

MVTX Status & Plan

Ming Liu Los Alamos National Lab for the MVTX Group

1st sPHENIX Workshop in China Peking University, Beijing, China

Outline

- Project Status
- MVTX full proposal
 - Physics and Simulations
 - Readout and Controls
 - Mechanical Integration
 - Budget and Schedule
- R&D Highlights
- Latest development

A Monolithic Active Pixel Sensor Detector for the sPHENIX Experiment

MVTX Status: Where do we stand?

- Full proposal submitted to BNL Associate Laboratory Director Dr. Berndt Mueller in Feb. 2018
- March 27, a meeting of ALD, MVTX principals, co-SP and sPHENIX project office. Given improved DOE funding fiscal outlook, ALD recommended to bring MVTX into MIE baseline:
 - This would be post-OPC/CD-1 Review(5/23-25, 2018), MIE baseline will be defined in the CD-2 (~summer 2019); MS Project -> P6 in progress
 - Exploring advance-funding options to procure Readout Units (\$250K, now) and staves from ALICE at CERN (\$1.2M, fall 2018)
 - Cost saving and reduce technical and schedule risks
 - ALD seeks DOE agreement to proceed
- MVTX workfest at MIT 4/30-5/1, 2018
 - Refine MVTX roadmap cost & schedule etc
 - Prepare for sPHENIX integration mini review (~summer)
 - MVTX+INTT+TPC...
 - Both electrical and mechanical systems

https://indico.bnl.gov/event/4380/

MVTX: Monolithic-Active-Pixel-Sensor-based VerTeX Detector

MVTX could also be a day-1 EIC detector

SPHENIX

Monolithic-Active-Pixel-Sensors (MAPS)

ALPIDE: The next Generation State of the Art Pixel Tracker

- Advantages of ALICE MAPS(ALPIDE): ٠
 - Very fine pitch (27x29 μm)
 - High efficiency (>99%) and low noise (<10⁻⁶)
 - Excellent time resolution, ~5 μs
 - Ultra-thin/low mass, 50μm (~0.3% X_n)
 - On-pixel digitization, low power dissipation

An ideal detector for sPHENIX and EIC physics!

A 9-chip MAPS stave, $9 \times (1.5 \times 3 \text{ cm}^2)$

Tower Jazz 0.18 µm CMOS

- feature size 180 nm
- metal layers 6 ٠
- gate oxide 3nm

substrate: N_A ~ 10¹⁸ epitaxial layer: N_A ~ 10¹³ deep p-well: N_A ~ 10¹⁶

sPHENIX Tracking System

MVTX Enables the 3rd Science Pillar

- 1. Jets
- 2. Upsilons
- 3. Open Heavy Flavor
- Bottom quarks are heavy (4.2 GeV)
- Produced in initial collision, probe QGP
 evolution
- Well controlled in pQCD
- Provide access to fundamental transport properties

MVTX Physics Highlights

- Heavy quarks unique probe of QGP w/ new scales, m_c, m_b
 - Study mass dependence
 - Jet quenching & energy loss
 - Flow interaction with medium
 - Access QGP properties
 - Temperature, density, coupling, transport coefficients, viscosity etc.

FHENIX Simulation R_{GP} (0-10%/60-80% (0-10% Au+Au vs...= 200 GeV Au+Au (5...-200 GeV, 240B ME PYTHIA-8 D-jet, Anti-k, R=0.4, jnl<0.7, CTEQ6 1.2 p+p; 200 pb⁻¹, 60% Eff., 40% Pur. -R-meson Å. 1LAT: 240B MB 40% Eff 40% Put - D⁰ from B D-meson 0.8 0.8 0.6 0.6 0.4 LANL D-bt R=0. 0.2 0.2 gmeg _ 2.0

Transverse Momentum [GeV/c]

8

"B meson and b-jet flow"

"B meson and b-jet modification"

New Insight into QGP: HF-Jet Substructure

SPHENIX

New Insight into QGP: B v2

Very active theoretical investigation:

- LANL model
- CUJET

SPHENIX

- Duke model
- TAMU
- UrQMD
- AMPT
- PHSD
- Ads/CFT
- BAMPS
- HQ+EPOS2
- JetScape

Various new model calculations, PHSD, AMPT etc, for B-hadron v2:

- Significant non-zero v2 suggested, but may NOT follow the scaling due to large b-mass!

