

CMOS Monolithic Active Pixel Sensors (MAPS) CMOS Pixel Sensors (CPS)

Christine Hu Guo (Christine.hu@iphc.cnrs.fr) IPHC-IN2P3/CNRS, University of Strasbourg

<u>Contents</u>

- Seneral introduction − Vertex detector
- ✤ Introduction of hybrid pixels & CCD
- 🗞 MAPS HR, HV, Twin-well, Quadruple-well
- Service Sensor Architectures
 - Twin-well circuits
 - Quadruple-well circuits
 - Towards More Demanding applications ?
 - CPS R&D for e+ e- Colliders

Monolithic Active Pixel Sensors: A Long Term R&D

Ultimate objective: ILC, with staged performances

MAPS applied to other experiments with intermediate requirements

EUDET 2006/2010

<u>ILC >2025</u> International Linear Collider

STAR 2013 Solenoidal Tracker at RHIC

<u>ALICE 2018</u> <u>A Large Ion Collider Experiment</u>

Summer School, August 2018

Monolithic Active Pixel Sensors: A Long Term R&D

Ultimate objective: ILC, with staged performances

MAPS applied to other experiments with intermediate requirements

EUDET 2006/2010

ILC >2025 International Linear Collider

- ✓ EUDET (R&D for ILC, EU project)
- ✓ STAR (Heavy Ion physics)
- ✓ HadronPhysics2 (generic R&D, EU project)
- AIDA (generic R&D, EU project)
- FIRST (Hadron therapy) ALICE/LHC (Heavy Ion physics) CBM (Heavy Ion physics) ATLAS ITK (Particle physics) LHCb Tk (Particle physics)
 ILC (Particle physics)
 EIC (Hadron physics)
 CLIC (Particle physics)
 CEPC (Particle physics)

....

<u>CBM >2020</u>

Compressed Baryonic Matter

STAR 2013 Solenoidal Tracker at RHIC

ALICE 2018 <u>A Large Ion Collider Experiment</u>

Nowdays

How do we see the collisions?

We need highly granular detectors that take pictures quickly, and manipulate the resulting data on board and store it before shipping to a farm of computers

Nowdays ... e+ **e**-

How do we see the collisions?

We need highly granular detectors that take pictures quickly, and manipulate the resulting data on board and store it before shipping to a farm of computers

Particle Physics Detector Overview

Figure of merit for the VXD: Impact Parameter Resolution

$$\sigma_{ip} = \boldsymbol{a} \oplus \frac{\boldsymbol{b}}{\boldsymbol{p}(GeV)sin^{3/2}\boldsymbol{\theta}} (\mu m)$$

- $= a \text{ depends on } \underline{\text{the single point resolution}} \text{ of the sensor and } \underline{\text{the lever arm}}, \text{ which is equal to } R_{ext} R_{int}$
- **b** depends on <u>the distance of the innermost layer to IP</u> and <u>the material budget</u>
- \square P and θ are the particle momentum and polar angle

Accelerator	a (µm)	b (μm.GeV/c)
LEP	25	70
Tevatron	10	40
LHC	<12	<70
RHIC-II	12	19
ILC/CLIC	<5	<10

The Challenges of a Vertex Detector

- Precision (resolution)
- Material budget
- Readout speed
- Radiation hardness
- + Power consumption

- Conflict between physics performance driven parameters and running condition constraints:
 - Physics performance: spatial resolution (small pixel) and material budget (thin sensors) + distance to IR
 - Running conditions: read-out speed and radiation tolerance (HL-LHC: 10 times LHC)
 - Solution Moreover:
 - ★ limitations from maximum power dissipation compatible
 - * limitations from highest data flow acceptable by DAQ
 - Ultimate performance on all specifications cannot be reached simultaneously
 - ★ There is no single technology best suited to all applications
 - ★ Motivation for continuous R&D (optimum is stronly time dependent)

Particle Tracking in Si

Position can be determined \rightarrow centre of gravity

To obtain good position resolution \rightarrow high S/N ratio

The generated charge Q is given by: Q = Sub_{th} * x Sub_is the substrate thickness

- $~~ \$ ~~ {\rm sub}_{\rm th}$ is the substrate thickness
- x is a continuous random variable distributed according to the Landau distribution with MPV = e-h/μm

Pixel Detectors: Hybrid versus Monolithic

<u>Hybrid</u>

- >Used in large majority of installed systems
- >100% fill factor easily obtained
- Sensor and readout circuit can be optimized separately
 - Solution Other materials for the sensor
 - Standard ASIC CMOS (often denser than imaging processes)

Monolithic

- >Easier integration, lower cost
- Promising not only for pixels but also for trackers
 Potentially a significant impact on the material budget
- >MAPS are installed in STAR and adopted for the upgrade of the ALICE ITS
- New technologies (Through-Silicon-Vias, microbumping, etc.) make that the distinction is more vague
- Stacked CMOS imagers are available in the industry but often not with an individual connection for each pixel

https://www-group.slac.stanford.edu/ais/publicDocs/presentation127.pdf

https://indico.cern.ch/event/452781/contributions/2297515/attachments/1346032/2030268/Re_Vertex_2016.pdf

IPHC christine.hu@iphc.cnrs.fr

Hybrid Pixels

- Offer a number of advantages due to the split functionality of sensor and readout:
 - Somplex signal processing in readout chip
 - Sero suppression and hit storage during L1 latency
 - \sim Radiation hard chips and sensors to > 10¹⁵ n_{eq}/cm²
 - ✤ High rate capability (~MHz/mm2)
 - \backsim Spatial resolution \approx 10-15 μ m
- There are also some other aspects:
 - Kelatively large material budget: >1.5% X0 per layer
 - ⅍ Resolution could be better
 - Somplex and laborious module production
 - ★ bump-bonding / flip-chip
 - many production steps
 - **Second Second Second** Second Second
- But hybrid pixels are extremely successful and if you look at today's LHC experiments...

