

$H \rightarrow ZZ$ anomalous coupling measurement for CEPC

Yanyan Gao (University of Liverpool)

Ian Anderson,¹ Sara Bolognesi,¹ Fabrizio Caola,¹ Yanyan Gao,² Andrei V. Gritsan,¹ Christopher B. Martin,¹ Kirill Melnikov,¹ Markus Schulze,³ Nhan V. Tran,² Andrew Whitbeck,¹ and Yaofu Zhou¹

CEPC Higgs physics working group meeting, 29-Jan-2018

Introduction

- The LHC experiments have carved a broad picture of the Higgs boson
 - Overall yields, extreme alternative spin and CP hypothesis
 - Far from confirming the Lorentz structure of the interactions e.g. $H \rightarrow ZZ$

$$\begin{split} A(X_{J=0} \to VV) &= \frac{1}{v} \left(g_1 m_V^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right) \\ & \\ \text{SM Higgs} & \text{High order 0+} & \text{O-} \end{split}$$

Define experimental measurements "effective fraction of events"

$$f_{gi} = \frac{|g_i|^2 \sigma_i}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4} \qquad f_{\rm CP} \equiv f_{g4} \equiv f_{a3}$$

• CEPC offers a great opportunity to ping down the Lorentz structure of the $H \rightarrow ZZ$

Overview of our paper

- "Constraining anomalous HVV interactions at proton and lepton colliders"
 - Phys. Rev. D 89, 035007 (<u>https://arxiv.org/abs/1309.4819</u>)
 - 4 theorists: K. Melnikov, F. Caola, M. Schulze, Y. Zhou
 - 7 experimentalists: I. Anderson, S. Bolognesi, Y. Gao, A.V. Gritsan, C. Martin, N. Tran, A. Whitebeck
- This paper provided a single consistent framework to estimate the ultimate sensitivities of the anomalous couplings measurements of the HVV interaction vertex
 - Developed a consistent MC to model the HVV interaction vertex in productions and decays of the Higgs for both pp and ee colliders
 - Introduce matrix element likelihood approach (MELA) to maximising kinematics usage
 - Used a consistent statistical approach to estimate discovery potentials for HL-LHC/e+e- collider
- Both experimental tools (MC/MELA) are suitable for CEPC Higgs studies
 - Would be nice to repeat born-level analysis with CEPC detector simulation for CDR

JHUGen generator

- Public generator: <u>http://www.pha.jhu.edu/~spin/</u>
 - JHU stands for Johns Hopkins University as all authors are/were JHU students/pdocs/academics

- Output lhe files, can interface with Pythia and Powheg
- Used extensively in the LHC (CMS/ATLAS) Higgs/EXO analysiesin the last 5 years
 - Especially in the $H \rightarrow ZZ \rightarrow 4I$ in the Higgs discovery and CP property measurements phase
 - Sustained extensive validations vs other generators (e.g. madgraph) and internal cross-checks
- e+e- collider sector is added in 2013 for this paper (US Snowmass 2013)
- Happy to support CEPC/SppC studies

Couplings → Helicity amplitudes

- Rewrite the HVV amplitudes in helicity based \rightarrow kinematic distributions
 - Our earlier papers: <u>https://arxiv.org/abs/1001.3396</u> <u>https://arxiv.org/pdf/1208.4018.pdf</u>

Angular calculations \leftrightarrow helicity amplitudes

- Five angles are needed to describe the full chain
 - Full kinematics also include constant term m_Z and m_{Z^*} (250 GeV) (Referred to as m1, m2)
- Assume we are dealing with spin-0 Higgs like boson, angular information reduces to
 - $\Omega = \{\theta_1, \theta_2, \varphi\}$, depends only on the Z \rightarrow II decays
 - Differential angular distributions are fully predicted (basic QM)
 - These distributions carry information of helicity amplitudes hence couplings

$$e^{+}(\overline{q}) \xrightarrow{T} Z_{+} \xrightarrow{I} \theta_{1} \xrightarrow{I} \theta_{2}} \frac{d\Gamma_{J=0}(s, \vec{\Omega})}{d\vec{\Omega}} \propto 4 |A_{00}|^{2} \sin^{2}\theta_{1} \sin^{2}\theta_{2} + |A_{+0}|^{2} (1 - 2R_{1} \cos\theta_{1} + \cos^{2}\theta_{1}) (1 + 2A_{f_{2}} \cos\theta_{2} + \cos^{2}\theta_{2}) + |A_{-0}|^{2} (1 + 2R_{1} \cos\theta_{1} + \cos^{2}\theta_{1}) (1 - 2A_{f_{2}} \cos\theta_{2} + \cos^{2}\theta_{2}) - 4|A_{00}||A_{+0}|(R_{1} - \cos\theta_{1}) \sin\theta_{1}(A_{f_{2}} + \cos\theta_{2}) \sin\theta_{2} \cos(\Phi + \phi_{+0}) - 4|A_{00}||A_{-0}|(R_{1} + \cos\theta_{1}) \sin\theta_{1}(A_{f_{2}} - \cos\theta_{2}) \sin\theta_{2} \cos(\Phi - \phi_{-0}) + 2|A_{+0}||A_{-0}| \sin^{2}\theta_{1} \sin^{2}\theta_{2} \cos(2\Phi - \phi_{-0} + \phi_{+0}).$$
(A2)

