

Higgs properties revealed through jet quenching in heavy ion collisions

Hao Zhang

Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences

For "第十五届粒子物理、核物理和宇宙学交叉学科前沿问题研讨会", Aug 22th 2018

Based on arXiv:1804.06858[hep-ph] in collaboration with Edmond L. Berger, Jun Gao and Adil Jueid

• LHC, the largest high energy collider in the world.

• LHC, the largest high energy collider in the world.

• The production of the SM-like Higgs boson.

 The experimentalists work hard to investigate the properties of the 125 GeV SM-like Higgs boson at the LHC.

From Kaili Zhang's talk.

 The experimentalists work hard to investigate the properties of the 125 GeV SM-like Higgs boson at the LHC.

From Kaili Zhang's talk.

The Quark-Gluon Plasma

• The QCD phase diagram.

CMS Experiment at the LHC, CERN

0000

Data recorded: 2010-Nov-08 10:22:07.828203 GMT(11 22:07 CEST) Run / Event: 150431 / 541464

eproducing the Early Universe Environment with LHC

(c) CERN 2009. All rights reserved

• The proton-proton collision.

- The lead-lead collision.
- Impact parameter (perpendicular distance): Centrality.

- The lead-lead collision.
- The differential cross section.

 $d\sigma_{NN\to X}(s_{\rm NN}) = \langle T_{NN}(b) \rangle N \cdot f_{a/n}(x_a) \otimes N \cdot f_{b/n}(x_b)$ $\otimes d\sigma_{ab\to X}(x_a x_b s_{\rm NN})$

- The lead-lead collision.
- The differential cross section.

$$d\sigma_{NN\to X}(s_{\rm NN}) = \langle T_{NN}(b) \rangle N \cdot f_{a/n}(x_a) \otimes N \cdot f_{b/n}(x_b)$$
$$\otimes d\sigma_{ab\to X}(x_a x_b s_{\rm NN})$$

Nuclear overlap function: for centrality ~ 0-10%, it is ~0.42.

- The lead-lead collision.
- The differential cross section.

$$d\sigma_{NN\to X}(s_{\rm NN}) = \langle T_{NN}(b) \rangle N \cdot f_{a/n}(x_a) \otimes N \cdot f_{b/n}(x_b)$$
$$\otimes d\sigma_{ab\to X}(x_a x_b s_{\rm NN})$$

Nuclear overlap function: for centrality ~ 0-10%, it is ~0.42; Number of nucleons in a nuclear: for 208 Pb, it is 208.

- The lead-lead collision.
- The differential cross section.

$$d\sigma_{NN\to X}(s_{\rm NN}) = \langle T_{NN}(b) \rangle N \cdot f_{a/n}(x_a) \otimes N \cdot f_{b/n}(x_b)$$
$$\otimes d\sigma_{ab\to X}(x_a x_b s_{\rm NN})$$

Nuclear overlap function: for centrality ~ 0-10%, it is ~0.42; Number of nucleons in a nuclear: for ²⁰⁸Pb, it is 208; Nucleon parton distribution function: nCTEQ15 in our work.

- The lead-lead collision.
- The differential cross section.

 $d\sigma_{NN\to X}(s_{\rm NN}) = \langle T_{NN}(b) \rangle N \cdot f_{a/n}(x_a) \otimes N \cdot f_{b/n}(x_b)$ $\otimes d\sigma_{ab\to X}(x_a x_b s_{\rm NN})$

Nuclear overlap function: for centrality ~ 0-10%, it is ~0.42; Number of nucleons in a nuclear: for ²⁰⁸Pb, it is 208; Nucleon parton distribution function: nCTEQ15 in our work; Parton level hard scattering cross section: from pQCD.

Jet Quenching in the Heavy-Ion Collision

 The quark and gluon travel in the hot dense phase, the QGP, will lose their energy by collisions and radiations.

