Top quark simulations near threshold at future CEPC

January 15, 2018

Top quark simulations near threshold at futur

January 15, 2018 1 / 18

1. Minuit fitting:

- The fitting is based on two parameters, top mass and top width.
- The changed point is the ISR, we use the new ISR function here.
- The Gaussian energy spread isn't included here.
- The initial values are taken: m_t =171.5 GeV, Γ_t =1.33GeV, α_s =0.1185.

the red line is xsection without ISR, the blue curve is xsection with ISR.

 $\begin{array}{c} \mbox{derivative of mt versus \sqrt{s} and $$ derivative of width versus \sqrt{s} and $$ width versus \sqrt{s} and $$ width with $$ mt=171.5 GeV$ \\ \end{array}$

Two-parameter fitting with ISR

The results are:

cases	mt	width	δ_{mt}	$\delta_{\it width}$
with ISR	171.500 GeV	1.308 GeV	5.3 MeV	12.9 MeV

The sift of central value due to energy uncertainty(without ISR):

estimation of mass systematics

estimation of width systematics

Top quark simulations near threshold at futur

• 3-parameters fitting:

3-parameters fitting with ISR

results	mt	width	α_{s}
central value	171.526 GeV	1.371 GeV	0.1197
stat.err	16.2 MeV	37.2 MeV	0.0008

Top quark simulations near threshold at futur

2. Btag cuts:

process	cross section(fb^{-1})	events
E350.Ptt_dtdtutdtutdt.e0.p0.whizard195	43.252527	10000
E350.Pzzz_dddddd.e0.p0.whizard195	0.040326517	100000
E350.Pzzz_uuuuuu.e0.p0.whizard195	0.013213431	100000
E350.Pzww_utututdtutdt.e0.p0.whizard195	1.5213469	100000

cross section

process	cross section(fb^{-1})	events
E350.Ptt_dtdtlvlv.e0.p0.whizard195	11.656258	10000
E350.Ptt_dtdtutdtlv.e0.p0.whizard195	45.566043	10000
E350.Pzww_lllvlv.e0.p0.whizard195	0.58936780	100000
E350.Pzww_llutdtlv.e0.p0.whizard195	2.2178931	100000
E350.Pzww_llutdtutdt.e0.p0.whizard195	2.30305180	100000
E350.Pzww_ututlvlv.e0.p0.whizard195	0.51962634	100000
E350.Pzww_utututdtlv.e0.p0.whizard195	1.6540463	100000
E350.Pzww_vvlvlv.e0.p0.whizard195	0.27943516	100000
E350.Pzww_vvutdtlv.e0.p0.whizard195	1.0329543	100000
E350.Pzww_vvutdtutdt.e0.p0.whizard195	1.0616599	100000
E350.Pzzz_ddddll.e0.p0.whizard195	0.064563515	100000

cross section

process	cross section(fb^{-1})	events
E350.Pzzz_ddddnn.e0.p0.whizard195	0.06727436	100000
E350.Pzzz_ddllll.e0.p0.whizard195	0.035538321	100000
E350.Pzzz_ddnnnn.e0.p0.whizard195	0.034468349	100000
E350.Pzzz_IIIIII.e0.p0.whizard195	0.011159665	100000
E350.Pzzz_nnnnnn.e0.p0.whizard195	0.054654329	100000
E350.Pzzz_uullll.e0.p0.whizard195	0.033171327	100000
E350.Pzzz_uunnnn.e0.p0.whizard195	0.024068653	100000
E350.Pzzz_uuuull.e0.p0.whizard195	0.035005353	100000
E350.Pzzz_uuuunn.e0.p0.whizard195	0.031984135	100000

cross section

without cut

cuts	events_Sign	$events_BG$	Significance	Purity
none	10000	199797	46.5279	0.500543

bgBtag

without cut

 $btag1+btag2 \ge 0.8$

cuts	events_Sign	$events_BG$	Significance	Purity
$btag1+btag2{\geq}0.8$	8684	75150	51.2097	0.69823
	Top quark simulati	ons near threshold at futu	r Januarv I	5. 2018 13 / 18

bgBtag

btag1+btag2 \geq 0.8

 $btag1 + btag2 \ge 0.9$

cuts	events_Sign	$events_BG$	Significance	Purity
$btag1 + btag2 \ge 0.9$	8468	69686	50.9437	0.708722
	Top quark simulations	near threshold at futur	Januarv 15. 2	2018 15 / 18

bgBtag

 $btag1 + btag2 \ge 0.9$

 $btag1 + btag2 \ge 95$

cuts	events_Sign	$events_BG$	Significance	Purity
$btag1 + btag2 \ge 95$	8348	67237	50.7425	0.713141
	Top quark simulation	s near threshold at futur	Januarv 15.	2018 17 / 18

bgBtag

 $btag1 + btag2 \ge 95$

The results of 2-dimensions btag cutting:

cuts	events_Sign	$events_BG$	Significance	Purity
$btag1+btag2 \ge 0.8$	8684	75150	51.2097	0.69823
$btag1+btag2 \ge 0.9$	8468	69686	50.9437	0.708722
$btag1+btag2 \ge 95$	8348	67237	50.7425	0.713141

Summary:

- The energy points are optimized according to the derivatives of parameters;
- The backgrounds still need to be depressed.