

New Vector Boson Scattering (VBS) "observations" at LHC

李政道研究所& 上海交通大学

On behalf of ATLAS and CMS collaborations

Motivation

- Stringent test of EWSB mechanism and EW sector of SM predictions.
 Probe of Higgs Mechanism for scattering w/ longitudinal polarization
- Sensitive to beyond SM physics via anomalous gauge couplings and narrow resonances. Neutral coupling is forbidden at tree-level in SM.
- Irreducible backgrounds of many new physics searches in vector boson fusion mode.
- *Signαture*: associated di-jet production with high inv. mass and large gap.

Why VBS?

Unitarity violation of Vector Boson Scattering

$$\mathcal{M}(W_L^+W_L^- \to Z_L Z_L) \sim \frac{s}{M_w^2}$$

"bulk" production mode incorporating SM processes and probing high precision QCD/EWK high order calculation via measuring the decay products of bosons

New physics show up via SM boson self-interactions, parameterized by effective lagrangians and effective field theories

VBS measurements in ATLAS

VBS measurements in CMS

VBS measurement sensitivity prospect at 8TeV vs 13TeV

How much the jump in energy buy us

- Measurements mostly stat. limited
- Signals mostly qq initiated→no huge jumps in inclusive x-sec
- Still EWK production tends to raise slightly faster than QCD at high m(jj), being the most interesting part sensitive to high √s of the bosons scattering

VBS signatures in short

Typical VBS topology

- tagging jets:
 - transverse momenta: pT(j1), pT(j2)
 - invariant mass: M(jj)
 - rapidity difference: ΔY(jj)
- central jet veto
- centrality: $\max\left(\left|\frac{y_i 0.5(y(j_1) + y(j_2))}{y(j_1) y(j_2)}\right|\right)$
- pT balance: $\frac{\sum_i \vec{p_{T_i}}}{\sum_i |\vec{p_{T_i}}|}$
 - All hard process decay products and jets

Experimental challenges per final states

channel	final state	comment *
VBF W <mark>Ob</mark>	served! לע jj	statistics is not a problem, good modelling of W+jets needed
VBF Z <mark>Ob</mark>	served! የዩ jj	statistics is not a problem, good modelling of Z+jets needed
VBS W±W±	ew t±vť'±v jj oserved!	"golden channel": very good EW/QCD ratio, mainly experimental (charge misID) background, good statistics
VBS ₩±₩∓	ł±vł'∓v jj	hard to investigate due to dileptonic ttbar background, Higgs group does also use this final state
VBS WZ Ne	ew {{{`v jj oserved!	similar cross section as ssWW, but larger QCD background, fair reconstructibility of fs
VBS Wγ/Zγ	ℓvγ jj / ℓℓγ jj	photon brings higher stat. (and different experimental systematics), lacks sensitivity to BSM in Higgs sector
VBS WV	ℓvjj jj	large backgrounds (W+jets, ttbar), but promising boosted regime when looking for NP effects
VBS ZV	ℓℓjj jj	large backgrounds (Z+jets, ttbar), but promising boosted regime when looking for NP effects, no neutrinos in final state
VBS ZZ	lll'l' jj	very clean channel, very good reconstructibility of final state and low background contamination, but small cross-section
VBS ZZ	ℓℓvv jj	challenging to measure invisible Z decay, combination with leptonic decay might help to suppress dileptonic ttbar background

Measurement of electroweak Z(→II)jj production cross section at 13TeV by ATLAS

Physics Letters B 775 (2017) 206

Signal extraction via binned likelihood fit of QCD&EWK m_{jj} templates in EWKenriched region after reweighting the m_{jj} shape of the QCD Zjj MC based on a fit to the data in the QCD-enriched region

18/8/22

Measurement of electroweak Z(\rightarrow II)jj production cross section at 13TeV by ATLAS

QCD+EWK cross section measured in six fiducial regions.

EWK-ONLY cross section measured in two fiducial regions with EWK component enriched.

Measurements in good agreement with theory.