• The quark and gluon travel in the hot dense phase, the QGP, will lose their energy by collisions and radiations.

Jet Quenching

Ζ.

Time: 0.08

Ζ.

Time: 0.08

- Searching evidence of jet quenching in heavy-ion collision.
- Associated production of Objects which does not interact strongly with QGP (photon, leptonic decay Z, ...) and single hard jet.

- Searching evidence of jet quenching in heavy-ion collision.
- Quarks and gluons lose their energy and become soft in the QGP.
- But, wait wait wait!

- Searching evidence of jet quenching in heavy-ion collision.
- Quarks and gluons lose their energy and become soft in the QGP.
- But, wait wait wait!

How long is it?

- Searching evidence of jet quenching in heavy-ion collision.
- Quarks and gluons lose their energy and become soft in the QGP.
- But, wait wait wait!

• Who is who?

$$\psi \sim \exp\left(-\frac{ip \cdot x}{\hbar}\right) \sim \exp\left(-\frac{i(m-i\Gamma)\tau}{\hbar}\right)$$

W

W

 There is a fundamental particle whose width is smaller than 197MeV!

姓名	出生年月	出生地	参与相互作用
Higgs boson	2012年 7月	日内瓦 街道	电弱相互作用, 汤川相互作用,
宽度	体重	政治面貌	主要衰变道
4.07MeV	125GeV	基本粒子	bb, WW, gg, cc, ττ, ZZ

Higgs boson —— the Surviver in the QGP Fireball

Higgs in Heavy-Ion Collision

• The production cross section (xsec).

process	PbPb(pp) in $nb(pb)$					
	$5.5 { m TeV}$	$11 { m TeV}$	$39.4 { m TeV}$			
GF	480(10.2)	1556(35.2)	9580(235)			
VBF	15.3(0.316)	65.6(1.40)	421(10.02)			
Zh	10.2(0.230)	28.1(0.687)	147(3.97)			
W^+h	8.38(0.162)	21.8(0.716)	94.2(3.19)			
W^-h	9.22(0.143)	23.4(0.435)	99.5(2.34)			

Higgs in Heavy-Ion Collision

• The production cross section (xsec).

	process	PbPb(pp) in $nb(pb)$		
Largest xsec, but		$5.5 { m TeV}$	11 TeV	39.4 TeV
huge background and	GF	480(10.2)	1556(35.2)	9580(235)
nard to trigger	VBF	15.3(0.316)	65.6(1.40)	421(10.02)
	Zh	10.2(0.230)	28.1(0.687)	147(3.97)
	W^+h	8.38(0.162)	21.8(0.716)	94.2(3.19)
	W^-h	9.22(0.143)	23.4(0.435)	99.5(2.34)

• The production cross section (xsec).

	process	PbPb(pp) in $nb(pb)$		
Largest xsec, but	process	$5.5 { m TeV}$	$11 { m TeV}$	$39.4 { m TeV}$
huge background and hard to trigger 🙁	> GF	480(10.2)	1556(35.2)	9580(235)
	VBF	15.3(0.316)	65.6(1.40)	421(10.02)
Large xsec. two hard	Zh	10.2(0.230)	28.1(0.687)	147(3.97)
forward jets in	W^+h	8.38(0.162)	21.8(0.716)	94.2(3.19)
vacuum, but will be	W^-h	9.22(0.143)	23.4(0.435)	99.5(2.34)
quenched 🙁 🔰				

• The production cross section (xsec).