D-meson: v₂ scaling observed at RHIC

B-Hadron & b-Jet Tagging

- Detected using the long lifetime of bottom quark hadrons:
 - Displaced tracks
 - Large 2nd vertex invariant mass
- Need high precision tracking and vertex determination MVTX!
- Need excellent jet detection capabilities sPHENIX!

Simulation for *b*-jet and *B*-meson tagging

- Impact parameter (DCA) method to tag non-prompt D⁰ from B-meson decays
- Inclusive and exclusive channels possible

Partial reconstruction: B->D+x

b-jet Tagging in *p*+*p* and Au+Au

- Fully implemented MVTX models used in performance projection
- *b*-jet tagging projection evaluated with full tracking + calorimetry simulation
 - Tagging work point has been stable (60% Purity 40% eff for pp)
 - Central Au+Au Tagging work point has been stable (40% Purity 40% eff)
- Performance has been stable using truth jet finding or calorimetry reconstructed jet finding

MVTX Detector Integration

MVTX:

- Electrical system
 - Readout, power, controls
- Mechanical system
 - Support and cooling

MVTX Electronics, Power and Controls

MVTX Detector Electronics consists of three parts
Sensor-Stave (9 ALPIDE chips) | Front End-Readout Unit | Back End-FELIX

MVTX Full Readout Chain Demonstrated

Readout Unit + Stave

- Readout Unit configures Stave using USB interface
- FELIX distributes clock to Readout Unit
- Readout Unit distributes clock to the Stave
- Stave is triggered, sends data at 1.2Gb/s
- Configured GBT link to recover clock from FELIX
- Readout Unit receives the data and sends the data to FELIX over fiber using GBT link
- FELIX packs data, stores it on disk using RCDAQ the sPHENIX data formate and software

Server + FELIX

MVTX Test Beam at Fermilab: 02/20-03/10

- Goals:
 - Test full readout chain
 - Evaluate ALIPDE sensor performance
- Experimental setup
 - A 4-sensor telescope
 - Full readout chain: MAPS+RU+FELIX+RCDAQ

- Parasitic with INTT run
- Very productive & collaborative

Summary:

SPHENIX

- Successfully operated the full readout chain
- Confirmed all communications links and data path
- Confirmed telescope performance
 - Primarily 120GeV proton beam; also with low energy pion beams
 - Beam trigger rate ~7kHz
 - Tested High ALPIDE occupancy runs, with 10cm lead bricks in front of the sensors

Fermilab Test Beam Results (I)

SPHENIX

Fermilab Test Beam Results (II)

4/22/18

ALPIDE Readout Optimization and Trigger Latency Study

- Expected sPHENIX trigger latency 4~5 uS
- Two possible readout modes: 1) Triggered and 2)Continuous

- OUT_A clipping: VCLIP. Decreasing VCLIP decreases clipping point.
- OUT_A returns to baseline time: ITHR, VCLIP. Increasing ITHR decreases discharge time, and decreasing VCLIP decreases discharge time after clipping.
- OUT_D return to baseline time: IDB. Increasing IDB increasing charging time hence decreasing pulse duration.

A Test Bench at LANL

ALPIDE chips.

Power Board

Trigger Latency and Signal Shaping Time Study

• Lower the OUT_D threshold (IDB) increases the trigger duration time, but also increases the cluster size which might include more background hits.

In the continuous readout mode, "trigger/strobe" can be as early as ~1uS

Model of MVTX with INTT inside TPC with the addition of two concentric composite cylinders;

Location in Z where the inner-hcal ends (see control drawing) Z=2175.0 mm

MVTX and INTT Integration – Work in Progress

It is clear from this detail view the conical region of the MVTX detector barrel with the INTT that the MVTX will need to translate in Z...

