Top quark pair production

Li Lin Yang
Peking University

第十五届粒子物理，核物理和宇宙学交叉学科前沿问题研讨会

Basic facts about the top

Large mass $m_{t} \approx 173 \mathrm{GeV}$

$=$ Basic facts about the top

Large mass $\quad m_{t} \approx 173 \mathrm{GeV}$

Fermion mass origin
Strong Yukawa coupling $\quad y_{t} \sim 1$
Hierarchy problem
Vacuum stability

Basic facts about the top

Large mass $m_{t} \approx 173 \mathrm{GeV}$

Fermion mass origin
Strong Yukawa coupling $\quad y_{t} \sim 1$
Hierarchy problem
Vacuum stability
Short lifetime $\tau \sim 5 \times 10^{-25} \mathrm{~s}$
Decays before hadronization: pQCD dominates!

Top quark pair production

A standard candle for the LHC and future colliders

Top quark pair production

A standard candle for the LHC and future colliders

* Test of the SM at the energy frontier

Top quark pair production

A standard candle for the LHC and future colliders

* Test of the SM at the energy frontier
* Possible signals of new physics

Top quark pair production

A standard candle for the LHC and future colliders

* Test of the SM at the energy frontier
* Possible signals of new physics
* Major background to many searches

Top quark pair production

A standard candle for the LHC and future colliders

* Test of the SM at the energy frontier
* Possible signals of new physics
* Major background to many searches
* Precise theoretical and experimental results have already enabled us to gain useful information!

Gluon PDF

Top quark pair production can provide information about the gluon parton distribution functions

Czakon, Mangano, Mitov, Rojo: 1303.7215
Note: only used 7 and 8 TeV data!

Gluon PDF

Top quark pair production can provide information about the gluon parton distribution functions

Czakon, Mangano, Mitov, Rojo: 1303.7215
Note: only used 7 and 8 TeV data!
Ongoing: CTEQ analysis with 8 and 13 TeV data

Deviation?

Deviation?

What's going on here?

Top quark mass?
Threshold effect?

Deviation?

ATLAS-CONF-2018-027

CMS PAS TOP-17-014

In this talk, I'm going to introduce the state-of-the-art QCD prediction for top quark pair production...

In this talk, I'm going to introduce the state-of-the-art QCD prediction for top quark pair production...
...and some ongoing developments

NNLO QCD for top pair

Total cross section

Baernreuther, Czakon, Mitov: 1204.5201; Czakon, Fiedler, Mitov: 1303.6254

Differential distributions

Czakon, Heymes, Mitov: 1511.00549

Differential distributions

Czakon, Heymes, Mitov: 1511.00549

Some tension at high energy (boosted kinematics)

Kinematics

The difficulty for fixed-order calculations: multiplescale process with complicated kinematics!

Many kinematic variables:
top quark mass
$p_{\text {т }}$ of top
$\mathrm{p}_{\text {t }}$ of anti-top
rapidity of top
rapidity of anti-top
Invariant mass M_{tt}
...

Kinematics

The difficulty for fixed-order calculations: multiplescale process with complicated kinematics!

Many kinematic variables:
top quark mass
$p_{\text {t }}$ of top
$p_{\text {T }}$ of anti-top
rapidity of top
rapidity of anti-top
Invariant mass M_{tt}

Which (combination) should be used for the renormalization/factorization scales?

NNLO with dynamic scale

Czakon, Heymes, Mitov: 1606.03350

Determine optimal "scale scheme" by minimizing higher order corrections

$$
\begin{aligned}
& \mu_{0} \sim m_{t}, \\
& \mu_{0} \sim m_{T}=\sqrt{m_{t}^{2}+p_{T}^{2}}, \\
& \mu_{0} \sim H_{T}=\sqrt{m_{t}^{2}+p_{T, t}^{2}}+\sqrt{m_{t}^{2}+p_{T, \bar{t}}^{2}},
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{0} \sim E_{T}=\sqrt{\sqrt{m_{t}^{2}+p_{T, t}^{2}} \sqrt{m_{t}^{2}+p_{T, \bar{t}}^{2}}}, \\
& \mu_{0} \sim H_{T, \text { int }}=\sqrt{\left(m_{t} / 2\right)^{2}+p_{T, t}^{2}}+\sqrt{\left(m_{t} / 2\right)^{2}+p_{T, \bar{t}}^{2}}, \\
& \mu_{0} \sim m_{t \bar{t}},
\end{aligned}
$$

NNLO with dynamic scale

Czakon, Heymes, Mitov: 1606.03350

Vastly different behaviors with different scheme choices (especially in the boosted region)

Our philosophy

We should study different regions of phase space separately, and combine them to have a good description for all regions!