Pixel Detectors at LHC

Summer School, August 2018

CCD (Charge Coupled Devices)

History

First CCD was designed in AT&T Bell Lab in 1969 by Willard S. Boyle and George E. Smith (Awarded with the Nobel Prize in Physics for 2009)

- Step 1 Charge Generation
- Step 2 Charge Collection
- Step 3 Charges Transfer
- Step 4 Charge-to-Voltage Conversion
- Step 5 Digitization

Summer School, August 2018

Buried channel CDD:

- Potential minimum moved from the surface by n⁺
- Collected charge is a combination of drift and diffusion (drift much faster high resistive epi-Si)
- p/p⁺ edge works as a reflection layer
- MOS gate is superimposed on top of the n⁺ layer
- Depleted region is controlled by the voltage applied to the electrodes (p₁,p₂,p₃)

SLD CCD Vertex Detector (SLAC Linear Collider) Pixels of 22 x 22 μm^2

IPHC

Trends for Pixel Sensor Development

CCD (Charge Coupled Device)

Trends for Pixel Sensor Development

Principle of CMOS Pixel Sensor

Original aspect: Integration of sensitive volume (EPI: epitaxial layer) and front-end read-out electronics on the same substrate

- Charge created in EPI layer, excess carries propagate thermally, collected by N_{WELL}/P_{EPI} diodes, with help of reflection on boundaries with P-well and substrate (high doping)
- \triangleleft Q = 80 e⁻h / μ m \rightarrow signal < 1000 e⁻
- High granularity, compact, flexible
- \backsim EPI layer ~O(10) μm thick
- ~~ Thinning to ~30-40 μm permitted
- Standard CMOS fabrication technology
 - * Cheap, fast multi-project run turnaround
- ✤ Room temperature operation
 - ★ ~35 °C

 Attractive balance between granularity, material budget, radiation tolerance, read out speed and power dissipation

Principle of Operation

- Energy of a particle transferred to creation of e⁻h pairs in silicon bulk (p-type epitaxial layer)
- Moving electrons and holes induce current on sensing electrodes (Nwells)
- Current is converted to voltage on Nwell/Pepi diode capacitance

- Physics processes describing the charge collection are very complex
 - Device simulation is needed to understand them and to verify new ideas...

Single Point Resolution

- Driven by pixel pitch
- Benefits from large cluster: Exploit charge centre of gravity

Mimosa resolution vs pitch Mimosa 9 Analog (12bits) Mimosa 18 Analog (12bits) Mimosa 16 binary (1bit) Mimosa 22AHR binary (1bit) Mimosa 28AHR binary (1bit) Mimosa 9 binary (1bit, reprocessed) Mimosa 18 binary (1bit, reprocessed) Theoritical digital resolution (pitch / N12) Mimosa 30AHR binary (1bit) Resolution (microns) 10 20 25 30 35 10 15 40 5 45 pitch (microns)

Single Point Resolution vs Electric Field

• Low electric field:

- \checkmark Charge sharing (charge centre of gravity) \rightarrow resolution improved
 - ★ Low-level signals may be lost
- Scharge collection time longer
 - ★ Charges recombination increase
- Section tolerance degraded
- High electric field:
 - ♦ Charge collection time short
 - ★ radiation tolerance enhance
 - \checkmark Less charge sharing \rightarrow resolution reduced
 - ★ Less signals loss

Electric Field on Function of Multi-parameters

 $E_{x,y} \propto f(\rho, V, Diode \ geometry, Diode \ density, Doping \ profile, Thickenss, ...)$

- ρ: resistivity
- V: bias voltage (front-side or back-side)

Electric Field on Function of Multi-parameters

 $E_{x,y} \propto f(\rho, V, Diode \ geometry, Diode \ density, Doping \ profile, Thickenss, ...)$

- ρ: resistivity
- V: bias voltage (front-side or back-side)

CMOS Pixel Sensors: EPI Layer

Standard Epitaxial Layer

- Standard CMOS OPTO Process: EPI ~10 Ω^* cm
- Charge collection: thermal diffusion
- Collection time: O(100 ns)

High resistivity (HV) Epitaxial Layer

- High resistivity >1 $k\Omega^*$ cm & thicker (up to 40 μ m) EPI
- Charge collection: drift/thermal diffusion
- Collection time faster, less recombination → radtol.
- Depletion depth depends on bias

Standard EPI Layer vs. HR EPI Layer

- Standard CMOS technology p-epitaxial layer has low resistivity ~10 Ω ·cm
 - Charge collection time ~> 100 ns due to non depleted layer E.
- "High" resistivity p-epitaxial layer has resistivity:
 - ~400 Ω ·cm (Mimosa28-Ultimate 2010) and > 1 k Ω ·cm (ALPIDE 2016) ¢

Courtesy of Andrei DOROKHOV

5

0

5.5 4.3

3.1

1.9

0.68

-0.53

MIMOSA25 (2009) in High Resistivity (HR) Epitaxial Layer

- Resistivity of the EPI layer: ~400 Ω·cm
- 20 μm pitch, + 20°C, self-bias diode @ 4.5 V, 160 μs read-out time
- Fluence ~ (0.3 / 1.3 / 3) 10¹³ n_{eq}/cm²
- Tolerance improved by > 1 order of mag.

High Voltage (HV) in MAPS

Simulation result: (TJ HR18: $\rho > 1 \text{ k}\Omega \cdot \text{cm}$, EPI_{th} ~ 18 μ m)

Effects of High Voltage (HV)

V diode

AMP

 $_{P+/Nwe11}$

Nwell/Psub

- Input equivalent capacitor C_{eq}
 - Sected behaviour

 $C_{eq} \propto \frac{1}{\sqrt{V_{bias}}}$

Equivalent noise charge ENC

Interplay C_{eq} & leakage current

Effects of High Voltage (HV) - (2)

• Cluster size is impacted by depletion \rightarrow ratio $\frac{Q_{seed}}{Q_{cluster}}$

Saturation effect <~ 8 ∨</p>

Large Electrodes vs. Small Electrodes

 $E_{x,y} \propto f(\rho, V, Diode \ geometry, Diode \ density, Doping \ profile, \ Thickenss, ...)$

■ Sensing node = key element → SPECIFIC GLOBAL OPTIMISATION for each dedicated application

Pixel pitch, nw dimensions, spacing between nw & dnw, voltage

Large electrodes (HVCMOS)

- * No low field regions
- ⁺ On average short(er) drift distances
 → radiation hard
- Large sensing node capacitance (~200 fF) \rightarrow ENC, gain, rise time, power $ENC_{thermal}^{2} = \frac{4}{3} \frac{kT}{g_{m}} \frac{C_{d}^{2}}{\tau} \qquad \tau_{CSA} \propto \frac{1}{g_{m}} \frac{C_{d}}{C_{f}}$
- $\overline{}$ Risk of X-talks between Dig. & Ana. μ C

Small electrodes

- ⁺ μ-circuits outside coll. Well
- ⁺ Small capa. (~5 fF) \rightarrow high SNR, fast signal
- ⁺ Separate Ana. & Dig μ circuits
- On average longer drift distances and low field regions
 - → radiation hardness more diffcult?

