c}(2595)^{+}$	$1/2^{-}$	***
	N(1440)	$1/2^{+}$	****	$\Delta(1620)$	$1/2^{-}$	****	Σ^{-}	$1/2^{+}$	****	$\Xi(1530)$	$3/2^{+}$	****	$\Lambda_{c}(2625)^{+}$	$3/2^{-}$	***
	N(1520)	$3/2^{-}$	****	$\Delta(1700)$	$3/2^{-}$	****	$\Sigma(1385)$	$3/2^{+}$	****	$\Xi(1620)$		*	$\Lambda_{c}(2765)^{+}$		*
	N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$	*	$\Sigma(1480)$		*	$\Xi(1690)$		***	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***
	N(1650)	$1/2^{-}$	****	$\Delta(1900)$	$1/2^{-}$	**	$\Sigma(1560)$		**	$\Xi(1820)$	$3/2^{-}$	***	$\Lambda_{c}(2940)^{+}$		***
	N(1675)	$5/2^{-}$	****	$\Delta(1905)$	$5/2^{+}$	****	$\Sigma(1580)$	$3/2^{-}$	*	$\Xi(1950)$		***	$\Sigma_{c}(2455)$	$1/2^{+}$	****
	N(1680)	$5/2^{+}$	****	$\Delta(1910)$	$1/2^{+}$	****	Σ(1620)	$1/2^{-}$	*	Ξ(2030)	$\geq \frac{5}{2}$?	***	$\Sigma_{c}(2520)$	3/2+	***
	N(1700)	$3/2^{-}$	***	$\Delta(1920)$	$3/2^{+}$	***	$\Sigma(1660)$	$1/2^{+}$	***	$\Xi(2120)$		*	$\Sigma_{c}(2800)$		***
	N(1710)	$1/2^{+}$	****	$\Delta(1930)$	$5/2^{-}$	***	$\Sigma(1670)$	$3/2^{-}$	****	Ξ(2250)		**	Ξ_c^+	$1/2^{+}$	***
	N(1720)	$3/2^{+}$	****	$\Delta(1940)$	$3/2^{-}$	**	$\Sigma(1690)$		**	Ξ(2370)		**	=0	$1/2^{+}$	***
	N(1860)	$5/2^{+}$	**	$\Delta(1950)$	$7/2^{+}$	****	$\Sigma(1730)$	$3/2^{+}$	*	$\Xi(2500)$		*	$\equiv \tilde{i}_{+}$	$1/2^{+}$	***
	N(1875)	3/2-	***	$\Delta(2000)$	$5/2^{+}$	**	$\Sigma(1750)$	$1/2^{-}$	***				='0	$1/2^{+}$	***
	N(1880)	$1/2^{+}$	**	$\Delta(2150)$	$1/2^{-}$	*	$\Sigma(1770)$	$1/2^{+}$	*	Ω^{-}	$3/2^{+}$	****	$\Xi_{c}(2645)$	3/2+	***
	N(1895)	$1/2^{-}$	**	$\Delta(2200)$	7/2-	*	$\Sigma(1775)$	5/2-	****	$\Omega(2250)^{-}$		***	$\Xi_{c}(2790)$	$1/2^{-}$	***
	N(1900)	$3/2^{+}$	***	$\Delta(2300)$	9/2+	**	$\Sigma(1840)$	$3/2^{+}$	*	$\Omega(2380)^{-}$		**	$\Xi_{c}(2815)$	3/2-	***