Our philosophy

We should study different regions of phase space separately, and combine them to have a good description for all regions!

Threshold region fixed-order+soft+Coulomb (ongoing)

Our philosophy

We should study different regions of phase space separately, and combine them to have a good description for all regions!

Threshold region fixed-order+soft+Coulomb (ongoing)

Intermediate region
fixed-order+soft
Ahrens, Ferroglia, Neubert,
Pecjak, LLY: 1003.5827

Our philosophy

We should study different regions of phase space separately, and combine them to have a good description for all regions!

Threshold region
fixed-order+soft+Coulomb
(ongoing)

Intermediate region fixed-order+soft

Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827

Boosted region
fixed-order+soft+quasi-collinear
Pecjak, Scott, Wang, LLY: 1601.07020
Czakon, Ferroglia, Heymes, Mitov, Pecjak,
Scott, Wang, LLY: 1803.07623

Boosted top quarks

Sensitive to new physics, interesting in its own right!

Actively being probed by LHC experiments

Producing boosted tops

Hard extra emissions
suppressed

soft gluons

$$
\ln \frac{\hat{s}-M_{t \bar{t}}^{2}}{M_{t \bar{t}}^{2}}
$$

Producing boosted tops

Hard extra emissions suppressed

soft gluons

$$
\ln \frac{\hat{s}-M_{t \bar{t}}^{2}}{M_{t \bar{t}}^{2}}
$$

Top quark nearly massless

quasi-collinear gluons

$$
\underset{\ln \frac{m_{2}^{2}}{M_{t t_{2}^{2}}}}{\boldsymbol{\nabla}}
$$

Producing boosted tops

Hard extra emissions suppressed

Top quark nearly massless

soft gluons

quasi-collinear gluons

$$
\ln \frac{\hat{s}-M_{t \bar{t}}^{2}}{M_{t \bar{t}}^{2}}
$$

Need to resum both!

$$
\ln \frac{m_{t}^{2}}{M_{t \bar{t}}^{2}}
$$

Soft gluon resummation

Hard function

Kidonakis, Sterman: hep-ph/9705234
Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827

Evolving from the scale of hard scatterings

Soft gluon resummation

Hard function

Kidonakis, Sterman: hep-ph/9705234
Ahrens, Ferroglia, Neubert,
Pecjak, LLY: 1003.5827

Evolving from the scale of hard scatterings
to the scale of soft interactions

Soft gluon resummation

Hard function

Evolving from the scale of hard scatterings

Kidonakis, Sterman: hep-ph/9705234
Ahrens, Ferroglia, Neubert,
Pecjak, LLY: 1003.5827

IR anomalous dimension

$$
\begin{align*}
\boldsymbol{\Gamma}= & \sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right) \\
& -\sum_{(I, J)} \frac{\boldsymbol{T}_{I} \cdot \boldsymbol{T}_{J}}{2} \gamma_{\mathrm{cusp}}\left(\beta_{I J}, \alpha_{s}\right)+\sum_{I} \gamma^{I}\left(\alpha_{s}\right) \\
& +\sum_{I, j} \boldsymbol{T}_{I} \cdot \boldsymbol{T}_{j} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{m_{I} \mu}{-s_{I j}} \\
& +\sum_{(I, J, K)} i f^{a b c} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{K}^{c} F_{1}\left(\beta_{I J}, \beta_{J K}, \beta_{K I}\right) \\
& +\sum_{(I, J)} \sum_{k} i f^{a b c} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{k}^{c} f_{2}\left(\beta_{I J}, \ln \frac{-\sigma_{J k} v_{J} \cdot p_{k}}{-\sigma_{I k} v_{I} \cdot p_{k}}\right)
\end{align*}
$$