Signal and Power Extension for FPC

IB Services: cabling&cooling

SPHENIX

MVTX Mechanical Conceptual Design

 View of MVTX half detector assembly with extended central barrel

29

sPHENIX MVTX Cost & Schedule Profile

New numbers: \$1.52M \$1.6M

RU units moved from FY19 to FY18

* 50% cost reduction due to joint production with ALICE

FY20-22: funding profile smoothing

Updated Major Cost Items

WBS	Task Name	Cost (K)	Cost with Contingency+ Passthru (K)
1.5.3.1.1	Produce 84 staves	\$966	\$1.2M \$1337
1.5.2.2	Readout Units(RDO)	\$480	\$250K \$664
1.5.5.3.2.3.2	CYSS Cylindical Structure	\$319	\$424
1.5.5.3.2.3.3	COSS Conical Half Shell	\$329	\$438
1.5.4.3	Safety Systems	\$139	\$191
1.5.4.4	Stave Support+ Global Interface	\$308	\$465

Table 6: Major Cost Items

SPHENIX

4/22/18

32

Summary and Outlook

- MVTX full proposal completed
 - Expanded science
 - sPHENIX baseline
- Cost and schedule update in progress
 - Major item cost
 - Funding profile smoothing
- Excellent progress in R&D
 - Readout and controls proof-of-principle demonstrated
 - Conceptual mechanical system design being developed
- MVTX+INTT+TPC integration in progress
 - Electrical and mechanical system
 - sPHENIX wide coordination through Office of Integration
- To be ready for sPHENIX Day-1 Physics in 2023
 - sPHENIX and later EIC possibility

Welcome Contributions from Chinese Consortium!

Document: sPH-HF-2018-001 https://indico.bnl.gov/event/4072/

Backup slides

Physics & Simulations: from sPHENIX to EIC

RHIC Multi-Year Plan: sPHENIX 2023-2027+

Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
Year-1	Au+Au	200	16.0	$7 \ { m nb^{-1}}$	$8.7~{ m nb^{-1}}$	$34 \ \mathrm{nb^{-1}}$
Year-2	p+p	200	11.5		$48~{ m pb}^{-1}$	$267~{ m pb^{-1}}$
Year-2	p+Au	200	11.5		$0.33 { m ~pb^{-1}}$	$1.46 { m ~pb^{-1}}$
Year-3	Au+Au	200	23.5	14 nb^{-1}	$26~{ m nb^{-1}}$	$88 \ \mathrm{nb^{-1}}$
Year-4	p+p	200	23.5		$149~{ m pb}^{-1}$	$783~{ m pb}^{-1}$
Year-5	Au+Au	200	23.5	14 nb^{-1}	48 nb^{-1}	$92~{ m nb^{-1}}$

- Precision B-tagging w/ MVTX:
 - Tracking resolution better than 50um @pT=1GeV
 - High multiplicity HI collisions
 - Low multiplicity but high rate p+p collisions
 - High efficiency and high purity

Summary: Major Remaining R&D

- Mechanical/Electrical integration with INTT+TPC
 - Carbon structure design
 - FPC extension
- Full electrical system control
 - Power
 - Safety
 - Online monitoring & controls
- Readout system firmware/software with slow controls

More information

Mechanical Integration

sPHENIX Integration: MVTX + INTT + TPC

INTT-MVTX Conflict **INTT** Acceptance @ |z|=10 |η|<0.95 **INTT 4-layers** |η|<1.09 |η|<1.28 |η|<1.12

- Currently a clear conflict between the INTT and MVTX
 - INTT only includes ladder, no connectors, cooling barbs, etc

R&D items: 1) Extend cables to move the conical structure further out in zdirection; 2) Design/optimize INTT layers to fit current MVTX geometry;

- FPC data cable is the HDI and can't be easily extended, short "firefly" cables possible?
- Reduce angle of cone redesign C-structures and connectors

INTT-MVTX Conflict

- Possibly add short "firefly" cables to hook up to patch panel, R&D needed
- 2. Reduce angle of cone redesign

4/22/18

MVTX/INTT Integration Extend MVTX Service Cables?

The 9 silicon chips are read out in parallel: each chip sends its data stream to the end of Stave by a dedicated differential pair, 100 μ m wide. Two additional differential pairs distribute the clock and configuration signals.