	N(1990)	$7/2^{+}$	**	$\Delta(2350)$	5/2-	*	$\Sigma(1880)$	$1/2^{+}$	**	$\Omega(2470)^{-}$		**	$\Xi_{c}(2930)$	/	*
	N(2000)	$5/2^{+}$	**	$\Delta(2390)$	$7/2^{+}$	*	$\Sigma(1900)$	$1/2^{-}$	*				$\Xi_{c}(2970)$		***
	N(2040)	$3/2^{+}$	*	$\Delta(2400)$	9/2-	**	$\Sigma(1915)$	5/2+	****				$\Xi_{c}(3055)$		***
	N(2060)	5/2	**	$\Delta(2420)$	$11/2^+$	****	$\Sigma(1940)$	$3/2^{+}$	*				$\Xi_{c}(3080)$		***
	N(2100)	$1/2^{+}$	*	$\Delta(2750)$	13/2	**	$\Sigma(1940)$	$3/2^{-}$	***				$\Xi_{c}(3123)$		*
	N(2120)	3/2-	**	$\Delta(2950)$	$15/2^+$	**	$\Sigma(2000)$	$1/2^{-}$	*				Ω^0_c	$1/2^{+}$	***
	N(2190)	7/2-	****				$\Sigma(2030)$	7/2+	****				$\Omega_{c}(2770)^{0}$	3/2+	***
	N(2220)	9/2+	****	Λ	$1/2^{+}$	****	$\Sigma(2070)$	$5/2^{+}$	*					,	
	N(2250)	9/2-	****	A(1405)	$1/2^{-}$	****	$\Sigma(2080)$	$3/2^{+}$	**				$\bar{=}^+_{\alpha}$		*
	N(2300)	$1/2^{+}$	**	A(1520)	3/2-	****	$\Sigma(2100)$	$7/2^{-}$	*				~		
	N(2570)	$5/2^{-}$	**	Λ(1600)	1/2+	***	$\Sigma(2250)$		***				Λ_b^0	$1/2^{+}$	***
	N(2600)	11/2	***	A(1670)	1/2	****	$\Sigma(2455)$		**				$\Lambda_b(5912)^0$	$1/2^{-}$	***
	N(2700)	$13/2^+$	**	A(1690)	3/2	****	$\Sigma(2620)$		**				$\Lambda_b(5920)^0$	$3/2^{-}$	***
				Λ(1710)	1/2 '	*	$\Sigma(3000)$		*				Σ_b	$1/2^{+}$	***
				A(1800)	1/2	***	$\Sigma(3170)$		*				Σ_b^*	3/2+	***
				A(1810)	1/2	***							$\Xi_{b^{*}}^{0} \equiv \overline{b}_{b^{*}}^{-}$	$1/2^{+}$	***
				A(1820)	5/2	****							$\Xi'_{b}(5935)^{-}$	$1/2^{+}$	***
				A(1830)	5/2	****							$\Xi_{b}(5945)^{0}$	$3/2^{+}$	***
				V(1890)	3/2	*							$\Xi_{b}^{*}(5955)^{-}$	3/2+	***
				A(2000)	7/0+	*							Ω_{h}^{-}	$1/2^{+}$	***
				A(2020)	2/0-	*							Ű		
				A(2100)	3/2	****							$P_{c}(4380)^{+}$		*
				A(2100)	1/2 E/0+	***							$P_{c}(4450)^{+}$		*
				A(2225)	3/2	*									
				A(2325)	3/2	***									
				A(2550)	9/2	**									
				/1(2585)		**	1			1			1		