CMOS Fabrication Process

Twin-well process:

Separate optimization of the n-type and p-type transistors is provided. The independent optimization of Vt, body effect and gain of the P-devices, N-devices is made

Substrate

Triple & quadruple well process:

Substrate

Summer School, August 2018

MAPS Process Evolution

<u>Twin well process: 0.6-0.35 μm</u>

 Use of PMOS in pixel array is not allowed because any additional N-well used to host PMOS would compete for charge collection with the sensing N-well diode V. H

- Limits choice of readout architecture strategy
- Already demonstrate excellent performances
 - * STAR PXL detector: MIMOSA28 are designed in this AMS-0.35 μm process
 - $\checkmark \mathcal{E}_{eff}$ > 99.5%, σ < 4 μm
 - * 1st MAPS based VX detector at a collider experiment

- Quadruple well process (deep P-well): 0.18 μm
 - N-well used to host PMOS transistors is shielded by deep P-well
 - ✤ Both types of transistors can be used

- % Widens choice of readout architecture strategies
 - ★ ALICE ITS upgrade:
 - Data driven Readout

IPHC christine.hu@iphc.cnrs.fr

Summer School, August 2018

MAPS Design: Optimisation Process

- Sensor performance are evaluated in terms of:
 - P Noise
 - P
 - Cluster multiplicity (CM) P
- ←→ Dark hit noise
- Charge Collection & Signal/Noise $\leftarrow \rightarrow$ Detection efficiency (ε_{det}) Radiation tolerance
 - $\leftarrow \rightarrow$ Spatial resolution (σ_{sp})

Depend on construction parameters

E.g.: Role of epitaxial layer

- thickness & doping profile P Q_{signal}:
- P ϵ_{det} & NIEL tolerance: depletion depth vs thickness
- P CM & σ_{sp} : pixel pitch / thickness, depletion depth, ...
- Application-specific multi-parametric trade-off to be found, based on exploratory prototypes rather than on simulations

Main Components of the Signal Processing Chain

Typical components of read-out chain

- Solution AMP: in-pixel low noise pre-amplifier
 - ★ Low signal value: ~ 80 e-h+ pairs/ μ m → signal O(1 Ke⁻) collected by a cluster of ~3-5 pixels → low noise
- \checkmark Filter: in-pixel filter \rightarrow low noise
- ADC: analog-to digital converter (1 bit = discriminator)
- Sero suppression: only hit pixel information is retained and transferred
- Solution Data transmission: O(Gbits/s) link implemented on sensor periphery
- Read-out in general data-driven
 - Synchronous: clock distribution over pixel array → power consumption
 - Solution Soluti Solution Solution Solution Solution Solution Solution S
- Trade-off between conflicting parameters

Figure of Merit S/N vs Design Optimisation

- **Signal:** $S(\mathbf{v}) = \frac{Q}{C}$ $C = C_{diode} + C_{Tin} + C_{connection}$
 - Small collection electrode, small input transistor, short inter connection for low C
 - BUT too small diode does not favour the charge collection
- Noise:
 - Sensing Diode:
 - * Shot noise due to leakage current, especially after irradiation
 - I_{leak} is proportional to diode dimensions
 - \checkmark Shot noise is proportional to integration time, negligible for short integration time $O(1 \, \mu s)$
 - * RTS (Random Telegraph Signal) noise

$$\underline{Input Transistor:} \text{ in Weak inversion: } dv_{eq}^2 = \left(\frac{K_F}{WLC_{ox}^2 f^{\alpha}} + \frac{2K_BTn}{g_m}\right) df, g_m \sim I$$

$$\mathbf{Strong inversion:} dv_{eq}^2 = \left(\frac{K_F}{WLC_{ox}^2 f^{\alpha}} + \frac{4K_BT\gamma}{g_m}\right) df, g_m \sim \sqrt{I}$$

$$\mathbf{To minimise} \qquad Flicker noise (1/f) \qquad Thermal noise$$

- lo minimise
 - Flicker noise: large input transistor \rightarrow large C_{tin} & area
 - \checkmark Thermal noise Large g_m , \rightarrow high power
 - Both of two noise: Use a filter (band-pass)
- ➔ 1. trade-off between Noise & Power
 - 2. trade-off between MOS in very weak inversion & dispersion
 - 3. need a filter

- $K_{\rm F}$ Technology dependent constant
- W, L MOS transistor width and length
- C_{ox} Gate oxide capacitance per unit area
- *g_m* Transistor transconductance
- $K_{\scriptscriptstyle B}$ Boltzmann constant
- T Absolute temperature
- n Weak inversion slope
- γ Often around ½ 2/3 in strong inversion

IPHC christine.hu@iphc.cnrs.fr

Figure of Merit S/N vs Design Optimisation (2)

- Solution In-pixel transistors RTS noise: increases as the feature size of the devices is scaled down
 - * Impact on dimensions (W and L) of the in-pixel transistors
 - * PMOS has better performance than NMOS
 - * Negligible if integration time small enough
- $\stackrel{\text{Reset noise:}}{\longrightarrow} v_N^2 = \frac{kT}{C}$
- ✤ <u>Contributions from:</u>
 - * Other transistors in pre-amplifier stage is not negligible

* Next stages
$$N_{total} = N_1 + \frac{N_2}{G_1} + \frac{N_3}{G_1G_2} + ...$$

- \rightarrow High gain in the first stage (G1) tends to mitigate the total noise
- Maximise the figure of merit is the design guideline

Analog Power vs. Q/C

- Signal over noise ratio: $\frac{S}{N} \sim \frac{Q}{C} \sqrt{g_m} \sim \frac{Q}{C} \sqrt[m]{I} \sim \frac{Q}{C} \sqrt[m]{P}$ with $2 \le m \le 4$
- Power consumption for constant S/N at a certain bandwidth:

$$P \sim \left\{\frac{Q}{C}\right\}^{-m}$$
 with $2 \le m \le 4$

- Solution Q/C: key parameter to reduce analog power consumption
 - * To gain Q/C by a factor of 2, P reduction of a factor 4 (to 16)
- \bigcirc Operating the transistor in or near weak inversion region to maximize the g_m (m = 2)
- ⅍ … speed?