Becher, Neubert: 0904.1021
Ferroglia, Neubert, Pecjak, LLY: 0907.4791; 0908.3676

$$
\begin{align*}
& F_{1}\left(\beta_{12}, \beta_{23}, \beta_{31}\right)=\frac{\alpha_{s}^{2}}{12 \pi^{2}} \sum_{i, j, k} \epsilon_{i j k} g\left(\beta_{i j}\right) r\left(\beta_{k i}\right) \\
& r(\beta)=\beta \operatorname{coth} \beta \\
& g(\beta)= \\
& \quad \operatorname{coth} \beta\left[\beta^{2}+2 \beta \ln \left(1-e^{-2 \beta}\right)-\operatorname{Li}_{2}\left(e^{-2 \beta}\right)+\frac{\pi^{2}}{6}\right] \tag{5}\\
& \quad-\beta^{2}-\frac{\pi^{2}}{6}
\end{align*}
$$

3-parton correlations

The soft function

Known at NLO
Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827
Known at NNLO in the massless limit (except an off-diagonal 3-parton piece)
Ferroglia, Pecjak, LLY: 1207.4798

The soft function

Known at NLO
Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827
Known at NNLO in the massless limit (except an off-diagonal 3-parton piece)
Ferroglia, Pecjak, LLY: 1207.4798

Recent calculation at NNLO with massive tops
Wang, Xu, LLY, Zhu: 1804.05218

The soft function

Known at NLO
Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827
Known at NNLO in the massless limit (except an off-diagonal 3-parton piece)
Ferroglia, Pecjak, LLY: 1207.4798

Recent calculation at NNLO with massive tops

Wang, Xu, LLY, Zhu: 1804.05218

NNLO diagrams

Wang, Xu, LLY, Zhu: 1804.05218

c)

a.

Solving integrals

Wang, Xu, LLY, Zhu: 1804.05218
~60 master integrals

Differential equations

$$
\partial_{\beta} \vec{f}(\epsilon, \beta, \cos \theta)=\epsilon\left(\frac{A}{\beta-1}+\frac{B}{\beta}+\frac{C}{\beta+1}+\frac{D}{\beta-1 / \cos \theta}+\frac{E}{\beta+1 / \cos \theta}\right) \vec{f}(\epsilon, \beta, \cos \theta)
$$

Solution in terms of generalized polylogarithms
Difficult part: boundary conditions

The boundary conditions

We choose the boundary to be $\beta \equiv \sqrt{1-\frac{4 m_{t}^{2}}{M_{t \bar{t}}}} \rightarrow 0$

Some virtual-real integrals develop
Coulomb/Glauber-type singularities in this limit

Carefully extract the asymptotic behavior, e.g.

$$
g_{6}^{(4)}(\epsilon, \beta \rightarrow 0, y) \approx \frac{\left(e^{-2 i \pi \epsilon}-1\right) \beta^{2 \epsilon} \Gamma(1-2 \epsilon) \Gamma(1+\epsilon)}{4^{1-2 \epsilon} \Gamma(1-\epsilon)}
$$

