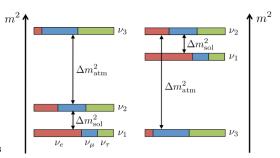
Neutrinoless Doube Beta Decay: physics, detectors (and very little electronics)

Alberto Garfagnini

Fast Electronics and Detectors Summer School FEDSS-2018, Aug. 20, Weihai, China


Istituto Nazionale di Fisica Nucleare

Neutrino mixing

- three Flavour Eigenstates
- three Mass Eigenstates

 $|\nu_{\alpha}> = \sum_{i=0}^{3} U_{\alpha,i} |\nu_{i}>$

- 9 parameters:
- 3 mixing angles: θ_{12} , θ_{13} , θ_{23}
- 3 mass eigenstates: m_1 , m_2 , m_3
- 1 CP violating phase δ
- 2 Majorana phases: α_1 , α_2

Normal Hierarchy (NH)

Inverted Hierarchy (IH)

$$\begin{aligned} c_{jk} &\equiv \cos \theta_{jk} & s_{jk} \equiv \sin \theta_{jk} \\ U &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{11} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{j\alpha_1/2} & 0 & 0 \\ 0 & e^{j\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \hline \\ \text{Atmospheric} & \text{Reactor (L~ 1 km)} & \text{Solar} & \text{Majorana phases} \end{aligned}$$

Open questions in neutrino physics

➡ What is the correct mass hierarchy :

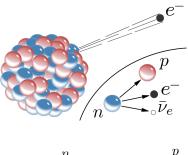
✓ Normal Hierarchy 🔔 versus Inverted Hierarchy 📃

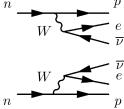
- ➡ What is the neutrino nature: Dirac or Majorana ?
- Is there a CP violation in the neutrino sector ? $(e^{-i\delta})$
- ➡ Is there new physics beyond the three neutrino model ?

$$|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1$$
 (PMNS Unitarity) ?

$$\Delta m_{13}^2 + \Delta m_{21}^2 + \Delta m_{32}^2 = 0 ?$$

Can we use neutrinos as messengers to understand our Universe ?
 look inside the core of a collapsing Supernova
 look at the earth's composition (Mantle & Core)


Double beta decays

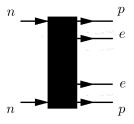

 it's a second order nuclear transition with two neutrons decaying into two protons:

$$(A,Z) \rightarrow (A,Z+2) + 2e^- + \dots$$

2-neutrinos double- β decay ($2\nu\beta\beta$)

- it's a second order process, allowed in the Standard Model of Particle Physics
- first suggested by Goeppert-Mayer in 1935
 [M. Goeppert-Mayer, Phys. Rev., 48 (1935) 512]
- $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$
- it has been measured in several isotopes
- $T_{1/2}^{2
 u}$ in the range $10^{19} 10^{24}$ yr

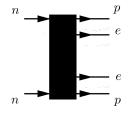


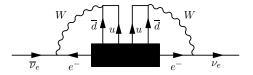

• it's a second order nuclear transition with two neutrons decaying into two protons:

$$(A,Z) \rightarrow (A,Z+2) + 2e^- + \dots$$

Neutrinoless double- β decay ($0\nu\beta\beta$)

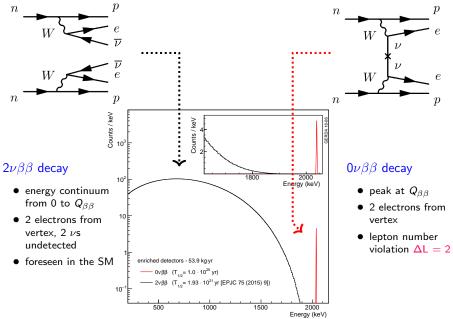
- foreseen by many extensions of the Standard Model of particle physics Particle Physics
- $(A, Z) \rightarrow (A, Z+2) + 2e^{-}$
- never observed so far, but allowed in several isotopes
- $T_{1/2}^{0
 u} > 10^{21} 10^{26} \ {
 m yr}$