Physics Letters B 775 (2017) 206

Observation of electroweak W[±]W[±](→2l2v)jj at 13TeV by CMS

Same-sign Highest EW/QCD ratio in all VVjj channels Fid. Region: M_{jj}>500GeV and Δη_{jj}>2.5 1st ever 5*σ observation of VVjj-EWK (w/ VBS signature)*

Obs. $\sigma_{EW}(\ell \ell j j) = 3.83 \pm 0.66$ (stat) ± 0.35 (syst) fb, obs./exp. Signif. = 5.5/5.7 σ In agreement with LO prediction $\sigma_{LO}(\ell \ell j j) = 4.25 \pm 0.21$ fb

18/8/22

Observation of electroweak W[±]W[±](→2l2v)jj at 13TeV by CMS

Same-sign Highest EW/QCD ratio in all VVjj channels Fid. Region: M_{jj}>500GeV and Δη_{jj}>2.5 Set ever 5*σ observation of VVjj-EWK (w/ VBS signature)*

Obs. $\sigma_{EW}(\ell\ell jj)$ = 3.83 ± 0.66 (stat) ± 0.35 (syst) fb, obs./exp. Signif. = 5.5/5.7 σ In agreement with LO prediction $\sigma_{LO}(\ell\ell jj)$ = 4.25 ± 0.21 fb

18/8/22

Constraint on aQGC using electroweak W[±]W[±] (→2l2v)jj production at 13TeV by CMS

-	<mark>-</mark>	Phys. Rev. Let	t. 120 (2018)	081801
	Observed limits	Expected limits	Run-I limits	•
	(TeV ⁻⁴)	(TeV ⁻⁴)	(TeV ⁻⁴)	
f_{S0}/Λ	[<i>-</i> 7.7 <i>,</i> 7.7]	[-7.0, 7.2]	[-38 , 40] [11]	
f_{S1}/Λ	[-21.6,21.8]	[-19.9,20.2]	[-118 , 120] [11]	
f_{M0}/Λ	[-6.0, 5.9]	[-5.6, 5.5]	[-4.6 , 4.6] [29]	
f_{M1}/Λ	[-8.7 ,9.1]	[<i>-</i> 7.9 <i>,</i> 8.5]	[-17 , 17] [29]	
f_{M6}/Λ	[-11.9,11.8]	[-11.1,11.0]	[-65 , 63] [11]	
f_{M7}/Λ	[-13.3,12.9]	[-12.4,11.8]	[-70 , 66] [11]	
f_{T0}/Λ	[-0.62,0.65]	[-0.58,0.61]	[-3.8 , 3.4] [30]	
f_{T1}/Λ	[-0.28,0.31]	[-0.26,0.29]	[-1.9 , 2.2] [11]	
f_{T2}/Λ	[-0.89,1.02]	[-0.80,0.95]	[-5.2 , 6.4] [11]	

200 300 400 500 600 700 800 900 1000 m_{H^{±+}} (GeV) Doubly charged Higgs bosons are predicted in models containing a Higgs triplet field. (Georgi– Machacek model)

VBF $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$

Observed
 Median expected
 68% expected
 95% expected

1st limits placed on $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ cross section using (m_{jj}, m_{ll}) twodimensional distributions

35.9 fb⁻¹ (13 TeV)

CMS

Observation of electroweak $W^{\pm}W^{\pm}(\rightarrow 2|2v)$ jj at **13TeV by ATLAS**

ATLAS_CONF_2018_030

Likelihood fit performed in:

- Signal region: 4 m_{ii} bins for m_{ii} > 500GeV
- ✤ Control region: 200 < m_{ii} < 500GeV</p>

SM prediction: NLO electroweak corrections (-16% for Sherpa) and interference (+6%) are not Included *Obs.(Exp.) signif.* = 6.9σ (4.6σ) 14

Observation of electroweak $W^{\pm}Z(\rightarrow |v||)$ jj at **13TeV by ATLAS**

- BDT discriminant trained with 15 input variables
- ***** Preselection:
 - * $p_{\tau}(j)>40 GeV$
 - ✤ M(jj)>500GeV
 - B-jet veto

Background constrained via 3-CR and fitted w/ SR

15

WZjj-EW measured signal strength:

 $\mu_{\rm EW} = 1.77 \pm 0.41 (\text{stat.}) \pm 0.17 (\text{syst.}) = 1.77 \pm 0.45$