15 1101 51

	process	PbPb(pp) in nb(pb)			
Largest xsec, but		$5.5 { m TeV}$	$11 { m TeV}$	$39.4 { m TeV}$	
huge background and hard to trigger 🙁	> GF	480(10.2)	1556(35.2)	9580(235)	
	VBF	15.3(0.316)	65.6(1.40)	421(10.02)	
Large xsec. two hard	Zh	10.2(0.230)	28.1(0.687)	147(3.97)	
forward jets in	W^+h	8.38(0.162)	21.8(0.716)	94.2(3.19)	
vacuum, but will be	W^-h	9.22(0.143)	23.4(0.435)	99.5(2.34)	
quenched 🙁					
Small xsec. and W					
decay? Hadronic —					
large background and					
trigger, leptonic —					
missing energy 🙁 📘					

• The production cross section (xsec).

	process	PbPb(pp) in $nb(pb)$			
Largest xsec, but	process	$5.5 { m TeV}$	$11 { m TeV}$	$39.4 { m TeV}$	
huge background and hard to trigger 🙁	> GF	480(10.2)	1556(35.2)	9580(235)	
	VBF	15.3(0.316)	65.6(1.40)	421(10.02)	
Large xsec. two hard	Zh	10.2(0.230)	28.1(0.687)	147(3.97)	
forward jets in	$W^{+}h$	8.38(0.162)	21.8(0.716)	94.2(3.19)	
vacuum, but will be	$W^{-}h$	9.22(0.143)	23.4(0.435)	99.5(2.34)	
quenched 🙁					
Small xsec, and W decay? Hadronic — large background and trigger, leptonic — missing energy 🙁	Small xsec. But with leptonic decay Z — energetic dilepton with invariant mass ~ m _Z , less background and easy to trigger 🙂				

- Hadronic decay Higgs boson.
- Question 1: Is *b*-quark quenched as much as light quarks and gluons?
 - QCD calculation: "dead cone" effect.

- Hadronic decay Higgs boson.
- Question 1: Is *b*-quark quenched as much as light quarks and gluons?
 - QCD calculation: "dead cone" effect.

- Hadronic decay Higgs boson.
- Question 1: Is *b*-quark quenched as much as light quarks and gluons?
 - QCD calculation: "dead cone" effect.
 - Experiment (which can be understand theoretically):

CMS Collaboration, arXiv:1802.00707[hep-ex].

- Hadronic decay Higgs boson.
- The *b*-quark jets are quenched as light-quark and gluon jets.
- Question 2: *b*-jet tagging efficiency?

CMS Collaboration, JHEP 03 (2018) 181.

- Hadronic decay Higgs boson.
- The *b*-quark jets are quenched as light-quark and gluon jets.
- We formulate the transverse momentum loss of jet as (see our paper for the values of a, b and c):

 $\langle \delta p_{\rm T} \rangle = a p_{\rm T} + b \ln(p_{\rm T}/{\rm GeV}) + c,$

- Hadronic decay Higgs boson.
- The *b*-quark jets are quenched as light-quark and gluon jets.
- The *b*-jet tagging efficiency is hurt by a factor of ~ 0.6 .
- However, we will use the same b-tagging efficiency as pp-collision and believe that our experimentalist colleges can improve it in the future.

• Smearing effect.

- Dominant SM backgrounds:
 - Z+bb;
 - *Z*+*bc*, *Z*+*cc*;
 - Top-pair;
- We simulate the signal and background with MadGraph at parton level and add the smearing and jet quenching effect with the formulas to understand the cuts.

$$p_{\rm T}^{\ell} > 15 {
m GeV}, \ |\eta^{\ell}| < 2.5, \ \Delta R_{\ell\ell} > 0.2,$$

anti- $k_{\rm T}$ jet , $R = 0.3, \ p_{\rm T}^{j} > 30 {
m GeV}, \ |\eta^{\ell}| < 1.6, \ \Delta R_{j\ell} > 0.3,$
 $|m_{\ell\ell} - m_Z| < 10 {
m GeV}, \ \Delta R_{bb} < 2.0, \ p_{\rm T}^{Z} \equiv p_{\rm T}^{\ell\ell} > 100 {
m GeV}.$

- The jet quenching effect introduces a significant transverse momentum imbalance between the dilepton system and the *b*-jet pair system.
- We can suppress the *Zbb* background with more cuts:

• After all cuts.

