Highlights of Higgs Results from ATLAS

Haifeng Li (李海峰)

山东大学

第十五届粒子物理、核物理和宇宙学交叉学科前 沿问题研讨会 丹东,2018年8月21日-27日

希格斯物理现状

- LHC在2012年发现了一个约125GeV的标量粒子。随后的实验 结果显示,这个粒子很像标准模型预言的希格斯粒子
- 做为唯一的TeV对撞机,在LHC上直接寻找新物理仍然意义重
 大
- 对于Higgs物理,需要尽可能精确地测量Higgs的性质
- 并且对Higgs的所有可能的衰变末态进行测量

	Model	κ_V	κ_b	κ_γ
	Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
	2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
	Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Snowmass 2013	Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
arXiv:1310.8361	Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Haifeng Li (Shandong University)

Status of LHC Data Taking

Status of LHC Data Taking

124 fb⁻¹ recorded so far AS

Status of LHC Data Taking

8/23/18

Haifeng Li (Shandong University)

6

ATLAS 探测器

40 m long, 25 m high. 100 M read-out channels

Haifeng Li (Shandong University)

LHC上希格斯玻色子的产生

<i>m_H</i> =125 GeV		
Higgs decays	BR [%]	
H ightarrow bb	57.8	
H ightarrow WW	21.4	
H ightarrow gg	8.19	
$H \rightarrow \tau \tau$	6.27	
H ightarrow ZZ	2.62	
H ightarrow cc	2.89	
$H o \gamma \gamma$	0.227	
$H ightarrow Z\gamma$	0.153	
$H ightarrow \mu \mu$	0.022	

 Observations: low BR channels (ZZ→4I, γγ, Zγ and μμ) have better mass resolutions but small rate. Channels with higher BRs (the rest) are challenging experimentally

LHC Run 1 Legacy

Higgs Mass

Higgs Boson Mass

arXiv: 1806.00242

- Higgs mass is the only free parameter in BEH mechanism
- Use 36 fb⁻¹ LHC Run 2 data, with $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow \gamma\gamma$

Higgs Boson Mass

arXiv: 1806.00242

ATLAS Run1+2 combined: $m_H = 124.97 \pm 0.24 \text{ GeV}$

- Precise object reconstruction is important for this measurement
- $H \rightarrow ZZ$ is still statistics limited; $H \rightarrow \gamma \gamma$ is systematics limited (photon energy scale)

8/23/18

Haifeng Li (Shandong University)

ATLAS Upgrade Phase-0

- Innermost silicon pixel detector layer (IBL)
- 33 mm from beam
- Improve tracking and bjet tagging (~4 times better for light flavor jet rejection)

IBL

Haifeng Li (Shandong University)

B hadron with

transverse direction

p_⊤=50 GeV will

travel 3 mm in the

ttH allows direct probe of top Higgs Yukawa coupling

ttH

arXiv:1806.00425

Combined with Run 1 data, Significance: 6.3σ (5.1σ exp.)

Observation of ttH production mode

H→bb

About 58% of Higgs decay to bb •

0-lepton

1-lepton

ATLAS Preliminary

1 lepton, 2 jets, 2 b-tags

 $150 \text{ GeV} \le p_{-}^{V} < 200 \text{ GeV}$

Aala Colimbar

0 lepton, 3 iets, 2 b-tags

s = 13 TeV. 79.8

. p^V_τ ≥ 200 GeV

600 /s = 13 TeV, 79.8 fb⁻¹

- Data

w

100 120

Diboson

Single to

140 160

🚽 Diboson

z W

Sinale top

Uncertainty

180 200

m_{bb} [GeV]

VH → Vbb (u=1.06

Uncertainty ···· Pre-fit background — SM VH → Vbb × 5

Events / 10 GeV

500

400

300

200

100 🕏

Data/Pred. 1 3.0

Ha /street

0.5

300

250

40 60 80

Pre-fit background

<u>جارداند</u>

100

8/23/18

ATLAS-CONF-2018-036

• Combine several variables with BDT (m_{bb} , p_T^V , ΔR_{bb} etc.)

H→bb

(Run 2 data)

ATLAS-CONF-2018-036

- Combined Run 1
 and Run 2 data
- Include VH, H→bb;
 VBF+ggF, H→bb;
 ttH, H→bb

Significance: 5.4o (5.5o exp.)

Observation of H→bb

H→bb

VH

ATLAS-CONF-2018-036

Significance: 5.3σ (4.8 σ exp.)