MVTX FPC R&D @CERN and LANL

11

MVTX half detector assembly

MVTX Detectors

Service Barrel: Design and Fabrication

ALICE HALF-BARREL ASSY

ALICE Inner Tracker Rail Support

The MVTX plus INTT half barrel assemblies location position is provided by the engagement of 4 rollers on the half-barrel, which would be previously measured and aligned, into four precise inserts housed in the "cage-rail" assembly.

In sPHENIX we will not use a "service cone, rail system" anywhere near the size of that planned for the ALICE detector, but we will use their concept.

INTT Readouts from both North and South

Minimum length is 105cm – ladder length + distance to ROC board.

BNL control envelope drawing; Z location of the inner hcal is at 2175,0mm

Cross-section view from CAD model of MVTX, INTT, TPC, beam-pipe, plus two composite conical shells

Gap between conical shell of MVTX and inner layer of INTT is 11.58 mm

56.0 mm gap between INTT and inner radius of TPC

Earlier model for the INTT, chevron configuration, inner layer half ladders in width;

Offset from OD of beampipe and innermost component of the MVTX

Offset needed to install split MVTX into run location around beampipe, passing over 2.75 in conflat flange

INTT stave design with HDI

Latest configuration of ladders in the INTT, 4 layers where each is made from two layers for hermeticity

New INTT model with HDI extensions;

Cost & Schedule

Cost and Schedule I the Full Propsal

- Total budget: 6.5M
 - Production
 - Assembly

SPHENIX

- Integration
- About 9 months schedule float

sPHENIX MVTX Cost Profile

Figure 42: MVTX Funding Profile.

Major Items	Cost (\$M)	Schedule
Staves (WBS 1.5.3.1)	1.3	8/2018-5/2019
Readout & Controls (WBS 1.5.2)	1.3	1/2019-6/2019
Mechanics & Detector Assembly (WBS 1.5.3)	1.8	2019-2022, TBO
Integration (WBS 1.5.4)	1.0	2021-2022, TBO
Project Management	1.0	8/2018-1/2023

MVTX labor profile in the full proposal

12000

10000

8000

6000

4000

2000

0

FY2019

	Escalation + Overhead + Contingency	
Labor	\$2.5M	
M&S	\$4M (\$3.75M if RU produced in FY18)	

Resource by Hours

Only engineers and Technical staff costed to the project

FY2021

PHYS ENG Tech GRDSTD

FY2022

FY2020

FY2023

Early funding motivation for MVTX FY18,FY19

- Buy 84 good staves from CERN following ALICE production, end FY18
 - Includes: sensors, space frame, FPC, assembly and tests
 - Very low technical risk
 - CERN will deliver 100% working staves
- Buy 58 Readout Units with the ALICE production in FY18 (was FY19)
 - FPGA chips and GBT chips as part of the ALICE production
 - GBT not commercially available product
 - ~50% cost saving w.r.t. to estimated budget (exact number confirmed 04/18)
- MVTX telescope Fermilab test beam confirmed the readout chain and sensor performance in early March 2018
 - Sensors(ALPIDE) + RU(frontend) + FELIX(backend) + sPHENIX RCDAQ
- To attract external funding & support for MVTX
 - Foreign consortium, individual institution

M&S cost options & risks

Green: low risk / MVTX baseline budget Red: High technical risk, low cost saving or increased cost

• Staves:

SPHENIX

- Oprion1: MVTX production following ALICE production at CERN, ~Aug 2018
 - All material included and 100% working staves delivered
- Option2: Partial stave assembly at CCNU (China)
 - MVTX project would still need to buy sensors, Flexible Printed Circuit (FPC) and space frames
 - Wuhan could assembly sensor and FPC; assembly with space frame may be done elsewhere
 - No experience assembly inner barrel \rightarrow training required and hardware modified
 - Potential saving on some labor assembly work
 - Yield unknown -> schedule and cost uncertainty
- Readout Units (radiation hard electronics):
 - Option1: Produce with ALICE batch (FPGA chips & GBT chips) in FY18
 - 50% cost reduction w.r.t. budgeted cost
 - Option2: MVTX produces its own batches → cost increase and schedule impact
- Carbon structures:
 - Exploring cost-saving options, build carbon structures elsewhere (France and Italy) instead of LBNL etc.
- Reuse hardware from LDRD
 - Electronics, Power System etc.