A piece of final result

Wang, Xu, LLY, Zhu: 1804.05218

$$
\begin{aligned}
\tilde{s}_{22}^{q \bar{q},(2)} & \left.(0, \beta, y)\right|_{T_{F} N_{l}}=\frac{16\left(7 \beta^{2}-126 \beta+127\right)}{243 \beta} G_{1}+\frac{8\left(5 \beta^{2}+90 \beta+53\right)}{81 \beta}\left(G_{-1,-1}-G_{-1,1}-2 G_{0,-1}\right) \\
& -\frac{16\left(7 \beta^{2}+126 \beta+127\right)}{243 \beta} G_{-1}+\frac{8\left(5 \beta^{2}-90 \beta+53\right)}{81 \beta}\left(G_{1,-1}-G_{1,1}+2 G_{0,1}\right) \\
& +\frac{8\left(\beta^{2}+18 \beta+1\right)}{27 \beta}\left(-G_{-1,-1,-1}+G_{-1,-1,1}+2 G_{-1,0,-1}-2 G_{-1,0,1}-G_{-1,1,-1}+G_{-1,1,1}\right. \\
& \left.+2 G_{0,-1,-1}-2 G_{0,-1,1}-4 G_{0,0,-1}\right)+\frac{8\left(\beta^{2}-18 \beta+1\right)}{27 \beta}\left(4 G_{0,0,1}+2 G_{0,1,-1}-2 G_{0,1,1}\right. \\
& \left.-G_{1,-1,-1}+G_{1,-1,1}+2 G_{1,0,-1}-2 G_{1,0,1}-G_{1,1,-1}+G_{1,1,1}\right) \\
& +\frac{32}{243}\left[28 G_{-1 / y}+98 G_{1 / y}+30\left(2 G_{0,-1 / y}+G_{-1 / y,-1}+G_{-1 / y, 1}-2 G_{-1 / y,-1 / y}\right)\right. \\
& +105\left(2 G_{0,1 / y}+G_{1 / y,-1}+G_{1 / y, 1}-2 G_{1 / y, 1 / y}\right)+18\left(4 G_{0,0,-1 / y}+2 G_{0,-1 / y,-1}+2 G_{0,-1 / y, 1}\right. \\
& -4 G_{0,-1 / y,-1 / y}-G_{-1 / y,-1,-1}+G_{-1 / y,-1,1}+2 G_{-1 / y, 0,-1}+2 G_{-1 / y, 0,1}-4 G_{-1 / y, 0,-1 / y} \\
& \left.+G_{-1 / y, 1,-1}-G_{-1 / y, 1,1}-2 G_{-1 / y,-1 / y,-1}-2 G_{-1 / y,-1 / y, 1}+4 G_{-1 / y,-1 / y,-1 / y}\right) \\
& +63\left(4 G_{0,0,1 / y}+2 G_{0,1 / y,-1}+2 G_{0,1 / y, 1}-4 G_{0,1 / y, 1 / y}-G_{1 / y,-1,-1}+G_{1 / y,-1,1}+2 G_{1 / y, 0,-1}\right. \\
& \left.+2 G_{1 / y, 0,1}-4 G_{1 / y, 0,1 / y}+G_{1 / y, 1,-1}-G_{1 / y, 1,1}-2 G_{1 / y, 1 / y,-1}-2 G_{1 / y, 1 / y, 1}+4 G_{1 / y, 1 / y, 1 / y}\right) \\
& \left.-\frac{332}{3}-\frac{5 \pi^{2}}{2}+6 \zeta_{3}\right]
\end{aligned}
$$

It is remarkable that all the results can be written analytically in terms of multiple polylogarithms

Allows fast numerics!

Threshold limit

It is interesting to check the threshold limit where the top quarks are produced at rest

Color singlet: same as Drell-Yan and Higgs production Belitsky: hep-ph/9808389

Color octet Czakon, Fiedler: 1311.2541

Note: singlet-octet mixing terms do NOT vanish in the threshold limit!

Threshold limit

It is interesting to check the threshold limit where the top quarks are produced at rest

Color singlet: same as Drell-Yan and Higgs production Belitsky: hep-ph/9808389

Color octet Czakon, Fiedler: 1311.2541

Note: singlet-octet mixing terms do NOT vanish in the threshold limit!

Boosted limit

In the limit where the top quarks are highly boosted

Factorization Ferroglia, Pecjak, LLY: 1205.3662
$\boldsymbol{S}_{\text {massive }}\left(s, t, m_{t}, N\right) \rightarrow \boldsymbol{S}_{\text {massless }}(s, t, N) S_{D}^{2}\left(m_{t} / N\right)$

Boosted limit

In the limit where the top quarks are highly boosted

Factorization Ferroglia, Pecjak, LLY: 1205.3662
$\boldsymbol{S}_{\text {massive }}\left(s, t, m_{t}, N\right) \rightarrow \boldsymbol{S}_{\text {massless }}(s, t, N) S_{D}^{2}\left(m_{t} / N\right)$

Ferroglia, Pecjak, LLY: 1207.4798
Also obtain the missing
3-parton piece for free

Boosted limit

In the limit where the top quarks are highly boosted

Factorization Ferroglia, Pecjak, LLY: 1205.3662
$\boldsymbol{S}_{\text {massive }}\left(s, t, m_{t}, N\right) \rightarrow \boldsymbol{S}_{\text {massless }}(s, t, N) S_{D}^{2}\left(m_{t} / N\right)$

Ferroglia, Pecjak, LLY: 1207.4798
Also obtain the missing
3-parton piece for free