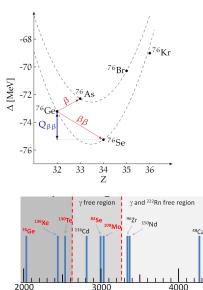

2-neutrinos double- β decay


$t_{1/2}~(10^{21}~{ m yr})$	Isotope	Experiment	DOI
$\frac{t_{1/2} \; (10^{21} \; \text{yr})}{> 0.87} \\ 0.82 \pm 0.02 \pm 0.06 \\ 0.00690 \pm 0.00015 \pm 0.00037 \\ 0.0274 \pm 0.0004 \pm 0.0018 \\ 0.064^{+.007}_{006}_{009} \\ 0.00934 \pm 0.00022^{+.00062}_{00060} \\ 0.00934 \pm 0.00022^{+.00062}_{00060} \\ \end{array}$	Isotope 134 Xe 130 Te 100 Mo 116 Cd 48 Ca 150 Nd	Experiment EXO-200 CUORE-0 CUPID NEMO-3 NEMO-3 NEMO-3	DOI 10.1103/PhysRevD.96.092001 10.1140/epjc/s10052-016-4498-6 10.1140/epjc/s10052-017-5343-2 10.1103/PhysRevD.95.012007 10.1103/PhysRevD.93.112008 10.1103/PhysRevD.94.072003
$\begin{array}{c} 1.926\pm0.004\\ 1.926\pm0.094\\ 0.00693\pm0.00004\\ 2.165\pm0.016\pm0.059\\ 9.2^{+5.5}_{-2.6}\pm1.3\\ 2.38\pm0.02\pm0.14\\ 0.7\pm0.09\pm0.11\\ 0.0235\pm0.0014\pm0.0016\\ 0.69^{+0.10}_{-0.08}\pm0.07\\ 0.57^{+0.13}_{-0.09}\pm0.08\end{array}$	 ⁷⁶Ge ¹⁰⁰Mo ¹³⁶Xe ⁷⁸Kr ¹³⁶Xe ¹³⁰Te ⁹⁶Zr ¹⁰⁰Mo ¹⁰⁰Mo 	GERDA NEMO-3 EXO-200 BAKSAN KamLAND-Zen NEMO-3 Ge coinc. NEMO-3	10.1140/epjc/s10052-015-3627-y 10.1103/PhysRevD.92.072011 10.1103/PhysRevC.89.015502 10.1103/PhysRevC.87.035501 10.1103/PhysRevC.85.045504 10.1103/PhysRevLett.107.062504 10.1016/j.nuclphysa.2010.07.009 10.1016/j.nuclphysa.2010.06.010 10.1016/j.nuclphysa.2006.09.021
$0.096 \pm 0.003 \pm 0.010$	⁸² Se	NEMO-3	10.1103/PhysRevLett.95.182302

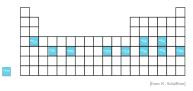
[C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 100001 (2016)]

Why search for neutrinoless double- β decay ?


- if observed, would show a violation of the lepton number $(\Delta L=2)$
- it's the only known way to probe the Majorana neutrino nature


- Black Box theorem ([Schechter and Valle Phys.Rev.D25 (1982) 774]):
- non-null Majorana mass component
- bulk of neutrino mass not given by black-box operator ([Duerr et al., JHEP 1106 (2011) 091])

Double- β decay experimental signatures



A. Garfagnini (UniPD/INFN-PD)

Double- β active isotopes

Energy [keV]

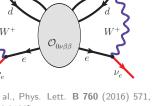
- \sim 35 isotopes available, 9 can be used for $0\nu\beta\beta$ searches
- to observe double β-decay, single β-decay must be forbidden due to energy conservation constraints

Isotope	Natural	Q_{etaeta}	
	Abundance [%]	[keV]	
⁴⁸ Ca	0.19	4262.96(84)	
⁷⁶ Ge	7.6	2039.04(16)	
⁸² Se	8.7	2997.9(3)	
⁹⁶ Zr	2.8	3356.097(86)	
¹⁰⁰ Mo	9.6	3034.40(17)	
¹¹⁶ Cd	7.5	2813.50(13)	
¹³⁰ Te	34.5	2526.97(23)	
¹³⁶ Xe	8.9	2457.83(37)	
¹⁵⁰ Nd	5.6	3371.38(20)	