Missing excited baryons

Table 15.5: N and Δ states in the N=0,1,2 harmonic oscillator bands. L^P denotes angular momentum and parity, S the three-quark spin and 'sym'=A,S,M the symmetry of the spatial wave function. Only dominant components indicated. Assignments in the N=2 band are partly tentative.

Ν	$_{\rm sym}$	L^P	S		N(I =	1/2)	$\Delta(I=3/2)$									
2	А	1^+	1/2	$1/2^{+}$	$3/2^{+}$											
2	М	2^{+}	3/2	$1/2^{+}$	$3/2^{+}$	$5/2^{+}$	$7/2^{+}$									
2	М	2^{+}	1/2		$3/2^{+}$	$5/2^{+}$			$3/2^{+}$	$5/2^{+}$						
2	М	0^{+}	3/2		$3/2^{+}$											
2	М	0+	1/2	$1/2^{+}$				$1/2^{+}$								
				N(1710)				$\Delta(1750)$								
2	\mathbf{S}	2^{+}	3/2					$1/2^{+}$	$3/2^{+}$	$5/2^{+}$	$7/2^{+}$					
								$\Delta(1910)$	$\Delta(1920)$	$\Delta(1905)$	$\Delta(1950)$					
2	\mathbf{s}	2^{+}	1/2		$3/2^{+}$	$5/2^{+}$										
					N(1720)	N(1680)			- 1							
2	\mathbf{s}	0+	3/2						3/2+							
_	_								$\Delta(1600)$							
2	s	0+	1/2	1/2												
_				N (1440)												
1	М	1^{-}	3/2	$1/2^{-}$	3/2-	$5/2^{-}$										
				N(1650)	N(1700)	N(1675)										
1	М	1-	1/2	$1/2^{-}$	3/2-			$1/2^{-}$	3/2-							
_				N(1535)	N(1520)			$\Delta(1620)$	$\Delta(1700)$							
0	s	0+	3/2						$3/2^{+}$							
									$\Delta(1232)$							
0	\mathbf{S}	0+	1/2	$1/2^{+}$												
_				N(938)												

Table 15.6: Quark-model assignments for some of the known baryons in terms of a flavor-spin SU(6) basis. Only the dominant representation is listed. Assignments for several states, especially for the $\Lambda(1810)$, $\Lambda(2350)$, $\Xi(1820)$, and $\Xi(2030)$, are merely educated guesses. [†] recent suggestions for assignments and re-assignments from Ref. 37. For assignments of the charmed baryons, see the "Note on Charmed Baryons" in the Particle Listings.

J^P	(D, L_N^P)	S		Octet	members		Singlets
$1/2^{+}$	$(56,0^+_0)$	1/2	N(939)	$\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	
$1/2^{+}$	$(56,0^+_2)$	1/2	N(1440)	$\Lambda(1600)$	$\Sigma(1660)$	$\Xi(1690)^{\dagger}$	
$1/2^{-}$	$(70,1^{-}_{1})$	1/2	N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	Ξ(?)	$\Lambda(1405)$
	•				$\Sigma(1560)^{\dagger}$		
$3/2^{-}$	$(70,1^{-}_{1})$	1/2	N(1520)	$\Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1^{-}_{1})$	3/2	N(1650)	$\Lambda(1800)$	$\Sigma(1750)$	$\Xi(?)$	
					$\Sigma(1620)^{\dagger}$		
$3/2^{-}$	$(70,1^{-}_{1})$	3/2	N(1700)	$\Lambda(?)$	$\Sigma(1940)^{\dagger}$	$\Xi(?)$	
$5/2^{-}$	$(70,1^{-}_{1})$	3/2	N(1675)	$\Lambda(1830)$	$\Sigma(1775)$	$\Xi(1950)^{\dagger}$	
$1/2^{+}$	$(70,0^+_2)$	1/2	N(1710)	$\Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(1810)^{\dagger}$
$3/2^{+}$	$(56,2^+_2)$	1/2	N(1720)	$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{+}$	$(56,2^+_2)$	1/2	N(1680)	$\Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
$7/2^{-}$	$(70,3^{-}_{3})$	1/2	N(2190)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	$\Lambda(2100)$
$9/2^{-}$	$(70,3^{-}_{3})$	3/2	N(2250)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9/2^{+}$	$(56, 4^+_4)$	1/2	N(2220)	$\Lambda(2350)$	$\Sigma(?)$	$\Xi(?)$	
				Decuple	t members	;	
$3/2^{+}$	$(56,0^+_0)$	3/2	$\Delta(1232)$	$\Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$	
$3/2^{+}$	$(56,0^+_2)$	3/2	$\Delta(1600)$	$\Sigma(1690)^{\dagger}$	Ξ(?)	$\Omega(?)$	
$1/2^{-}$	$(70,1_1^-)$	1/2	$\Delta(1620)$	$\Sigma(1750)^{\dagger}$	Ξ(?)	$\Omega(?)$	
$3/2^{-}$	$(70,1^{-}_{1})$	1/2	$\Delta(1700)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$	
$5/2^{+}$	$(56,2^+_2)$	3/2	$\Delta(1905)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$	
$7/2^{+}$	$(56,2^+_2)$	3/2	$\Delta(1950)$	$\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$,
$11/2^{+}$	$(56,4^+_4)$	3/2	$\Delta(2420)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$	