Example of an open-loop circuit:

A transistor biased at 100 nA in weak inversion has thermal noise ~480 μV (40 MHz BW), highresistivity (~1 KΩcm) 20 μm thick EPI, small electrode ~5 fF, 30 μm pitch $\Rightarrow \leq 10$ mA/cm²

$$\frac{Q}{C} = \frac{80 \times 20 \times q}{5 \, fF} = 51 \, mV$$
 $\frac{S}{N} = \frac{51 \, mV}{450 \, \mu V} \sim 100$

- ATLAS hybrid pixel (50x400 μm²):
 - \checkmark 24 μ A/pixel \rightarrow 120 mA/cm², 285 μ m thick sensor, C_f ~400f F, Q/C < 10 mV
- Strip detector: Q/C < 1mV</p>

Ref. Monolithic pixel detectors for high energy physics, W. Snoeys, Nuclear Instruments and Methods in Physics Research A 731 (2013) 125-130

First Generation MAPS Twin-well circuits
1st Generation MAPS

$$V = \frac{Q}{C} \qquad (\sim O(10) \text{ mV})$$

- 1. Reset in order to inverse bias
- 2. Continuous serial addressing and readout (digitisation) of all pixels
- 3. Keeping two successive frames in external circular buffer
- Following reset when needed (removing integrated dark current)
- 5. After trigger (or in a real time), simple data processing in order to recognise hits

Data Processing: (Off Line) Correlated Double Sampling

Examples of Pixel Sensor Architectures Twin-well circuits

The First Two MAPS with Integrated Ø

- Mimosa26: EUDET telescope, provide an infrastructure exploiting detector R&D for the ILC
 - Solution < 2 μ m Construct a 6-MAPS planes beam telescope \rightarrow Extrapolated resolution < 2 μ m
- Mimosa28: PXL detector in STAR Heavy Flavor Tracker (HFT) upgrade Extend the measurement capabilities in the heavy flavor domain, good probe to QGP

- Two sensors have similar spec.
 - STAR final sensors (M28/Ultimat) spec.:
 - ★ Active surface: ~2x2 cm² (EUDET: ~1x2 cm²)
 - ★ Total ionizing dose: 150-300 kRad per year
 - * Non-ionizing radiation dose: charged pions <~ $O(10^{13})$ / year
 - ★ Hit density:
 - 10⁶ hits/s/cm²
 - * Readout (integration) time: < 200 μ s (EUDET: 115.2 μ s)
 - ★ Power consumption: ~100 mW/cm²

Designed in a 0.35 μm <u>Twin-well</u> process

IPHC christine.hu@iphc.cnrs.fr

IFC

Outer Field Cage

Solenold

Twin-Well: High Readout Speed Sensors Architecture

Low Power vs. High Speed

- \checkmark Power \rightarrow only the selected rows to be read out are powered ON
- Speed → Pixels belonging 1 row are read out simultaneously
 - ★ Integration time = frame readout time

 t_{int} = (row readout time) x (No. Of rows)

Twin-Well: In Pixel amplification & Signal Processing

- Pixel design:
 - Solution, S/N
 - ♦ Amplification in pixel: improve S/N
 - Source of the second se

15-19/09/2008

Twin-Well: In Pixel amplification & Signal Processing (2)

- Common Source (CS) amplification in pixel
 - Solution Stransistors can be used

Twin-Well: A/D conversion: Column-level discriminators

- Choice of number of bits depends on the required spatial resolution and on the pixel pitch
 - Solutions → 1 bit → discriminator
- Discriminator design considerations:
 - Small input signal → Offset compensated amplifier stage
 - 🤟 Dim: 16.4 x 430 μm²
 - Conversion time = row read out time (~200 ns)
 - Solution ~230 μW

- Measurement results of 1152 column-level discriminators (Mimosa26):
 - ⅍ Temporal Noise: 0.3-0.40 mV
 - ⅍ Fixed Pattern Noise (FPN): 0.15 mV

15-19/09/2008

Summer School, August 2018

IRFU - IPHC christine.hu@ires.in2p3.fr

Pixel Array + Discriminated Output Test Results

Array of 660,000 pixels coupled to 1152 discriminators

- Substitution of total temporal noise ~ 0.6 0.7 mV
- ⅍ Typical value of total FPN noise ~ 0.3 0.4 mV
- ⅍ N <~12 13 e⁻ ENC

Twin-Well: Readout path: zero suppression + memories

- Connected to column-level discriminators outputs
- *Zero suppression is based on row by row sparse data scan readout*

Twin-Well: Readout path: zero suppression + memories

- Connected to column-level discriminators outputs
- Zero suppression is based on row by row sparse data scan readout

MIMOSA26: 1st MAPS with Integrated \emptyset

Summer School, August 2018

IRFU - IPHC christine.hu@ires.in2p3.fr

48

MIMOSA26 with high resistivity EPI layer

- Beam test at CERN SPS (120 GeV pions)
 - Solution State State

- Main features:
 - ✤ In-pixel amplification & CDS, comparator for each column
 - data sparsification
 - \backsim pitch: 18.4 $\mu m \sim$ 0.7 million pixels
 - \backsim read-out time 110 μ s nominal (80 μ s achieved)

IPHC christine.hu@iphc.cnrs.fr

Examples of Pixel Sensor Architectures Quadruple-well circuits

ALICE Inner Tracking System Upgrade Objectives

- Improve impact parameter resolution by a factor ~3
 - Set closer to IP (radius of first layer): 39 mm → 23 mm
 - Sequence pixel size: currently 50 x 425 μ m² -> O(30 x 30 μ m²)
 - \mathbb{R} Reduce x/X₀/layer from ~1.14% -> ~0.3% (inner layers)
- Better tracking efficiency and p_T resolution at low p_T
 - Siner granularity: from 6 to 7 layers and all layers with pixels

Fast readout

- Seadout Pb-Pbinteractions at 100 kHz
- Seadout pp interactions at >200 kHz (current ITS limited at 1 kHz)
- Design for fast removal and insertion
 - Solution Maintenance during yearly shutdown

Installation of the new detector during LHC Long Shutdown 2 (2019-2020)

 $\sigma_{ip} = \boldsymbol{a} \oplus \frac{\boldsymbol{b}}{\boldsymbol{p}(GeV)sin^{3/2}\boldsymbol{\theta}} (\mu m)$

New ALICE ITS Layout

ITS Chip General Requirements

Parameter	Inner Barrel	Outer Barrel
Chip size (mm x mm)	15 x 30	
Chip thickness (µm)	50	100
Spatial resolution (µm)	5	10 (5)
Detection efficiency	> 99%	
Fake hit rate	< 10 ⁻⁵ evt ⁻¹ pixel ⁻¹ (ALPIDE << 10 ⁻⁵)	
Integration time (µs)	< 30 (< 10)	
Power density (mW/cm ²)	< 300 (~35)	< 100 (~20)
TID radiation hardness (krad) (**)	2700	100
NIEL radiation hardness (1 MeV n _{eq} /cm ²) ^(**)	1.7 x 10 ¹³	1.7 x 10 ¹²
Readout rate, Pb-Pb interactions (kHz)	100	
Hit Density, Pb-Pb interactions (cm ⁻²)	18.6	2.8