A. Garfagnini (UniPD/INFN-PD)

How is $0\nu\beta\beta$ related to the neutrino mass

The simplest theory approach


- ullet assume exchange of a light-Majorana ν
- possible in minimal extensions of the Standard Model (massive + Majorana ν)
- it is the dominant channel in most models

What we measure

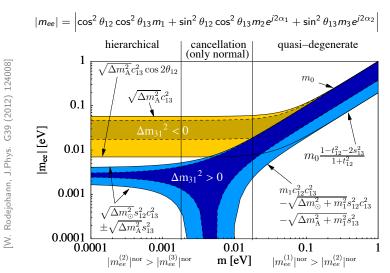
$$\left(T_{1/2}^{0\nu}\right)^{-1} = G_{0\nu} \cdot |\mathcal{M}_{0\nu}(A,Z)|^2 \cdot |m_{ee}|^2$$

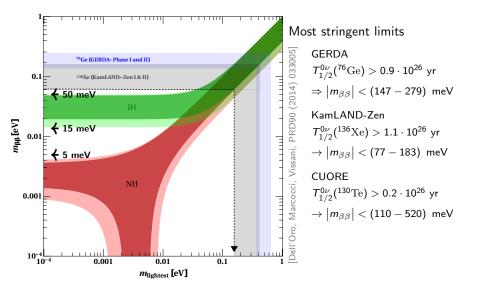
- $G_{0\nu}$: phase space factor (calculable)
- $m_{ee} = \left|\sum_{i} U_{ei}^2 m_i\right|$
- Uei : PNMS mixing matrix (complex) elements
- $\mathcal{M}_{0\nu}$: nuclear matrix element
- |mee| : effective Majorana mass

additional uncertainty from quenching of axial vector coupling (g_A)

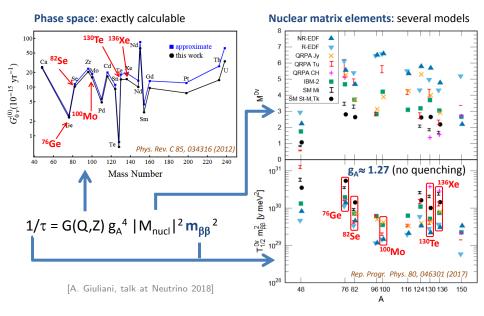
e

p


n


n

W


W

Effective Majorana mass:

A. Garfagnini (UniPD/INFN-PD)

Source = Detector

- the source sample is active and acts simultaneously as detector of the $\beta\beta$ decay
- Pros :

high detection efficiency

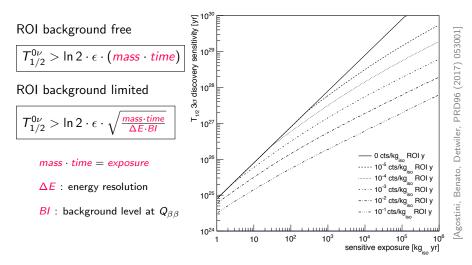
provides the highest tested masses and best sensitivity, sofar

• Cons :

serious limitations in the choice of the $0\nu\beta\beta$ isotope

only few materials can satisfy the request to be at the same time the active material of a detector

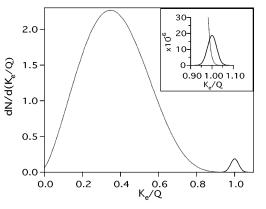
 emblematic exceptions: ⁷⁶Ge (germanium dioded), ¹³⁶Xe (gas and liquid chambers) and ¹³⁰Te (bolometers)

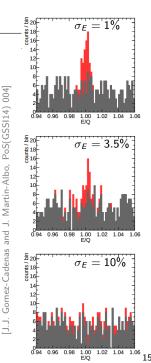

$\mathsf{Source} \neq \mathsf{Detector}$

• use an external-source (or inhomogeneous, or passive source) :

the electrons emitted by a very thin source sample (\sim 60 mg/cm^2 in NEMO3) are observed by means of external detectors (tracker, calorimeter)

- Pros :
- allow a full topological reconstruction of a $0\nu\beta\beta$ event
- much easier access to other physics channels (i.e. Majoron)
- in principle can deploy any $0\nu\beta\beta$ active isotope in the same detector
- Cons :
- much lower masses available
- very low detection efficiency