Parameters of baryons

Status as seen in											Status as seen in												
Particle	J^P	overall	$N\gamma$	$N\pi$	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$	Particle	J^P	overall	$N\gamma$	$N\pi$	$N\eta$	No	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
N	$1/2^{+}$	****										$\Delta(1232)$	$3/2^{+}$	****	****	****	F						
N(1440)	$1/2^+$	****	****	****		***				*	***	$\Delta(1600)$	$3/2^{+}$	***	***	***	0					*	***
N(1520)	$3/2^{-}$	****	****	****	***					***	***	$\Delta(1620)$	$1/2^{-}$	****	***	****		r				***	***
N(1535)	$1/2^{-}$	****	****	****	****					**	*	$\Delta(1700)$	$3/2^{-}$	****	****	****		ь				**	***
N(1650)	$1/2^{-}$	****	****	****	***			***	**	**	***	$\Delta(1750)$	$1/2^{+}$	*		*		i					
N(1675)	$5/2^{-}$	****	****	****	*			*		*	***	$\Delta(1900)$	$1/2^{-}$	**	**	**			d		**	**	**
N(1680)	$5/2^{+}$	****	****	****	*	**				***	***	$\Delta(1905)$	$5/2^{+}$	****	****	****			d		***	**	**
N(1700)	$3/2^{-}$	***	**	***	*			*	*	*	***	$\Delta(1910)$	$1/2^{+}$	****	**	****			е		*	*	**
N(1710)	$1/2^{+}$	****	****	****	***		**	****	**	*	**	$\Delta(1920)$	$3/2^{+}$	***	**	***			n	L	***		**
N(1720)	$3/2^{+}$	****	****	****	***			**	**	**	*	$\Delta(1930)$	$5/2^{-}$	***		***							
N(1860)	$5/2^{+}$	**		**						*	*	$\Delta(1940)$	$3/2^{-}$	**	**	*	F						
N(1875)	$3/2^{-}$	***	***	*			**	***	**		***	$\Delta(1950)$	7/2+	****	****	****	0				***	*	***
N(1880)	$1/2^{+}$	**	*	*		**		*				$\Delta(2000)$	5/2+	**				r					**
N(1895)	$1/2^{-}$	**	**	*	**			**	*			$\Delta(2150)$	1/2-	*		*		Ь.					
N(1900)	$3/2^{+}$	***	***	**	**		**	***	**	*	**	$\Delta(2200)$	7/2	*		*		1					
N(1990)	$7/2^+$	**	**	**					*			$\Delta(2300)$	9/2	**		**			d,				
N(2000)	$5/2^{+}$	**	**	*	**			**	*	**		$\Delta(2350)$	5/2	*		*			а				
N(2040)	$3/2^{+}$	*		*								$\Delta(2390)$	7/2	*		*			е				
N(2060)	$5/2^{-}$	**	**	**	*				**			$\Delta(2400)$ $\Delta(2400)$	9/2 11/0+	**		**			I	L			
N(2100)	$1/2^+$	*		*								$\Delta(2420)$ $\Delta(2750)$	12/2-	****	*	****							
N(2120)	$3/2^{-}$	**	**	**				*	*			$\Delta(2750)$ $\Delta(2050)$	15/2	* *		**							
N(2190)	$7/2^{-}$	****	***	****			*	**		*		$\Delta(2950)$	15/2	* *		**							
N(2220)	$9/2^{+}$	****		****																			
N(2250)	$9/2^{-}$	****		****																			
N(2300)	$1/2^+$	**		**																			
N(2570)	$5/2^{-}$	**		**																			
N(2600)	$11/2^{-}$	***		***																			
N(2700)	$13^{\prime}/2^{+}$	**		**																			~