Ideal projections

- Compare the numerical simulation with analytical distributions at born level without cuts
 - First step of validations of both approach

Lines: analytical calculationDots: JHUGen MC
$$-0+$$
 $-f_{CP}=0.5, \varphi=0$ $-f_{CP}=0.5, \varphi=0$

• Acceptance can be parameterised using step function

$$\mathcal{G}(m_1, m_2, \vec{\Omega}) = \prod_{\ell} \theta(|\eta_{\max}| - |\eta_{\ell}(m_1, m_2, \vec{\Omega})|), \qquad (B6)$$

Event selections

- Consider only the (II bb) final states
 - As the H->bb angular information is not used, can easily extend to include other decays
- Acceptance selections
 - Leptons $pT > 5 \text{ GeV}, |\eta| < 2.4$
 - Lepton efficiency impact => overall 80% per event level
 - No smearing is applied
- Assume relative 10% background modelled with ZZ->µµbb
 - Back-of-envelope estimations in 2013, very preliminary

	Process	Generator	σ×BR	nEvents (fb-1)
Signal	e+e-→ZH→llbb	JHUGen	9.35 fb	8
Background	e+e-→ZZ→llbb	Madgraph	-	0.8

Statistical analysis to extract couplings (e.g. fa3)

• Multi-dimensional fit to observed kinematic distribution through maximum likelihood fit

$$\mathcal{L} = \exp\left(-n_{\text{sig}} - n_{\text{bkg}}\right) \prod_{i}^{N} \left(n_{\text{sig}} \times \mathcal{P}_{\text{sig}}(\vec{x}_{i}; \vec{\zeta}) + n_{\text{bkg}} \times \mathcal{P}_{\text{bkg}}(\vec{x}_{i})\right)$$
observables
$$\vec{x}_{i} = \{m_{1}, m_{2}, \vec{\Omega}\}_{i}$$

$$\vec{\zeta} = \{f_{a2}, \phi_{a2}, f_{a3}, \phi_{a3}, ...\}$$

 $\mathcal{P}_{\rm sig}(\vec{x}_i; f_{a3}, \phi_{a3}) = (1 - f_{a3}) \mathcal{P}_{0^+}(\vec{x}_i) + f_{a3} \mathcal{P}_{0^-}(\vec{x}_i) + \sqrt{f_{a3}(1 - f_{a3})} \mathcal{P}_{\rm int}(\vec{x}_i; \phi_{a3})$

- Choice of $\vec{x}_i, \vec{\zeta}$
 - Most optimal: full kinematics information in multi-dimensional space
 - Challenging: detector response and background parameterisations in multi-dimensions
 - Balance these two factors also depends on the available statistics

Statistical analysis (II)

- Quantify sensitivity as 3σ discovery value f/ σ
 - Scan different f_{a3} and f_{a2} values until this is met
- For each trial f-value, perform pseudo-experiments to evaluate f/σ
 - Generate 1000 pseudo-datasets from expected PDF
 - For each toy data we perform a 3D ML fit as described in previous slide
 - With one parameter fitted: fa3 or fa2 floated
 - With 2 parameters fitted: (fa3, fa2), (fa3, phia3) or (fa2, phia2)
 - Check output of these 1000 fits and verify fit quality by checking pull distributions
 - Take Gaussian error of the fitted value as the sigma
 - Repeats until found the value of f which gives $f/\sigma = 3$
- These f-values obtained at CEPC are then converted to the equivalent values defined for H->ZZ decays for comparisons
 - Recall that the σ_2/σ_{SM} and σ_4/σ_{SM} depends on the m(Z*) which is different from CEPC and H->ZZ

Results (ID)

Results (2D)

• Central values are the discovery sensitivity obtained in the 2 fits in previous slides

	HL-LHC	CEPC
fa2	0.06	2 × 10-4
fa3	3.7 × 10-4	I.3 × I0-4