Allows to extract the soft fragmentation function

Soft and small-mass factorization

Ferroglia, Pecjak, LLY: 1205.3662
In Mellin space: $\quad Q \sim \sqrt{s}, \sqrt{-t} \gg Q / N \gg m_{t} \gg m_{t} / N$

$$
\hat{\sigma}\left(N, \mu_{f}\right) \sim \operatorname{Tr}\left[\boldsymbol{H}\left(L_{h}, \mu_{f}\right) \boldsymbol{S}\left(L_{s}, \mu_{f}\right)\right] C_{D}^{2}\left(L_{c}, \mu_{f}\right) S_{D}^{2}\left(L_{s c}, \mu_{f}\right)
$$

Soft and small-mass factorization

Ferroglia, Pecjak, LLY: 1205.3662
In Mellin space: $\quad Q \sim \sqrt{s}, \sqrt{-t} \gg Q / N \gg m_{t} \gg m_{t} / N$

$$
\begin{aligned}
& \hat{\sigma}\left(N, \mu_{f}\right) \sim \operatorname{Tr}\left[\boldsymbol{H}\left(L_{h}, \mu_{f}\right) \boldsymbol{S}\left(L_{s}, \mu_{f}\right)\right] C_{D}^{2}\left(L_{c}, \mu_{f}\right) S_{D}^{2}\left(L_{s c}, \mu_{f}\right) \\
& \ln \frac{Q^{2}}{\mu_{f}^{2}}
\end{aligned}
$$

hard log

Soft and small-mass factorization

Ferroglia, Pecjak, LLY: 1205.3662
In Mellin space: $\quad Q \sim \sqrt{s}, \sqrt{-t} \gg Q / N \gg m_{t} \gg m_{t} / N$ $\hat{\sigma}\left(N, \mu_{f}\right) \sim \operatorname{Tr}\left[\boldsymbol{H}\left(L_{h}, \mu_{f}\right) \boldsymbol{S}\left(L_{s}, \mu_{f}\right)\right] C_{D}^{2}\left(L_{c}, \mu_{f}\right) S_{D}^{2}\left(L_{s c}, \mu_{f}\right)$
$\quad \ln \frac{Q^{2}}{\mu_{f}^{2}} \quad \ln \frac{Q^{2}}{\bar{N}^{2} \mu_{f}^{2}}$
hard log
soft log

Soft and small-mass factorization

Ferroglia, Pecjak, LLY: 1205.3662
In Mellin space: $\quad Q \sim \sqrt{s}, \sqrt{-t} \gg Q / N \gg m_{t} \gg m_{t} / N$

$$
\begin{array}{cc}
\hat{\sigma}\left(N, \mu_{f}\right) \sim \operatorname{Tr}\left[\boldsymbol{H}\left(L_{h}, \mu_{f}\right)\right. & \left.\boldsymbol{S}\left(L_{s}, \mu_{f}\right)\right] C_{D}^{2}\left(L_{c}, \mu_{f}\right) S_{D}^{2}\left(L_{s c}, \mu_{f}\right) \\
\ln \frac{Q^{2}}{\mu_{f}^{2}} & \ln \frac{Q^{2}}{\bar{N}^{2} \mu_{f}^{2}}
\end{array} \quad \begin{aligned}
& \ln \frac{m_{t}^{2}}{\mu_{f}^{2}} \\
& \text { hard log } \\
& \text { soft log }
\end{aligned} \begin{aligned}
& \text { collinear log } \\
& \text { (small-mass) }
\end{aligned}
$$

Soft and small-mass factorization

Ferroglia, Pecjak, LLY: 1205.3662
In Mellin space: $\quad Q \sim \sqrt{s}, \sqrt{-t} \gg Q / N \gg m_{t} \gg m_{t} / N$ $\begin{array}{cc}\hat{\sigma}\left(N, \mu_{f}\right) \sim \operatorname{Tr}\left[\boldsymbol{H}\left(L_{h}, \mu_{f}\right) \boldsymbol{S}\left(L_{s}, \mu_{f}\right)\right] C_{D}^{2}\left(L_{c}, \mu_{f}\right) S_{D}^{2}\left(L_{s c}, \mu_{f}\right) \\ \ln \frac{Q^{2}}{\mu_{f}^{2}} & \ln \frac{Q^{2}}{\bar{N}^{2} \mu_{f}^{2}} \\ \text { hard log } & \ln \frac{m_{t}^{2}}{\mu_{f}^{2}}\end{array} \begin{gathered}\ln \frac{m_{t}^{2}}{\bar{N}^{2} \mu_{f}^{2}} \\ \text { soft log } \\ \begin{array}{c}\text { collinear log } \\ \text { (small-mass) }\end{array}\end{gathered}$