LANL LDRD – MVTX/sPHENIX Key Tasks/Milestones

Electronics and Controls

MVTX Electronics Overview

MVTX Detector Electronics consists of three parts
Sensor-Stave (9 ALPIDE chips) | Front End-Readout Unit | Back End-FELIX

SPHENIX

Sensor and Electronics R&D @LANL

- ALPIDE evaluation and optimization
 - MOSAIC + Single Chip/Stave
 - Cosmic and source
 - Laser system
- Power unit tested
 - PU + MOSAIC
 - PU + RU
- Full readout chain demonstrated
 - ALPIDE + RUv1.0 + FELIX v1.5 + RCDAQ
 - Full stave + RUv1.x + FELIX v2.0 + RCDAQ
- Mechanical system integration
 - Conceptual design developed
 - MVTX+INTT integration

First Full Chain Readout: Success!

LANL + Martin, JohnH et al

- RU configures ALPIDE using python scripts interfacing the USB chip on RU
- Felix distributes clock to RU, the RU then distributes the clock to the ALPIDE
- ALPIDE is triggered on the control line, sends data at 1.2Ghz over copper
- The RU receives the data and sends the data to FELIX over fiber using GBT link
- FELIX packs the data and stores in on disk which is read out using RCDAQ
- Configured ALPIDE to accept triggers from FELIX using python software that came with the RU
- Configured GBT link to recover clock from FELIX and GT link (FGPA gigabit interface)
- 8 RU's emulated using 1 fiber link per RU on FELIX, 15kHz, 400 hits per RU
- Currently working the implementation of the above using a Stave

RUv1.0

Parallel Effort at UT-Austin – Shared R&D

Test Setup at UT Austin

ALICE ITS UPGRADE

- RUv1 with transition bd + power mezz
- RUv0 as CRU emulator
- Single sensor on chip carrier board with interface board (only usable for IB tests, wrong pins for OB)

- Long (5m) FireFly cables
- Power board with single breakout board
- Now also tested with 9-sensor Inner Barrel module

LANL R&D: Single ALPIDE Chip Scan – Active Channel Fraction

- Scanned the available chips and stave at the LANL lab through digital scan to verify the dead channel fraction: the bad channel fraction is <1%.
- Similar results with different readout speeds.

Hit Pixel Cluster Distribution from Source Test (Sr⁹⁰)

Achieved all goals and more!

- Tested a new readout scheme
 - 4 sensors (~4 staves) per RU (ALICE 1 stave per RU)
- Sensor performance evaluation
 - Cluster size

SPHENIX

- Threshold, signal shaping, trigger delay
- System stress test
 - High multiplicity events created via lead bricks "shower"
 - With 5, 10, 20cm lead bricks
- Analysis software developed
 - Online monitor
 - hit distribution, relative alignment etc.
 - Offline reconstruction, alignment etc.
 - Preliminary alignment, ~O(100um)

4 sensors Connectec to one RU

RC DAQ event Data Screen Shot

- Rcdaq receiving events from KC705 using ddump utility
- ffff0044ffffc0ff4ea0
- a0 Chip Header
- 4e bunch counter
- ff IDLE
- c0 Region Header
- 40 00 first Hit
- Second screen shot showing end of one event (b0..., f000f000) and the beginning of another