X

Parameters of baryons

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					5	Status as seen	i in —				Status as seen in —						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Particle	J^P	Overall status	$N\overline{K}$	$\Lambda\pi$	$\Sigma \pi$	Other channels	Particle	J^P	Overall status	$\Xi \pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Lambda(1116)$	1/2+	****		F		$N\pi$ (weakly)	〒(1318)	1/9⊥	****					Decays weakly		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Lambda(1405)$	1/2-	****	****	0	****		□(1510) □(1520)	2/21	4-4-4-					Decays weakiy		
A (1600) 1/2+ *** *** ** *** *** *** *** *** *** **	$\Lambda(1520)$	3/2-	****	****	r	****	$\Lambda\pi\pi,\Lambda\gamma$	$\Xi(1530)$	3/2+	****	****						
A (1670) 1/2- (1680) 1/2- (1	$\Lambda(1600)$	1/2+	***	***	b	**		$\Xi(1620)$		*	*						
A (1680) $3/2 - *** ** * ** * * * * * * * * * * * * $	$\Lambda(1670)$	1/2-	****	****	i .	****	$\Lambda \eta$	$\Xi(1690)$		***		***	**				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Lambda(1690)$	3/2-	****	****	d	****	$\Lambda \pi \pi, \Sigma \pi \pi$	Ξ(1820)	3/2 -	***	**	***	**	**			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Lambda(1800)$	1/2-	***	***	d	**	$N\overline{K}^*, \Sigma(1385)\pi$	⊡(10±0)	0/2	-p-sp-sp-		4.4.4	1.1	+++			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A(1810)	1/2 +	***	***	е	**	$N\overline{K}^*$	E(1950)		***	**	**		*			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Lambda(1820)$	5/2+	****	****	n	****	$\Sigma(1385)\pi$	$\Xi(2030)$		***		**	***				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Lambda(1830)$	5/2 -	****	***	F	****	$\Sigma(1385)\pi$	$\Xi(2120)$		*		*					
A (2000) $7/2 + \cdots + b$ A (2000) $7/2 + \cdots + b$ A (2000) $7/2 - \cdots + d$ A (2100) $7/2 - \cdots + d$ A (2325) $3/2 - \cdots + d$ A (2355) $* \cdots + b$ A (2356) $3/2 - \cdots + b$ E (1360) $1/2 - \cdots + b$ E (1560) $1/2 - \cdots + b$	A(1890)	3/2+	****	****	0	**	$N\overline{K}^*, \Sigma(1385)\pi$	$\Xi(2250)$		**					3-body decays		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A (2000)	<i>,</i> .			r	*	AU NK*	Ξ(2370)		**					3-body decays		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Lambda(2020)$	7/9+	*	*	h	*	110,111	=(2510) =(2500)		-11- -					a hadra decays		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Lambda(2100)$	7/9_	**	*	1	+	An NK*	=(2500)		*		*	*		o-body decays		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Lambda(2100)$	5/2-	***	****	r d	***	NW, NK										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A(2110) A(2225)	3/2+	***	**	d	*	$\Lambda\omega, N\Lambda$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Lambda(2325)$ $\Lambda(2350)$	3/2-	*	*	u Q		$A\omega$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A(2585)		***	***	e n	*		Particle	TP	status		٨K	ΞK	$\Xi(1530)K$	Other		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1193)$	$1/2 \pm$	**	**	п		$N\pi(weakly)$			Status					Other		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1385)$	$\frac{1}{2+}$	****		****	****	IV A (Weakly)		a (a								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1380)$	5/2+	****		****	****		$\Omega(1672)$	3/2-	****							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1560)$		**	*	*	**											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1580)$	3/2 -	*	*	*	44		0(2250)		***			. [.[
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1620)$	1/2 -	**	**	*	*		32(2230)					v	V			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1660)$	1/2 +	***	***	*	**							,	,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Sigma(1670)$	3/2-	****	****	****	****	several others	$\Omega(2380)$		**					ΞK^*		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1690)$		**	*	**	*	$\Lambda \pi \pi$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1750)$	1/2 -	***	***	**	*	Σn	0(2470)		**					0.77		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1770)$	1/2+	*					M(2470)		• •					22/11/1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1775)$	5/2 -	****	****	****	***	several others										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1840)$	3/2+	*	*	**	*											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1880)$	1/2+	**	**	**		$N\overline{K}^*$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1915)$	5/2+	****	***	****	***	$\Sigma(1385)\pi$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(1940)$	3/2-	***	*	***	**	guasi-2-body										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E (2000)	1/2			4.4.4	4.4	$N\overline{Z}^*$ A (1500) -										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(2000)$	1/2-	*		*		NK , $\Lambda(1520)\pi$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(2030)$	7/2+ E/0+	***	****	***	**	several others										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(2070)$	3/2+	*	*		*											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(2080)$	3/2+	**		**												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma(2100)$	1/2-	*	***	*	*											
2(2405) ** * \$\bar{X}(2620) ** * \$\bar{X}(3000) * * * \$\bar{X}(3170) * \$\bar{X}($\Sigma(2250)$		***	***	*	*											
$\Sigma(300)$ * * * * $\Sigma(3170)$ * multi-body	$\Sigma(2433)$ $\Sigma(2620)$		**	*											\mathbf{O}		
$\Sigma(3170)$ * multi-body	$\Sigma(2020)$		**	*											9		
HIMIN TOOL TO HIMING TO HI	$\Sigma(3170)$		*	*	*		multi-body										