• Significance at the LHC and future hadron colliders.

Summary and Outlook

Summary

- We propose to study the production and decays of the Higgs boson in heavy-ion collision.
- It is shown that the screening from QGP on QCD partons serves a natural probe of the lifetime of the Higgs boson and the behavior of the Higgs boson in QGP.

• The luminosity

	 .			
	Unit	FCC Injection	FCC C	ollision
Operation mode		Pb	Pb–Pb	p–Pb
Beam energy	[TeV]	270	4100	50
$\sqrt{s_{ m NN}}$	[TeV]	-	39.4	62.8
No. of bunches per LHC injection	-	518	518	518
No. of bunches in the FCC	-	2072	2072	2072
No. of particles per bunch	$[10^8]$	2.0	2.0	164
Transv. norm. emittance	[µm]	1.5	1.5	3.75
Number of IPs in collision	-	-	1	1
Crossing-angle	[μ rad]	-		0
Initial luminosity	$[10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	- /	24.5	2052
Peak luminosity	$[10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	-	57.8	9918
Integrated luminosity per fill	$[\mu b^{-1}]$	-		158630
Average luminosity	$[\mu b^{-1}]$	-	92	20736
Time in collision	[h]	-	3	6
Assumed turnaround time	[h]	-	1.65	1.65
Integrated luminosity/run	$[\mathrm{nb}^{-1}]$	-	33	8000

CERN Yellow Reports, Physics at the FCC-hh, a 100 TeV pp collider, Chapter 4: Heavy Ions at the Future Circular Collider.

• The luminosity

	p@LHC	Pb@LHC	p@FCC	Pb@FCC
Extracted beam on an external	liq. H / Be / W			
target				
Extracted flux [s ⁻¹]	$5\cdot 10^8$	$2\cdot 10^5$	$1.5 \cdot 10^9$	$5.8 \cdot 10^5$
$\mathcal{L}(\mu b^{-1}s^{-1})$	2000 / 62 / 31	0.8/0.025/0.013	6000 / 190 / 93	2.32/0.072/0.036
$\int dt \mathcal{L}(\mathrm{pb}^{-1}\mathrm{yr}^{-1})$	20000 / 620 / 310	0.8/0.025/0.013	60000 / 1900 / 930	2.32/0.072/0.036
Internal gas target (SMOG	ideal gas	ideal gas	ideal gas	ideal gas
type)				
$\mathcal{L}(\mu \mathrm{b}^{-1} s^{-1})$	10	0.001	8.9	$3.3\cdot 10^{-3}$
$\int dt \mathcal{L}(\mathrm{pb}^{-1}\mathrm{yr}^{-1})$	100	0.001	89	$3.3\cdot 10^{-3}$
Internal gas storage-cell target	H ₂ / D ₂ / Xe			
(HERMES type)				
$\mathcal{L}(\mu \mathrm{b}^{-1} s^{-1})$	900 / 1200 / 140	0.12/0.15/0.02	800 / 1100 / 120	0.3 / 0.4 / 0.05
$\int dt \mathcal{L}(\mathrm{pb}^{-1}\mathrm{yr}^{-1})$	9000 / 12000 / 1400	0.12/0.15/0.02	8000 / 11000 / 1200	0.3 / 0.4 / 0.05

- The luminosity
- More modern analysis methods
- A self-consistent simulation package
- Other channels

Higgs quenching?

From David d'Enterria

Higgs quenching?

From David d'Enterria

Thank you!

Thank you!

Backup

Outline

- Higgs boson at the LHC.
- The ABC of early universe, heavy-ion collision and quark-gluon plasma (QGP).
- Why do we look for Higgs boson in heavy-ion collision?
- Searching Higgs boson in QGP.
- Summary and outlook.

Higgs boson at the LHC

• The production of the SM-like Higgs boson (cross sections).

From LHC Higgs Cross Section Working Group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

Higgs boson at the LHC

• The decay of the SM-like Higgs boson (branching ratios).