					maps : ddump - Konsole						maps:ddump -	Konsole		×
e	Edit View F	Bookmarks	Settings	Help		File Edit	View Bo	okmarks	Settings I	Help				1
: E	vent 1000 P	Run: 1	length:	974 type: 1	(Data Event) 1508444542	39c	14cff01	14cff00	ffoosoff	5c0150				1
	t 2000 94	66 -1 (UNC	s Packet)	98 (UNKNOWN)		360	54ff01 f	60ff01	ff000158 ff0160ff	5cff0158 5f0164				ſ
			4ea000000	ffffcOff		3a8	164ffc0 1	fcccsff	ff010168	6cff666c				1
4 0	111004	0 ffff0140 1 40ffff00	ffff0044	30144 ffff004c		3ac	170ff01	170ff00	ff0074ff	620174				1
	1ff014	c ffoosoff	ff0150ff	601ff		350	1000000	TTUT/UTI	TT00017c	640000				1
	ffff005		ff000158	ff0158ff		368								1
14	1005ct1	f 15cTTTT	60TTTT 16401ff	90111 spffff		30C	0							1
1c	168fff	f 6cffff01	6cffff00	c0101		- Event	+ 1001 Bur			974 type: 1	(Data Event)	1508444547		1
	70fff	f 170ffff	74ff01ff	74fff00		Packet :	2000 966	-l (oncs	(Packet)	98 (UNKNOWN)				1
24	Tefffio	1 ffff0078	400166	1017C					n.i					1
20	1ff004	4 48ff0144	148ff00	1201ff			1ff0040 f	ifffo140	11110044	30144				1
	4cff004	c 50ff01	15001ff	ff0054ff			48ffff01 4	affffoo	ffff0101	ffff004c				1
34	1111015	4 58110058 c 1605f00	5401ff	1501ft ff0164ff			lff014c 1	foosoff	ff0150ff	601ff				1
30	1ff006	8 6cff0168	16cff00	1801ff		14	1005cff	15cffff	60ffff	solff				1
			17401ff			18	ff0160ff	fcc64ff	18401ff	68ffff				1
44	10170170	8 7ctt007c	14401ff	1b01tt ffoovoff			168ffff (Scffff01	5cffff00	c0101				1
40 40	1ff014	8 4cff004c	50ff01	le01ff		20	1666601 H	1/UTTTT fffnoze	ffff0178	74TTTT00 f017c				1
			5801ff			28	7cffff00	ffc1ff01	4001ff	ff0140ff				1
54	111005	c 60ff015c	1601100	2101ff			1ff0044 4	18ff0144	148ff00	1201ff				1
50	1ff016	c 70ff0070	74ff01	2401ff		30	4ct1004c	501101 Seffonse	15001TT 5-ff01	1501ff				1
		4 178ff00				38	60ff015c	160ff00	5401ff	ff0164ff				1
64	1ffffc	3 40ff0040	44ff01	2701ft			1ff0068 6	5cff0168	16cff00	1801ff				1
60 60	1ff0054	a 54ff0150	154ff00	2a01ff		40	70110070	741101	17401††	1+0078+1 1-0076+f				1
	58ff005i			ffcosoff		48	40ff0040	44ff01	14401ff	ff0048ff				1
74	1ff0160	0 64ff0064	68ff01	2d01ff			1ff0148 4	teff004c						1
78	1ff007	4 78ff0174	178ff00	3001ff		50	54ff0150	154660	5801ff	ff0158ff				1
	7cff007	c ffc4ff01	4001ff	ff0140ff		59	64ff0064	68ff01	16901ff	ff006cff				1
84	1ff004	4 48ff0144	148ff00	3301ff						2401ff				1
80	4ctro04	2 58ff0058	15001ft	3601ff		50	78ff0174	1781100	7c01ff	ff017cff				1
90	60ff0156	c 160ff00	6401ff	ff0164ff		68	48ff0144	148ff00	4c01ff	ff014cff				1
94	1ff006	8 6cff0168	16cff00	3901ff			1ff0050 5	54ff0150		2a01ff				1
98	1ff017	0 74TT01 8.7cff007c	1740111 ffc5ff01	3c01ff		70	58ff0058	5cff01	15c01ff	7f0060ff				1
aO	40ff004	0 44ff01	14401ff	ffco48ff		78	ff006cff 3	7016411	70ff0100	200101 74ff01				1
	1ff014	8 4cff004c	50ff01	3f01ff			10174ff		7cff0178	300100				1
a8 ac	111005	c ff0060ff	5801f1 64ff0160	420100		80	ff017cff	10ffffc4	40ff0100	44ff01				1
bo	ff0164ff	f caffooca	6cff0101	16cff00		88	ff014cff	50ff0050	54ff0101	154ffc0				I
b4	10070f	f ff0170ff	74ff0074	450101		8c	10058ff	ff0158ff	5cff005c	360101				1
be be	100406	f ff0140ff	44ff0044	480101		90	ff0060ff (54ff0160	84ff0100	68ff01				
cŌ	ff0048f	f 4cff0148	4cff0100	50ff01		98	ff0170ff	74ff0074	78ff0101	178ff00				1
c4	10150f	f ff0054ff	58ff0154	4b0100			1007cff	f017cff	40ffffc5	3c0100				1
00	100646	f ff0164ff	60110101 681f0069	4e0101		50	ff0140ff	441 f 0044	48110101	148ff00				1
dõ	ff006cft	f 70ff016c	70ff0100	74ff01		89	ff0054ff	58ff0154	58ff0100	5eff01				1
d4	10174f	f ff0078ff	7cff0178	510100		ac	1015cff	fccsoff	64ff0160	420100				1
d8	101/4f	f 40ffffc7 f ffoodaff	40110100 Actf0148	441101		60	ff0164ff (58 ff 0068	5cff0101	16cff00				
eO	ff014cf1	f Soffooso	54ff0101	154ff00		54 b8	ff0078ff :	7cff0178	7cff0100	450101 ffc6ff01				
	10058f	f ff0158ff	Scff005c	570101		bc i	10040ff	fo140ff	44ff0044	480101				1
68 80	101601	f ff006cff	54110100 70ff016c	5ett01			ff0048ff 4	Actf0148	4cff0100	50ff01				1
fo	ff0170f	f 74ff0074	78ff0101	178ff00		c4 c8	ff0158ff	Scff005c	58110154 60ff0101	160ff00				1
f4	1007cf	f ff017cff	40ffffc8	5d0100		cc	10064ff	f0164ff	68ff0068	4e0101				I
18	1004of	f 44110044	48110101 50ff0050	1481100			ff006cff :	70ff016c	70ff0100	74ff01				1
100	ff0054ff	f 58ff0154	58ff0100	5cff01		- 64 d8	ff017cff	nfuu/8ff 10ffffc7	40ff0100	44ff01				1
	1015cf	f ffoosoff	64ff0160			dc	10144ff	fco48ff	4cff0148	540100				II.