^(*) In color: ALPIDE performance figure where above requirements ^(**) 10x radiation load integrated over approved program (~ 6 years of operation)

Ref. G. Aglieri VCI2016

Small Electrodes: ALPIDE Technology

Pixel Sensor CMOS 180 nm Imaging Process (TowerJazz):3 nm thin gate oxide, 6 metal layers

- Small collection electrodes:
 - \square High-resistivity (> 1k Ω cm) p-type epitaxial layer (18 30 μ m) on p-type substrate
 - beep Pwell shielding Nwell allowing PMOS transistors (full CMOS within active area)
 - Reverse bias can be applied to the substrate to increase the depletion volume around the Nwell collection diode
 - Higher gain and faster response due to smaller capacitance (<5 fF) and higher Q/C
 - * Potentially lower power consumption

IPHC christine.hu@iphc.cnrs.fr

ALPIDE : In-pixel Front-end Electronics

- Non-linear and operating in weak inversion. Ultra-low power: 40 nW/pixel
- Solution → Solutio
- ✤ Test pulse charge injection circuitry
- Global threshold for discrimination -> binary pulse OUT_D
- Digital pixel circuitry with three hit storage registers (multi event buffer)
 - Solution Streen Streen
 - ✤ In-Pixel masking logic

Summer School, August 2018

IPHC christine.hu@iphc.cnrs.fr

ALPIDE: Pixel Front-end Circuit (1)

Ref. D. Kim, 2016 JINST 11 C02042

- Transfer of charge to generate voltage gain
 - Signal charge creates negative voltage step ΔVPIX_IN at the input PIX_IN
 - Solution № M1 (S Follower) and forces its source to follow its gate
 - \square This causes transfer of charge Q_{source} from C_{source} to C_{OUT_A}

$$\Delta V_{OUT_A} \approx \frac{Q_{source}}{C_{OUT_A}} = \frac{C_{source \times \Delta V_{PIX_IN}}}{C_{OUT_A}} = \frac{C_{source}}{C_{OUT_A}} \Delta V_{PIX_IN} = \frac{C_{source}}{C_{OUT_A}} \frac{Q_{IN}}{C_{IN}}$$

 \lor Voltage gain is obtained if C_{source} >> C_{OUT_A}

ALPIDE: Pixel Front-end Circuit (2)

- M4, M5 \rightarrow low frequency feedback. (V_{curfeed}) is adjusted for M3 to to absorb IBIAS+ITHR
- ITHR, VCASN define V_{OUT A} DC level and return to the steady state after a hit
- Baseline $V_{OUT A}$ is adjusted below the point where $I_{M8} = IDB$
- V_{Threshold} is the difference between V_{OUT_A} baseline and the point where I_{M8} = IDB
- If $V_{OUT A}$ excursion is sufficiently large for i_{M8} > IDB → pulldown the output_{dig.} OUT_D

Ref. D. Kim, 2016 JINST 11 C02042

ALPIDE: Pixel Front-end Circuit (3)

- Combined capa. to reduce layout area
 - \bigcirc C_{source} and C_{curfeed} \rightarrow C_s
- Charge threshold parameters
 - OUT A baseline value : ITHR, VCASN P
 - Threshold of second stage : IDB 仑
- M6 is used to clip large signals and force OUT_A to quickly return to its DC value
- Keeping C_{OUT A} << C_{source}

Summer School, August 2018

ALPIDE: Pixel Front-end Circuit Optimisations (1)

Q/C

Input transistor optimisation

Charge threshold uniformity:

- Identify the influence of mismatch of each MOS
 - Monte-Carlo simulation
- Layout dimension vs. devices sizes

$$rms = \frac{rms_0}{\sqrt{Area}}$$

- M0, M4, M5, M7 sizes are limited by the layout
- M8 trade-off between large area for low mismatch and small area to reduce C_{out A}

Parasitic components

- Solution C_{p1} impacts threshold, M9 reduces Miller effect
- C_{p0} impacts input capacitor (noise & gain), M2 reduces Miller effect

ALPIDE: Pixel Front-end Circuit Optimisations (2)

Time response uniformity:

- Trigger mode: important because the front end is used as analog memory
 - P OUT A
 - Larger M4 to reduce ITHR variation *
 - Introducing M9 to reduce C_{OUT A} variation \star
 - Longer M6 to reduce the clipping point variation \star
 - P OUT D
 - Longer M7 to reduce IDB variation *

60

Analogue Response & Noise and Threshold Distributions

Ref. W. Snoeys, HST 2017

ALPIDE: Matrix Readout

 Data driven readout: the Priority Encoder sequentially provides the addresses of all hit pixels in a double column

- Sombinatorial digital circuit steered by peripheral sequential circuits during readout of a frame
- ⓑ No free running clock over matrix. No activity if there are no hits
- \Box Energy per hit: E_{hit} ~= 100 pJ \rightarrow ~3 mW for nominal occupancy and readout rate
- Suffering and distribution of global signals (STROBE, MEMSEL, PIXEL RESET)

Column-Level Data Driven Readout

- Data driven readout is based on an arbiter tree scheme with hierarchical address encoders and reset decoders
 Pixels
- An example of a single bit 4 to 2 encoder

SO S1 S2 S3 A1 A0 Valid 1 Х Х 0 0 Х 1 0 1 х Х 0 1 1 0 0 1 Х 1 0 1 0 0 0 1 1 1 1 0 0 0 0 Х Х 0

- Basic logic contains three units:
 - 🍕 🛛 Fast OR 🗲 VALID
 - Scheric Address Encoder
 - 🗞 Reset Decoder

Repeated tree structure + buffering

ALPIDE Pixel Layout

Detection Efficiency and Fake Hit Rate

- Large operational margin with only 10 masked pixels (0.002%)
 - $\leq \epsilon_{det} > 99\%$ @ $\lambda_{fake} << 10^{-5}$ / event/pixel
- Chip-to-chip fluctuations negligible
- Sufficient operational margin after 10x lifetime NIEL dose

Ref. W. Snoeys 11th International "Hiroshima" Symposium

Position resolution and cluster size

- Chip-to-chip fluctuations negligible
- Non-irradiated and TID/NIEL chips show similar performance
- Resolution of about 6 μm at a threshold of 300 electrons
- Sufficient operational margin even after 10x lifetime NIEL dose