Observed sign.: 5.6 σ (3.3 σ expected) Corresponding fid. cross section:

= $0.57 \stackrel{+0.14}{_{-0.13}}$ (stat.) $\stackrel{+0.05}{_{-0.04}}$ (sys.) $\stackrel{+0.04}{_{-0.03}}$ (th.) fb $\sigma_{\text{Sherna}}^{\text{fid., EW th.}} = 0.321 \pm 0.002 \text{ (stat.)} \pm 0.005 \text{ (PDF)}_{-0.023}^{+0.027} \text{ (scale) fb}$ Sherpa

Observation of electroweak $W^{\pm}Z(\rightarrow |v||)$ jj at **13TeV by ATLAS**

Sherpa

16

1st differential measurements of electroweak $W^{\pm}Z(\rightarrow |v||)$ jj at 13TeV by ATLAS

ATLAS-CONF-2018-033 1st unfolded distribution measured in WZjj-EWK: m(jj), N_{iet}, $\Sigma p_T(I)$, m_T(WZ), $\Delta Y(jj)$, $\Delta \varphi(jj)$, $\Delta \varphi(W,Z)$, N_{jets}^{gap}

Δσ^{fid} [fb] $\Delta \sigma^{fid.} / \Delta m_{jj}$ [fb/GeV] [fb] Δσ^{fid} [fb] √s = 13 TeV, 36.1 fb⁻¹ **ATLAS** Preliminary ATLAS Preliminary \s = 13 TeV, 36.1 fb⁻¹ 10⁻² $\Delta \sigma^{fid.}$ / ΔN_{jets} Data Data Sherpa (scaled) Sherpa (scaled) ----- WZjj-EW × 1.77 ••••• WZjj-EW × 1.77 ---- WZjj-QCD × 0.6 ---- WZjj-QCD × 0.6 10^{-3} 10⁻¹ 10^{-1} 10^{-1} $-W^{\pm}Z_{jj} \rightarrow \ell' \nu \ell \ell jj$ ·W[±]Zji →ℓ′ vℓℓ ji Ratio to Sherpa Ratio to Sherpa 2 1.5 1.5 0.5 0.5 0 ⊑ 500 0 2 3 ≥ 5 1000 1500 4 [∞] m"[GeV] N_{iets} Jet-multiplicities M(jj)

Sherpa2.2 LO prediction normalized in comparison to DATA

Neither QCD/EWK *interference effects* nor NLO EWK corrections are imployed

Measurements of electroweak W[±]Z(→lvll)jj at 13TeV by CMS

Two fiducial region defined for theo. Vs exp. comparison

Fiducial Regions

	Tight Fiducial	Loose Fiducia
$p_{\mathrm{T}}(\ell_{\mathrm{Z},1}) \; [\mathrm{GeV}]$	> 25	> 20
$p_{\mathrm{T}}(\ell_{\mathrm{Z},2}) \; \mathrm{[GeV]}$	> 15	> 20
$p_{\mathrm{T}}(\ell_{\mathrm{W}}) \mathrm{[GeV]}$	> 20	> 20
$ \eta(\mu) $	< 2.5	< 2.5
$ \eta(e) $	< 2.5	< 2.5
$ m_{\rm Z} - m_{\rm Z}^{\rm PDG} $ [GeV]	< 15	< 15
$m_{3\ell} \; [\text{GeV}]$	> 100	> 100
$m_{\ell\ell} [{ m GeV}]$	> 4	> 4
$p_{\mathrm{T}}^{miss}~[\mathrm{GeV}]$	-	-
$ \eta(\mathbf{j}) $	< 4.7	< 4.7
$p_{\mathrm{T}}(\mathrm{j}) \; \mathrm{[GeV]}$	> 50	> 30
$ \Delta R(\mathrm{j},\ell) $	> 0.4	> 0.4
$n_{ m j}$	≥ 2	≥ 2
$p_{ m T}({ m b})~[{ m GeV}]$	-	-
$n_{ m b-jet}$	-	-
m_{jj}	> 500	> 500
$ \Delta\eta({ m j}_1,{ m j}_2) $	> 2.5	> 2.5
$\left \eta_{3\ell} - rac{1}{2}(\eta_{j_1} + \eta_{j_2}) ight $	< 2.5	-