Data Rate Calculations

	Collision Rate
Au Au	200kHz
PP	10Mhz

• Assume 10us window and cluster size 3

	Au Au	P P
# of collisions	2 = 10us * 200kHz	100 = 10us * 10Mhz
# of hits, hottest chip	270 = 3 * 90	75 = 3 * 25
# of hits in a stave	1983 = 3 * 661	543 = 3 * 181

Central Au-Au collision with 2.0 pileup MB collisions: 661 clusters/stave in layer 0

30 20 10

oE

-15

-10

-5

0

5

10

Expected Data Rate (from the proposal)

Figure 9: Average hit occupancy per event. Conservative assumptions are made regarding integration time $(10 \,\mu s)$ and cluster size (3 pixels/cluster). In addition, the pileup collisions are assumed to occur inside the MVTX acceptance ($|Z_{Venex}| < 10 \text{ cm}$) when in fact they will be widely distributed along the beam axis.

The highest occupancies are expected in layer 0, at $\eta = 0$, with central Au+Au collisions. Figure 9 shows that MVTX sensors average 271 hit pixels/event, for an occupancy of 0.052%. Lab tests (further described in Section A) have demonstrated successful MVTX readout at larger hit occupancies.

	10 ⁻⁴ noise	Hit occupancy only		Hit + noise occupancy		
	occupancy	<i>p</i> + <i>p</i> [MB/s]	Au+Au [MB/s]	<i>p</i> + <i>p</i> [MB/s]	Au+Au [MB/s]	
L0 FEM	26	29	107	55	133	
DAM	219	173	630	392	848	
MVTX	1305	1041	3781	2346	5089	

Table 2: Raw (uncompressed) data rates based on a worst-case noise occupancy of 10^{-4} , the hit occupancies of Fig. 9 at 15 kHz trigger rates, and the sum of the hit and noise.

Physics & Simulations: from sPHENIX to EIC

sPHENIX Projected R_{AA} Sensitivity

Open questions to be answered: energy loss mechanisms and QGP medium properties

sPHENIX Project Elliptical Flow v₂

Open questions to be answered: nature of quasi-particles, medium interactions and transportation

New calculations from PHSD for B-hadrons:

- Potential significant anti-shadowing effects
- Open b-bar in AuAu, very important baseline for Upsilon program!

Project Organization

Figure 40: Organization chart of the MVTX project.