MIMOSIS

CBM-MVD required performance

- Improve secondary vertex resolution
- Low material budget (few 0.1% X0)
- Host highly granular silicon pixel sensors featuring
 - \checkmark Fast read-out: <~10 μ s
 - 🤟 Excellent spatial resolution: ~5 μm
 - **Bobustness to radiation environment**
 - * TID: 3 Mrad @ -20 °C & 1 Mrad @ + 30 °C
 - * NIEL: $3 \times 10^{13} n_{eq}/cm^2$ @ -20 °C & $1 \times 10^{13} n_{eq}/cm^2$ @ +30 °C
 - ⅍ Hit rate capability (most exposed 4x4 mm²)
 - * Average: $\sim 1.5 \times 10^5/\text{mm}^2/\text{s}$
 - ★ Peak: ~7 x 10⁵/mm²/s
 - ✤ Power consumption
 - ★ Station 2&3: <200 mW/cm²
 - ★ Station 0&1: <300 mW/cm²
 - Solution → Solutio
 - ★ Average: ~160 Mbits/cm²/s
 - ★ Peak: ~1.6 Gbits/cm²/s

MVD detector

Pixel Array

- Every pixel contains: a sensing element, a preamplifier/shaper, a discriminator, 2 digital buffers & a part of data driven readout encoder
- Priority encoder: 1 encoder per double column (2 x 504 pixels)
 - 504 rows chosen to allow including header & frame counter inside data within 16 bit words
- 1 region has 8 double columns, 64 regions are running in parallel
 - Increasing the ability to handle the higher event rate. The number of regions depends on the values of the peak hit rate, the probability and the Priority Encoder readout speed
- 8 Priority Encoders in a region are read-out in serial @ 20 MHz
- **Readout** frame per frame in 5 μ s **\rightarrow** pipeline mode

Overall Sensor Organisation

Examples of Pixel Sensor Architectures Towards More Demanding applications ?

Towards More Demanding applications

Specifications for the ATLAS Inner Tracker Upgrade Phase 2 (HL-LHC)

	ALICE-	ATLAS-HL-LHC	
	LHC	Outer	Inner
Required Time Res. [ns]	20 000	25	
Particle Rate [kHz/mm ²]	10	1000	10 000
Fluence [n _{eq} /cm²]	>1013	10 ¹⁵	10 ¹⁶
lon. Dose [Mrad]	0.7	50	1000

- Time resolution: fast collection by drift (<< 25 ns)
 - → larger depletion
 - $E_{x,y} \propto f(\rho, V, Diode \ geometry, Diode \ density, Doping \ profile, \ Thickenss, ...)$
- High particle rate: short dead time (< 1 us)
- CMOS development for the outer pixel layer benefit in terms of assembly and cost

R [mm]
ATLAS ITk: Two Approaches

 $E_{x,y} \propto f(\rho, V, diode geometry, diode density, doping profile, sub thickness,...)$

- Large collection electrode (HV-CMOS): Electronics in the collection electrode
 - Functional sensors, good radiation tolerance, power penalty due to large sensor capacitance
 (> 100 fF) and robust design to avoid cross talk
 - HV process, HR wafer, backside processing
- Small collection electrode (CMOS sensor <u>modified</u> process) for full depletion combined with low C (< 5 fF, circuit + sensor)
 - Sood sensor performance after irradiation
 - \square Design of two large-scale demonstrators with low power front-end (< 25 ns, < 1 μ W)
 - * MALTA, asynchronous readout
 - ★ TJ-Monopix, synchronous readout

LF-Monopix: In-pixel Front-end Electronics

Ref. T. Wang, arXiv:1611.01206v1, 2016

LF-Monopix: 150 nm HV-CMOS, > $2k\Omega$.cm, Quadruple well process, up to 7 metal layers

- Chip size: 10 mm x 10 mm, Pixel size: 50 x 250 μ m²
- Large detector capacitor degrades the noise performance, the speed of the front-end electronics and increases the power consumption
 - \checkmark ENC ~ 200 e⁻, threshold = 2500 e⁻
- Large C_{pw} may introduce serious cross-talk

Pixel Design

- Charge sensitive amplifier
- In-pixel 4 bit DAC for threshold trimming
- Hit register (1-bit)
- Time stamp is distributed in the matrix
- Hit information stored in the pixel
 - ✤ Time, charge of signal (TOT) (40MHz)
- Readout initiated by a token
 - ✤ Priority arbitration over the shared bus

- Full-custom digital circuit
 - \checkmark Minimised area \rightarrow for less C_d
 - Low noise circuit design for critical digital blocks
 - ★ a current steering logic is used for token propagation
 - ★ a source follower as the output stage is used for the readout of the memory

IPHC christine.hu@iphc.cnrs.fr

Some Test Results

²⁴¹Am source (59.5 keV) and ⁶⁵Tb (K α : 44.5 keV, K β : 50.4 keV)

LF-Monopix in Test Beam

- MIMOSA26 x 6

- Pixel size: 18.4 μm x 18.4 μm
- 115.2 μs/frame (rolling shutter)
- FE-I4 x 1
 - Pixel size: 250 μm x 50 μm
 - Timing resolution: 25ns (trig. by scintillator + TLU)

LF-MONOPIX (unirradiated and n-irradiated) ELSA (2.5 GeV e-) CERN SPS H18 (180 GeV π)

Ref. N. Wermes RD50-Hamburg 2018

Test Beam Results: Detection Efficiencies

- un-irradiated

- Hit efficiency @ Noise occ. << 10⁻⁷, thr~1700e- (<10⁻⁷ @ 1400e-)
- 1% masked pixels from noise tuning

- Neutron irradiated (1 x 10¹⁵n_{eq}/cm²)
 - Hit efficiency @ Noise occ. < 10⁻⁸, thr~1700e-
 - < 0.2% masked pixels from noise tuning.

Ref. N. Wermes RD50-Hamburg 2018

IPHC christine.hu@iphc.cnrs.fr

In-Pixel Efficiency

■ In the irradiated sample, the degradation of the efficiency is observed not only at the corner of pixels but also in the middle of pixel → normal degradation

Ref. N. Wermes RD50-Hamburg 2018

Timing Performance

- >80% in-time efficient after 1 x 10¹⁵n_{eq}/cm².
 <u>Remarkable</u> for C_D ~ 400fF and promising for new design with smaller C_D (Optimized FF)
- Note that there is still room for improvement by tuning:
 Optimize: CSA, discriminator currents, etc., higher bias voltage, back side process.