Soft and small-mass resummation

Massless hard function

Massless soft function
$\boldsymbol{S}\left(L_{s}, \mu_{s} \sim Q / \bar{N}\right)$

All ingredients known at NNLO (for NNLL' resummation)

NLO+NNLL'

Pecjak, Scott, Wang, LLY: 1601.07020

NNLO+NNLL'

A joint effort of the NNLO group Czakon, Ferroglia, Heymes, Mitov, Pecjak, and the resummation group Scott, Wang, LLY: 1803.07623

$$
d \sigma^{(\mathrm{N}) \mathrm{NLO}+\mathrm{NNLL}^{\prime}}=d \sigma^{\mathrm{NNLL}_{b+m}^{\prime}}+\left(d \sigma^{(\mathrm{N}) \mathrm{NLO}}-\left.d \sigma^{\mathrm{NNLL}_{b+m}^{\prime}}\right|_{\substack{(\mathrm{N}) \mathrm{NLO} \\ \text { expansion }}}\right)
$$

NNLO+NNLL'

A joint effort of the NNLO group Czakon, Ferroglia, Heymes, Mitov, Pecjak, and the resummation group Scott, Wang, LLY: 1803.07623

$$
\begin{aligned}
& d \sigma^{(\mathrm{N}) \mathrm{NLO}+\mathrm{NNLLL}^{\prime}}=d \sigma^{\mathrm{NNLL}_{b+m}^{\prime}}+\left(d \sigma^{(\mathrm{N}) \mathrm{NLO}}-\left.d \sigma^{\mathrm{NNLL}_{b+m}^{\prime}}\right|_{\text {expansion }} ^{(\mathrm{N}) \mathrm{NLO}}\right) \\
& d \sigma^{\mathrm{NNLL}_{b}^{\prime}}+\left(d \sigma^{\mathrm{NNLL}_{m}}-\left.d \sigma^{\mathrm{NNLL}_{m}}\right|_{m_{t} \rightarrow 0}\right) \\
& \text { mall mass } \\
& \text { imation } \\
& \text { match to soft } \\
& \text { resummation }
\end{aligned}
$$

soft \& small mass resummation

NNLO+NNLL'

A joint effort of the NNLO group Czakon, Ferroglia, Heymes, Mitov, Pecjak, and the resummation group

NNLO+NNLL'

A joint effort of the NNLO group Czakon, Ferroglia, Heymes, Mitov, Pecjak, and the resummation group

soft \& small mass resummation
match to soft resummation

Careful to avoid
double-counting!

NNLO+NNLL'

State Czakon, Ferroglia, Heymes, Mitov, Pecjak,
 State-of-the-art QCD prediction Scott, Wang, tur: 1803.07623

Resummation
softens the spectrum

NNLO+NNLL'

Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, LLY: 1803.07623

Matched result insensitive to scale scheme choices

Ongoing: rapidity distributions

Pecjak, Scott, Wang, LLY: to appear

Sensitive to gluon PDF at large x

Ongoing: combination with electroweak corrections

Both EW and resummation effects soften the p_{T} spectrum

Czakon et al.: 1705.04105

Ongoing: combination with electroweak corrections

NNLO+NNLL'+EW should be better consistent with data!

Stay tuned

Ongoing: near-threshold

Threshold region sensitive to Coulomb gluons

Ongoing: near-threshold

Historically, Coulomb gluons have been studied only for the total cross section

Moch, Uwer: 0804.1476
Beneke, Falgari, Klein, Schwinn: 1109.1536

Threshold region sensitive to Coulomb gluons

Ongoing: near-threshold

Threshold region sensitive to Coulomb gluons

Historically, Coulomb gluons have been studied only for the total cross section

Moch, Uwer: 0804.1476
Beneke, Falgari, Klein, Schwinn: 1109.1536

Requires new framework to study the M_{tt} distribution!

Summary and outlook

* Top quark production is important
* The most precise QCD calculation: NNLO+NNLL'
* Ongoing:
* Rapidity distributions
* Combination with NLO electroweak corrections
* Near-threshold production

Thank you!