<u>CMS-PAS-SMP-18-001</u>

Probing new physics using electroweak W[±]Z(→lvll)jj production at 13TeV by CMS

Limits on aQGC parameterized with Eboli's dimension-8 EFT model (hep-ph/ 0606118) using m_T(WZ)

Limits on Charged Higgs using Georgi– Machacek (GM) model (Nucl. Phys. B 262 (1985))

Measurement of electroweak ZZ(\rightarrow 4l)jj production cross section at 13TeV by CMS

Phys. Lett. B 774 (2017) 682

Inclusive region: m_{jj} >100GeV VBS region: $|\Delta \eta_{jj}| > 2.4 + m_{jj} > 400$ GeV non-VBS region: $|\Delta \eta_{jj}| < 2.4$ or $m_{jj} < 400$ GeV

EWK signal significance 2.7σ (exp 1.6σ)

Limits on aQGCs w/ EFT dim-8 operators and comparison with unitarity validity range

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
f_{T_0}/Λ^4	-0.53	0.51	-0.46	0.44	0.6
f_{T_1}/Λ^4	-0.72	0.71	-0.61	0.61	0.6
f_{T_2}/Λ^4	-1.4	1.4	-1.2	1.2	0.6
f_{T_8}/Λ^4	-0.99	0.99	-0.84	0.84	2.8
f_{T_9}/Λ^4	-2.1	2.1	-1.8	1.8	2.9

First Measurement of Zγ+jj Electroweak production in ATLAS

Review of Anomalous Quartic Coupling in VBS (+ Triboson processes)

EFT with dim8 operators for aQGC interpretation

- Assuming Higgs boson belongs to a SU(2)_L doublet
- dimension 8: the *lowest dimension operators* exhibiting quartic couplings in VBS but NOT in two or three gauge boson vertices

Vector Boson Scattering

Triboson

EFT with dim8 operators II

$$\mathcal{L}_{S,0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right] \\ \mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right] \\ \mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right] \\ \mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,4} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu} \\ \mathcal{L}_{M,5} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu} \\ \mathcal{L}_{M,6} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

$$\mathcal{L}_{S,1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$$

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	Х	X	Х						
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	Х	X	X	X	X	X	Х		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		X	Х	Х	X	X	Х		
$\mathcal{O}_{T,0} \;, \!\mathcal{O}_{T,1} \;, \!\mathcal{O}_{T,2}$	Х	X	X	X	X	X	X	X	X
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		X	Х	Х	X	X	Х	X	X
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$			X			Х	Х	X	X

18/8/22

Phys. Rev. D 74, 073005 (2006)

Unitarization treatment

- Currently four schemes of unitarization treatments in ATLAS and CMS aQGC analysis
 - No unitarity violation prevention (provided by both ATLAS and CMS)
 - DiPole Form-Factor unitarization (provided mostly by ATLAS)
 - Introduce specific form-factor leads to actual model dependence, arbitrarity...
 - Scanning form-factor vs UV bound would be a useful study for theorist but very CPU intensive
 - K-matrix unitarization (first deployed in WHIZARD and then VBFNLO)
 - Projecting the scattering amplitude A(s) onto the Argand circle: Saturation of the amplitude to achieve unitarity
 - Amplitudes satisfying unitarity are invariant under K-matrix unitarization
 - Difficulty: very few operators are implemented with k-matrix, doesn't support in generators the triboson processes and those with photon presence

Clipping the events according to the UV bound

Run2 and long term recommendation in ATLAS, to be pursued along with other treatments

Currently searched limits vs unitarity violation bounds: VBS Zy for example

JHEP07(2017)107

Current triboson aQGC limits of F_{M,x}

$$\begin{aligned} \mathcal{L}_{M,0} &= \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\ \mathcal{L}_{M,1} &= \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,2} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\ \mathcal{L}_{M,3} &= \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,4} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu} \\ \mathcal{L}_{M,5} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu} \\ \mathcal{L}_{M,6} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right] \end{aligned}$$

Dim-8 Operators containing both Higgs SU(2)_L doublet covariant derivatives and field strength tensors