Ref. N. Wermes RD50-Hamburg 2018

Small Electrode vs. Radiation Tolerance

- Present MAPS offer a number of very interesting advantages, but the diffusion is a limiting factor
- In a (very) high radiation environment (10¹⁵ - 10¹⁶ n_{eq}/cm²)
 - The ionization charge is trapped/ recombined in the non-depleted part
 no more signal
 - Diffusion makes signal collection slower than typical requirements for pp – colliders

- Readout architectures (ALPIDE) are low power, but not designed for high rates like p-p at LHC
- Combine high resistivity and high voltage

 $d \propto \sqrt{\rho V}$

TowerJazz 180 nm Modified Process

- Modified process developed in collaboration of CERN with TJ foundry, originally developed in context of ALICE ITS
- Adding a planar n-type layer significantly improves depletion under deep PWELL
 - \checkmark Increased depletion volume \rightarrow fast charge collection by drift
 - better time resolution reduced probability of charge trapping (radiation hardness)
 - Solution Possibility to fully deplete sensing volume with no significant circuit or layout changes

W. Snoeys et al., NIM A871 (2017) 90-96

Device Simulation

- Simulated hole (a) and electron (b) densities illustrate the depletion of the epitaxial layer and the low dose implant. The junctions are indicated with a red line and the edge of the depleted zone with white lines.
 - ⓑ The pwell was grounded, the collection electrode and substrate are biased at + 5 V and −15 V respectively
 - similar depletion is already reached near zero substrate bias

W. Snoeys et al., NIM A871 (2017) 90-96

Modified Process: Irradiation Results

- "Investigator" chip irradiated up to 10¹⁵ n_{eq}/cm² and 1 Mrad in several steps (temp =-15°C)
 - ⅍ Little change in signal after irradiation
 - Signal well separated from noise

H. Pernegger et al., DOI 10.1088/1748-0221/12/06/P06008

Modified Process: Charge versus Collection Time

The signal collection time with 50x50 μ m² pixel

H. Pernegger et al., 11th International "Hiroshima" Symposium 2017

Beam Test: Detection Efficiency

- 10¹⁵n_{eq}/cm² irradiated modified process
- 30x30 μm² pixel sensor with 3 μm electrode and 3 μm spacing
- Efficiency projection between the pixel enters in X and Y direction

H. Pernegger et al., DOI 10.1088/1748-0221/12/06/P06008

TJ Submission: Design of Large-Scale Demonstrators

 Design of two full-scale demonstrators to match ATLAS specifications for outer pixel layers :MALTA & TJ-Monopix

Ref. Th. Kugathasan TWEPP 2017

MALTA

Asynchronous readout architecture to reduce digital power consumption and increase hit rate capability in the matrix. No clock distribution over the pixel matrix -(power reduction)

TJ-Monopix

Synchronous readout architecture. Uses the well-established column drain readout architecture (experience from LF-Monopix design)

Analog Front-End

- Based on the front-end of the ALPIDE chip (previously developed for the upgrade of the ALICE experiment)
- Improvement for fast timing (< 25 ns) and hit rate capability by increasing current consumption (250-500 nA/pixel, < 1 μW/pixel)

Ref. Th. Kugathasan TWEPP 2017

Asynchronous Matrix Readout

- No clock distribution over the pixel matrix – (power reduction)
- Hits are stored using in-pixel flip-flops and transmitted asynchronously over highspeed buses to the end-of-column logic (programmable pulse duration 0.5 ns to 2.0 ns)
- Double-column divided into groups of 2x8 pixels ("red" and "blue")
- Buses shared by all groups of the same colour in the double-column
- Group number encoded on 5-bit group address bus

Digital End-Of-Column Logic

- At the periphery, signals of red and blue groups are merged together
- Addition of 4-bit bunch-cross
 ID (timing) and chip ID
- Simultaneous signals on two buses require additional arbitration logic (blue signal is given priority, red is delayed)
- Merging is repeated for all the double-columns and then continued until all outputs are merged into one parallel bus (40 bits)

22b 22b 22b 22b 22b 22b Group # 22b 22b 22b Group # 22b **Pixel add** Group # Pixel add Group **Pixel add** Group # Pixel add Group # Hit merger: Hit merger: Time-orders hits from 2x22 bits on Time-orders hits from 2x8 bits on 1x22 bits + column identifier + 1x8 bits + column identifier + delay counter delay counter 22b+1c 22b+1c Hit merger: Time-orders hits from 2x8 bits on 1x8 bits + column identifier + delay counter 22b+2c

x256 double-columns

x9 levels of merging for full matrix

Ref. Th. Kugathasan TWEPP 2017

Discussion on Power Consumption

- Assumptions: Matrix 2 cm x 2 cm, pitch 36.4 um
- Analog Power < 75 mW/cm2</p>
- Matrix readout: asynchronous, depends on pixel hit rate
 - ScMOS signals in the matrix (no noise issues, no need to use power consuming differential transmission)

	pixel hit rate		Power/bit/cm ² (H=2 cm)	Power (4.5 bit toggling)
Layer	hit/BC/mm ²	Mhit/mm²/s	mW/cm ²	mW/cm ²
0	0.68	27.2	28.3	127.3
1	0.21	8.4	8.7	39.3
2	0.043	1.72	1.8	8.0
3	0.029	1.16	1.2	5.4
4	0.021	0.84	0.9	3.9

Power for clock distribution (not used in the asynchronous readout)

- Section 2.2 Energy per 1 cm toggled line at 1.8 V = 3.2 pF/cm x $(1.8 V)^2 = 10.4 pJ$
- ~~ 137 lines per cm (1 per double column) for 36.4 μm pixel pitch:
 - ★ 137 x 10.4 pJ x 40 MHz = 57 mW/cm2

Ref. Th. Kugathasan TWEPP 2017

Test Results: 55 Fe Spectra

Before irradiation

After irradiation

Signal from analog monitoring pixel
 good response after irradiation

Ref. Kugathasan ACES 2018

Summer School, August 2018

MALTA: Front-End Time Walk

Charge collection time and front-end timing (< 25 ns) good after irradiation
 P_{analog} = 0.9 μW/pixel

Ref. Kugathasan ACES 2018

Summer School, August 2018

CPS R&D for e⁺ e⁻ Colliders

Initial motivation: the need of very granular and low material budget sensors

Discussion of MAPS Applications in e⁺ e⁻ Colliders

- e⁺ e⁻ colliders have very clean environment, moderate radiation compared to the LHC
- Physics driven:
 - <u>ILC</u>: unprecedented precision detectors, with a highly granular calorimeter, excellent momentum resolution and vertexing capabilities
 - Sompared to LHC detectors:
 - ★ Jet energy resolution (improve by a factor ~3)
 - ★ Momentum resolution (improve by a factor ~10)
 - ★ Vertex reconstruction (improve by a factor ~10)
- Vertex detector will play a crucial role, with:
 - \backsim A spatial resolution ~3 μ m
 - A low material budget to minimize multiple scattering, typically 0.15% X₀/layer
 - Section Section № A moderate/suppressed power consumption

