A simulation for affect from up stream material

Yang Liu; Zhu Kai 2018 -03-22

2018/3/23

- Software: Mokka (Geant4 based)
- Geometry
 - vxd07 (vertex detector)
 - ftd (ftd for cepc double pipe)
 - tube (tube for cepc double pipe)
 - LumiCal (luminosity calorimeter for cepc without angle)
 - mask (Forward mask for cepc double pipe)

Parameters of LumiCal

- Inner_radius = 32.26 mm
- Outter_radius = 98.80 mm
- Inner_z = 951.90 mm
- $\theta_{inner} = 33.982 \text{ mrad}$
- $\theta_{outter} = 103.42 \text{ mrad}$

Primary particle generation

- Use particle gun to generate an e+
- The direction is (0,0,1) with phi smearing 180 degree and theta smearing 8 deg(~ 140mrad).
- The energy is set to 120 GeV with smearing 20 GeV.
- (All smearing mode is set to uniform)

100K events have been simulated in total.

Remainder Energy of Primary particle before LumiCal

This plot shows that the primary particle will lost most of its energy before entering LumiCal.

An Event Display

Same event with all sub detector visible and only LumiCal visible

We find that the primary track will generate lots secondary tracks

Energy lost along trajectory

The	current	track	enerav	is	154814	MeV.	Track	leaves	tube Be pipe and goes into tube Cu tube pipe0
The	current	track	energy	is	154814	MeV.	Track	leaves	tube_Cu_tube_pipe0 and goes into tube_Cu_tube_pipe0_wall
The	current	track	energy	is	93372.7	MeV.	Track	leaves	tube_Cu_tube_pipe0_wall and goes into tube_Cu_cons_pipe1_wall
The	current	track	energy	is	74914.6	MeV.	Track	leaves	<pre>tube_Cu_cons_pipe1_wall and goes into WorldLogical</pre>
The	current	track	energy	is	74914.5	MeV.	Track	leaves	WorldLogical and goes into FTDPetalSensitiveLogical
The	current	track	energy	is	74914.4	MeV.	Track	leaves	FTDPetalSensitiveLogical and goes into FTDPetalSupport
The	current	track	energy	is	74913.9	MeV.	Track	leaves	FTDPetalSupport and goes into FTDPetalSensitiveLogical
The	current	track	energy	is	74913.8	MeV.	Track	leaves	FTDPetalSensitiveLogical and goes into FTDAirDiskLogical
The	current	track	energy	is	74913.8	MeV.	Track	leaves	FTDAirDiskLogical and goes into FTDPetalSensitiveLogical
The	current	track	energy	is	74913.8	MeV.	Track	leaves	FTDPetalSensitiveLogical and goes into FTDPetalSupport
The	current	track	energy	is	74913.3	MeV.	Track	leaves	FTDPetalSupport and goes into FTDPetalSensitiveLogical
The	current	track	energy	is	74913.2	MeV.	Track	leaves	FTDPetalSensitiveLogical and goes into WorldLogical
The	current	track	energy	is	74913.2	MeV.	Track	leaves	WorldLogical and goes into FTDAirDiskLogical
The	current	track	energy	is	74913.2	MeV.	Track	leaves	FTDAirDiskLogical and goes into FTDPetalSensitiveLogical
The	current	track	energy	is	74913.1	MeV.	Track	leaves	FTDPetalSensitiveLogical and goes into FTDPetalAirLogical
The	current	track	energy	is	74913.1	MeV.	Track	leaves	FTDPetalAirLogical and goes into FTDPetalSensitiveLogical
The	current	track	energy	is	74913	MeV.	Track	leaves	FTDPetalSensitiveLogical and goes into WorldLogical
The	current	track	energy	ie	74913	MeV	Track	leaves	WorldLogical and goes into FTDAirDiskLogical
The	current	track	energy	is	74913	MeV.	Track	leaves	FTDAirDiskLogical and goes into FTDPetalSensitiveLogical
The	current	track	energy	is	44021.9	MeV.	Track	leaves	FTDPetalSensitiveLogical and goes into FTDPetalAirLogical
The	current	track	energy	is	44021.9	MeV.	Track	leaves	FTDPetalAirLogical and goes into FTDPetalSensitiveLogical
The	current	track	energy	is	44021.9	MeV.	Track	leaves	FTDPetalSensitiveLogical and goes into WorldLogical
NEXT GOES INTO LUMICAL									
The	current	track	energy	is	44021.8	MeV.	Track	leaves	WorldLogical and goes into LogicFan1
The	current	track	energy	is	44021.8	MeV.	Track	leaves	LogicFan1 and goes into logAirGap2

 This slide shows an example of how does one track lose energy within Geant4 simulation. Most of the energy lost in the Cu_tube_pipe0_wall.

Four-momentum Merge

• The primary particle will lost most of its energy but generates many secondary particles in the sub detector before LumiCal. So we try to sum up the total four-momentum of tracks which finally go to LumiCal. The four-momentum is chosen at the steppoint before the track goes into LumiCal.

Direction change

Summary

- The primary particle will lost most of its energy in upstream materials and generate a bunch of secondary tracks.
- The Merged four-momentum of secondary tracks when they entering LumiCal will hold the most energy (>90%) of primary particle and changes the incoming direction slightly.
- The upstream material will cause a energy deposition smaller than 10% and a direction smearing.

PDG_ID of Secondary particles