CERN-LHC Seminar

CERN-LHC Seminar on **Tuesday 28 August** in Filtration Plant (222-R-001) at 11h00:

Observation of the H->b bbar decay at ATLAS and CMS

https://indico.cern.ch/event/750541/

Abstract:

This seminar presents the observation of the Higgs boson decay to a bottom quarkantiquark pair by the ATLAS and CMS experiments. The results presented use all available datasets from the LHC Run 1 and Run 2 including the most recent 13 TeV dataset that corresponds to an integrated luminosity of ~80 fb^-1. The analysis strategy and the background estimation techniques are discussed and a comprehensive set of measurements are presented.

 $H \rightarrow \mu \mu$

BR=0.02%

Higgs Couplings to Massive Elementary Particles

Higgs Couplings to Massive Elementary Particles

- Dominant background is Drell-Yan process
- Dedicated categories for ggF abd VBF
- Use analytic functions to model signal and backgrounds

$H \rightarrow \mu \mu ggF$

• Signal has more ISR than background. Signal tends to have large $p_T^{\mu\mu}$ than background ATLAS-CONF-2018-026

$H \rightarrow \mu \mu VBF$

ATLAS

- Multivariate analysis method is used for VBF category to get better sensitivity
- 14 variables are used to train a BDT (most sensitive ones: *m_{jj}*, Δη_{jj}, *p^{μμ}_T*, Δ*R_{jj}*)
- Cut on BDT score to have VBF Tight (BDT > 0.885) and VBF Loose (0.685 < BDT $< 0.885)^{1}$
- Events with BDT < 0.685 are classified as ggF-like events

$H \rightarrow \mu \mu$ Categorization

CMS

$H \rightarrow \mu \mu$ Results

Λ

120

121 122 123 124 125 126 127 128

129 130

m_H [GeV]

8 fb

155

Haifeng Li (Sh

31

$H \rightarrow \mu \mu$ Results from Last Publication

Data: 2015+2016 LHC *pp* collisions data. Integrated luminosity: 36.1 fb^{-1}

Phys. Rev. Lett. 119, 051802 (2017) PRL Editors' Suggestion

Upper limit on si	gnal strengtl	า	Meas	urement of signation	al strength
	Observed	Expected			$\mid \hat{\mu}$
Run-2	3.0	3.1		Run-2	-0.1 ± 1.5
Run-1&Run-2	2.8	2.9		Run-1&Run-2	$ $ -0.1 \pm 1.4

Some recent theory papers citing $H \rightarrow \mu\mu$ paper

FNAL Muon g-2 Experimental Hall

arXiv: 1807.11484

Combined explanations of $(g-2)_{\mu,e}$ and implications for a large muon EDM

Andreas Crivellin,¹ Martin Hoferichter,² and Philipp Schmidt-Wellenburg¹ ¹Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ²Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA

To 实验家:

- Most $H \rightarrow \mu\mu$ signal have muon pT between 50 GeV and 100 GeV.
- Sensitivity to signal is proportional to the $1/\sqrt{\sigma}$

$$rac{S}{\sqrt{B}}\simrac{1}{\sqrt{\sigma}}$$

Improving the dimuon mass resolution is the key to find $H \rightarrow \mu\mu$ signal at LHC

A good inner tracking detector is so important for hadron collider experiments

Combined measurement of Higgs couplings ATLAS-CONF-2018-031

Analysis	Integrated luminosity (fb ⁻¹)
$H \to \gamma \gamma \text{ (including } t\bar{t}H, H \to \gamma \gamma)$	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell)$	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
$H \rightarrow \tau \tau$	36.1
$VH, H \rightarrow b\bar{b}$	36.1
$H \rightarrow \mu \mu$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1

LHC观测到了Higgs四个主要产生道

Higgs粒子的衰变

	<i>т_н</i> =125 G	ieV	
	Higgs decays	BR [%]	
✓	H ightarrow bb	57.8	
 Image: A start of the start of	H ightarrow WW	21.4	
	H ightarrow gg	8.19	
-	$H \rightarrow \tau \tau$	6.27	
<	H ightarrow ZZ	2.62	
	H ightarrow cc	2.89	H->cc: LHC上不可能. Future e+e- collider
<	$H \rightarrow \gamma \gamma$	0.227	
?	$H ightarrow Z\gamma$	0.153	
?	$H ightarrow \mu \mu$	0.022	

? + H -> unknown particles.

Summary

- ATLAS has performed Higgs measurements using 80 fb⁻¹ LHC Run 2 data
- Observed ttH and VH production modes
- Observed $H \rightarrow bb$ decay mode
- For H→µµ, upper limit is 2.1 times SM prediction at 95% CL
- No obvious deviation from SM is found at Higgs sector at LHC

新版瑞士法郎纸币使用了LHC实验上的 对撞事例图案

TAU

2

Higgs mass measurement systematics

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \rightarrow ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \rightarrow \gamma \gamma$ background modelling	20
$H \rightarrow \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10