Chengping Shen's talk

A new Λ excited states? Dalitz plot: $\Lambda_c^+ \rightarrow p K^- \pi^+$ [PRL117.011801] • The peak position is ~1663 MeV, near the $\Lambda\eta$ threshold (1663.5 MeV) A(1232) - Width is ~10 MeV, significantly narrower than Λ, Σ resonances in this region - Λ(1670): 25-50 MeV – Σ(1660): 40-200 MeV - Σ(1670): 40-80 MeV - Λ(1690): ~60 MeV 2 independent groups claim there is a new narrow Λ^* resonance at this energy with J=3/2 - Kamano et al. [PRC90.065204, PRC92.025205] Λ(1670)?? J^P=3/2⁺ (P₀₃), M=1671+2-8 MeV, Γ=10+22-4 MeV - Liu & Xie [PRC85.038201, PRC86.055202] J^P=3/2⁻ (D₀₂), M=1668.5±0.5 MeV, Γ=1.5±0.5 MeV The reason is the same - From Kp $\rightarrow \Lambda\eta$ measurement near the threshold by Crystal Ball collaboration at BNL [PRC64.055205] – Especially the angular distribution → Model independent There is no state in guark models - It must be an exotic - udsss pentaquark?? $M(pK^{-})[GeV/c^{2}]$

What's that?

- The peak position is ~1663 MeV, near the $\eta\Lambda$ threshold (1663.5 MeV)
- Width is ~10 MeV, significantly narrower than Λ* resonances in this region
 Λ(1670): 25-50 MeV
 Λ(1690): ~60 MeV
 Jujun Xie's talk

• Maybe due to interference with BG amplitude?

There is many explanations for this very narrow peak. How to determine it? There is no PWA result of $\Lambda_c^+ \rightarrow pK^-\pi^+$. What about other data sets for studying this state? Such as $J/\psi, \psi(3686)$ data at BESIII. Which processes can study this state directly?

10

Discussion

- How can we understand the cross section measurements of baryon pairs and the corresponding EMFFs? What about other measurements of baryons pairs, such as the baryon pairs with 3/2 spin?
- What can we do for the missing excited baryons?
- Determination of the parameters of baryons.
- •