18/8/22 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Current triboson aQGC limits of F_{T,x}

July 2017	CMS ATLAS	Channel	Limits	∫ <i>L</i> dt	ſs
£ 1.4		Wγγ	[-3.4e+01, 3.4e+01]	19.4 fb ⁻¹	8 TeV
τ _{τ,0} / Λ		Wyy	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	ŴΫγ	I-1.8e+01, 1.8e+01	20 2 fb ⁻¹	8 TeV
		wvγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
	і ні	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
	H	Zγ	[-3.4e+00, 2.9e+00]	29.2 fb ⁻¹	8 TeV
	Ĥ	Ŵγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
	Ĥ	ssWW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
		ss WW	[-6.2e-01, 6.5e-01]	35.9 fb ⁻¹	13 TeV
		77	[-4.6e-01, 4.4e-01]	35.9 fb ⁻¹	13 TeV
£ 1,4		ŴVγ	[-3.6e+01, 3.6e+01]	20.2 fb ⁻¹	8 TeV
ι _{τ,1} /Δ	́н ́	Zγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	H	Ŵy	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	Ĥ	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	ss WW	[-2.8e-01, 3.1e-01]	35.9 fb ⁻¹	13 TeV
		ZZ	[-6.1e-01, 6.1e-01]	35.9 fb ⁻¹	13 TeV
£ 1,4		WVγ	[-7.2e+01, 7.2e+01]	20.2 fb ⁻¹	8 TeV
$I_{T,2}/\Lambda$	—	Ζγ່	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	Ŵγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
	i 🛏 i	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
	iπ.	ss WW	[-8.9e-01, 1.0e+00]	35.9 fb ⁻¹	13 TeV
	Ĥ	ZZ	[-1.2e+00, 1.2e+00]	35.9 fb ⁻¹	13 TeV
f / A 4	——————————————————————————————————————	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
T,5 / A		ŴΫγ	[-2.0e+01, 2.1e+01]	20.2 fb ⁻¹	8 TeV
	́н ́	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
£ 1,4		WVγ	[-2.5e+01, 2.5e+01]	20.2 fb ⁻¹	8 TeV
$I_{T,6}/\Lambda$	і ні	Wy .	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
f / 1 4		WVγ	[-5.8e+01, 5.8e+01]	20.2 fb ⁻¹	8 TeV
T,7 / A	· • •	Wy .	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
f / A 4	H	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
τ _{τ,8} /Λ΄	H	Zγ	[-1.8e+00, 1.8e+00]	20.2 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	zż	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV
£ 1.4		Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
f _{T,9} /Λ ⁺	Η.	Zγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	H	Ζγ	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV
	· · · · ·	, zż	[-1.8e+00, 1.8e+00]	35.9 fb ⁻¹	13 TeV
-100	0	100	200		30
	•	aC	GC Limits @9	5% C.L	. [TeV ⁻⁴]

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

Dim-8 Operators containing only the field strength tensors

18/8/22 <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC</u>

Current triboson aQGC limits of F_{S.x}

Brief Notes: Openning issues and prospects

- LHC Run2 provides large amount of pp collision data at a higher centerof-mass energy, giving rish to VBS observation sensitivity
 - Observed VBS-VV channels: like-sign WW, WZ
 - Upcoming channels w.i.p.: ZZ, W/Z+γ, semileptonic WV(jj)/ZV(jj)
 - Important test of EWSB and higgs mechanism in the unitarization of VV→VV scattering
 - Next steps: differential measurements, 1st extraction of V_LV_L polarization components
- Potential showstoppers and improvements
 - Quark/Gluon induced jet separation using jet substructure technique to distinguish "color-charge" (tracking info, multiplicities, track jet width, calo topo cluster width, etc.)
 - Forward tracking improvement in future LHC upgrade
 - Pileup jet suppression in forward region
 - Theoretical uncertainties: improvement of high order precision in QCD irreducible background modelings, high order EWK effect predictions, interference modeling
 - Experimental challenges: Charge flips, soft-leptons
 - New physics probing: (doubly-)charged higgs, MSSM, aQGCs challenged by unitarity violation

Backup