\checkmark	Radiation	ILC	CEPC
	TID (kRad/year)	~100	~1000
	NIEL (1 MeV n _{eq} /cm ² /year)	~10 ¹¹	~2 x 10 ¹²

The sensor specifications necessitate negotiating the established conflict between the spatial resolution required by the physics objectives and the read-out speed imposed by the rate of the beam related background, while keeping the power consumption at an acceptable level

Improving the Spatial Resolution

- Objectives:
 - 𝔅 Aim for $σ_{sp}$ ≅ 4 µm → pitch ≅ 22 µm
 - Source States State
 - ★ Combine impact positions observed on each ladder face to derive hit position in ladder "medium plane"

$$\sigma_{sp}^{layer} \cong \frac{\sigma_{sp}}{\sqrt{2}}$$

Based on straight line interpolation, exploiting low occupancy, proximity of impacts, low material budget

- PLUME (Pixelated Ladder with Ultra-low Material Embedding) Project
 - Study a double-sided detector ladder motivated by the R&D for ILD VD
 - Solution Not State S
 - \checkmark Correlated hits \rightarrow reconstruct mini-vector

IPHC christine.hu@in2p3.fr

A Monolithic Chip for the CLIC Silicon Tracker

Requirements for a chip for the CLIC silicon tracker

- Channel dimensions:
 - Single point resolution in one dimension $\leq 7 \mu m$ (transverse plane)
 - Length of short strip/long pixel: 1 -10 mm
 (1 mm fulfils the requirements for the different barrels)
- Energy measurement (For time walk correction and improving spatial resolution)
 - ✤ 5-bit resolution
- Time measurement:
 - 5 10 ns bin, 8-bits
 - ✤ No multi-hit capability
- Material budget 1-1.5% X₀ (i.e. ~200 μm for silicon detector and readout)
- Power consumption < 150 mW/cm² (Power pulsing, duty cycle ~500 ns/20 ms (25x10⁻⁶))
- Radiation hardness (NIEL< 10¹⁰ n_{eq}/cm²/yr, TID < 1 Gy/yr)</p>
- Monolithic sensor in Tower Jazz 180nm CMOS imaging process (Expertise in design due to ALPIDE effort)

^[1] D. Dannheim, A. Nürnberg: Requirements for the CLIC tracker readout (CLICdp-Note-2017-002)

The Detector Channel

- The detector unit cell consists of a strip of 30 x 300 mm²
- It is segmented in 8 pixels
 - Solution Soluti Solution Solution Solution Solution Solution Solution S
- Measurement
 - Pixel hit within strip (8 bits)
 - Solution Time of arrival of the signal at the strip (10 ns bin, 8 bits) (first hit)
 - Senergy deposit (TOT: Time over Threshold): 5 bits (pixel with largest deposition)
- Considered other architectures (e.g. analog summing but penalty in minimum threshold)
- R. Ballabriga et al. CLIC workshop 2018

The Readout Channel

Individual pixel hit information, possibility to mask pixels

Summer School, August 2018

R. Ballabriga et al. CLIC workshop 2018

Chip Sensitive Area

CLIC 3 TeV beam has low duty cycle \rightarrow readout of sensor

R. Ballabriga et al. CLIC workshop 2018

Summer School, August 2018

Summary

- MAPS = Market-driven technology, real potential not completely be exploited
- Conflict between physics performance driven parameters and running condition constraints
 - Solution with the second secon
 - Each facility & experiment requires dedicated optimisation (hierarchy between physics requirements and running constraints)

Progress Cycle

SOI Monolithic Pixel Detector

DEPFET (Depleted P-channel FET)

- Each pixel is a p-channel FET integrated in a completely depleted bulk
- A deep n-implant creates a potential minimum for electrons under the FET gate (internal gate)
- Internal gate is capacitive coupled to the FET gate
- The drain current is proportional to then number of electrons collected in the internal gate

DEPFET Pixel Array

- Gate and Clear lines need switcher steering chip
- Row-wise readout (for Belle II 4 rows are read at time – 20 μs/frame)
- Long drain read out lines keep most of the material out of the acceptance region
- Only "activated" rows consume power
 - The others rows are still sensitive to charge
 - Low power consumption

SOI Hybrid Detector Silicon-On-Insulator (SOI) CMOS Monolithic **Fully Depleted Fully Depleted** Sensor (Hi-R) Sensor (Hi-R)

To use SOI technology for pixel detector is already discussed in 1990^(*).

(*) Jean-Pierre Colinge, 'An overview of CMOS-SOI technology and its potential use in particle detection systems', NIM A305 (1991) 615-619.

Ref. Y. Arai, SOI Monolithic Pixel Detector Technology, Vertex-2016

SOIPIX Detector (Single)

Single SOI Detector

- Buried-Well shield back-gate potential
- Good for Integration-type sensor
- Relatively Low radiation applications

SOIPIX Detectors (Double)

Double SOI Detector

- Middle Si layer shields coupling between sensor and circuit.
- It also compensate E-field generated by radiation trapped hole.
- Good for Complex function and Counting-type sensor.
- Can be used in High radiation environment.

Summer School, August 2018
Sensors for Hybrid Pixels

- Hadron fluency (2 10¹⁶/cm²) → Silicon sensor bulk damage
 - Scharge trapping reduces dramatically minority carriers lifetime (signal loss by recombination)
 - Solution: reduce drift time (distance)

Thin-Planar Sensor

- Drift length L < 200 μm (now: 300 μm)</p>
- $L = \Delta \rightarrow$ thin sensor = reducing the signal amp.
- n-in-p (e signal)

3D Silicon Sensor

- L << Δ (L less than 50 μ m)
- Reduced collection time and depletion voltage
- Less trapping probability → high Rad-Hard
- More complex, lower yield higher cost
- Higher capacitance (more noise)
- Non uniform spatial response
- Outer and possibly also innermost layers/rings

Inner layer (at most one)

Pixel Readout Chip for ATLAS and CMS at HL-LHC (RD53)

- Extremely challenging requirements for HL-LHC
 - Sector Extreme hit rates: 3 GHz/cm², innermost layer for 200 pileup events
 - * High granularity: small pixels: $50 \times 50 \mu m^2$ ($25 \times 100 \mu m^2$) with 25 ns tagging
 - ♦ Extreme radiation load: 1 Grad, 2x10¹⁶ 1MeV n_{eq}/cm² over 10 years
 - High readout rate: ~1 MHz \rightarrow very high data throughput, O(1 Gbit/s per cm²)
 - Solution Long trigger latency ~10 μs (hit buffering requirements increased by a factor 100)
 - Solution State State
 - Solution Solution