From LHC Higgs Cross Section Working Group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

Higgs boson at the LHC

From LHC Higgs Cross Section Working Group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

The Early Universe and Quark-Gluon Plasma

- The lead-lead collision.
- The collision energy in the lab frame:

- The lead-lead collision.
- The collision energy in the lab frame:

- The lead-lead collision.
- The collision energy in the lab frame:

- The lead-lead collision.
- The collision energy in the lab frame:

- The lead-lead collision.
- Impact parameter (perpendicular distance): Centrality.

ATLAS Collaboration, ATLAS-CONF-2016-110.

- The lead-lead collision.
- The differential cross section.
- Nuclear modification factor:

$$R_{NN} \equiv \frac{d\sigma_{NN}}{\langle T_{NN}(b) \rangle N^2 d\sigma_{nn}}$$

• If the nuclei-nuclei collision is just the incoherent superposition of nucleon-nucleon collision, $R_{NN} \equiv 1$.

From pp Collision to PbPb Collision

- The lead-lead collision.
- Typical result of *R_{NN}*.

ATLAS Collaboration, ATLAS-CONF-2017-009.

From pp Collision to PbPb Collision

- The lead-lead collision.
- Typical result of *R_{NN}*.

Heavy-Ion Collision at the LHC

- There is a fundamental particle whose width is smaller than 197MeV!
- The decay products will carry the information of the Higgs boson, and tell us the properties of the Higgs boson in QGP faithfully.
- The QCD and other SM backgrounds of the hadronic decay Higgs boson will be modified and suppressed by the jet quenching effect.
- Verifying these conclusions will give us a double check of the width of the Higgs boson and an upper bound of the width.
- Search for $h \rightarrow bb$ in heavy-ion collision at the LHC and future hadron colliders!

Heavy-Ion Collision at the LHC

- Searching evidence of jet quenching in heavy-ion collision.
- Associated production of Objects which does not interact strongly with QGP (photon, leptonic decay Z, ...) and single hard jet.

CMS Collaboration, Phys. Rev. Lett. 119 (2017) 082301.

• Smearing effect.

• The production cross section.

 $d\sigma_{NN\to X}(s_{\rm NN}) = \langle T_{NN}(b) \rangle N \cdot f_{a/n}(x_a) \otimes N \cdot f_{b/n}(x_b)$ $\otimes d\sigma_{ab\to X}(x_a x_b s_{\rm NN})$

Nuclear overlap function: for centrality ~ 0-10%, it is ~0.42; Number of nucleons in a nuclear: for ²⁰⁸Pb, it is 208; Nucleon parton distribution function: nCTEQ15 in our work; Parton level hard scattering cross section: from pQCD.

- A successful example of leptonic decay *Z* reconstruction in heavy-ion collision at the LHC.
- Electron-positron trigger:

 e^+ and e^- , $|\eta| < 2.5$, $E_{\rm T} > 15 {\rm GeV}$

• Single muon trigger:

 $|\eta| < 2.4, \ p_{\rm T} > 15 {\rm GeV}$

• Di-muon trigger:

 μ^+ and μ^- , $|\eta| < 2.4$, $p_{\rm T} > 10 {\rm GeV}$

CMS Collaboration, Phys. Rev. Lett. 119 (2017) 082301.

• Smearing effect.

$$\sigma(p_{\rm T}) = \sqrt{C^2 + \frac{S^2}{p_{\rm T}} + \frac{N^2}{p_{\rm T}^2}}.$$

 $C = 0.06, \ S = 1.0, \ N = 14.82 - \text{centrality}(\%)/5.40$ p_{T} in GeV

CMS Collaboration, JHEP 03 (2018) 181.

- We simulate the signal and background with MadGraph at parton level and add the smearing and jet quenching effect with the formulas.
- Sherpa is used to generate MC events and shower them. The jets is reconstructed with Fastjet.