Experimental sensitivities


Mass, ΔE and BI at $Q_{\beta\beta}$ are crucial parameters for designing a $0
u\beta\beta$ experiment

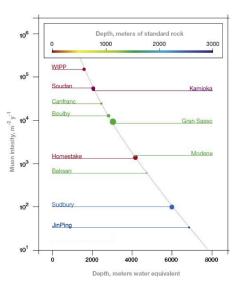
Energy resolution

- maybe the most relevant feature to identify the sharp $0\nu\beta\beta$ peak over an almost flat background
- very useful also to keep under control the background induced by the unavoidable tail of the $2\nu\beta\beta$ spectrum
- it represents a limiting factor in low resolving detectors

A. Garfagnini (UniPD/INFN-PD)

Isotopic Abundance

- another key ingredient in the choice of the $0\nu\beta\beta$ isotope
- in most of the cases, the values are in the few % range
- two significant extreme exceptions: ¹³⁰Te and ⁴⁸Ca
- ¹³⁰Te is the only case in which a high sensitivity is possible even with natural samples
- ⁴⁸Ca natural abundance is well below 1% → isotopic enrichment is indispensable
- to limit the detector size and since the background level scales roughly with the total mass of the detector, isotopic enrichment is a necessity for almost all next generation experiments


[O. Cremonesi and M. Pavan, Adv.High Energy Phys. 2014 (2014) 951432, arXiv: 1310.4692]

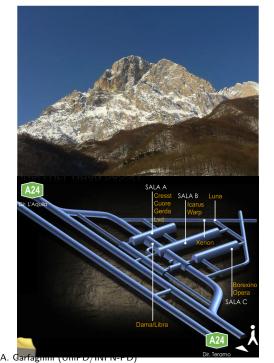
Isotope	$Q_{\beta\beta}$ (keV)	I.A.(%)	$G^{0\nu}$	$H^{0\nu}$
^{48}Ca	4272	0.187	24.81	826.2
76 Ge	2039	7.8	2.36	49.6
^{82}Se	2995	8.73	10.16	198.1
$^{96}\mathrm{Zr}$	3350	2.8	20.58	342.7
^{100}Mo	3034	9.63	15.92	254.5
$^{110}\mathrm{Pd}$	2018	11.72	4.82	70.0
$^{116}\mathrm{Cd}$	2814	7.49	16.70	230.1
^{124}Sn	2287	5.79	9.04	116.5
$^{128}\mathrm{Te}$	866	31.69	0.59	7.4
$^{130}\mathrm{Te}$	2527	33.8	14.22	174.8
$^{136}\mathrm{Xe}$	2458	8.9	14.58	171.4
$^{148}\mathrm{Nd}$	1929	5.76	10.10	109.1
$^{150}\mathrm{Nd}$	3371	5.64	63.03	671.7
$^{154}\mathrm{Sm}$	1215	22.7	3.02	31.3
$^{160}\mathrm{Gd}$	1730	21.86	9.56	95.5
$^{198}\mathrm{Pt}$	1047	7.2	7.56	61.0

Sec. 2010.000.000

The Background Index (BI)

- another fundamental ingredient
- the possibility to reach the zero-background region, i.e. linear dependence on $m_{\beta\beta}$ and $T_{1/2}^{0\nu\beta\beta}$ is particularly appealing
- natural radioactivity of detector components (bulk or surface) is often the main background source
- external backgrounds originated outside the detector have also to be taken into account
- underground location is the usual and fundamental recipe to get rid of cosmic rays induced background (i.e. cosmogenic activations, neutrons, ...)
- a well designed effective shields may compensate the benefits of a very deep laboratory

Double Beta Decay Experiments around the World



The Experiments: time schedule

		Running	Mid-Term	Long-Term	
High Mass (scalability)		EXO-200		nEXO	
	Xe-based TPC	NEXT-10 NEXT-100		NEXT-2.0	
			PandaX-III 200	PandaX-III 1000	
	Source embedded in Liquid Scintillator	KamLAND-Zen 800 SNO+ phase I		KamLAND2-Zen SNO+ phase II	
High E resolution and Efficiency	Germanium diodes	gerda-II MJD	LEGEND-200	LEGEND-1000	
		AMoRE pilot, I	AMoRE, II		
	Bolometers	CUORE			
		CUPID-0	CUPID-Mo	CUPID	

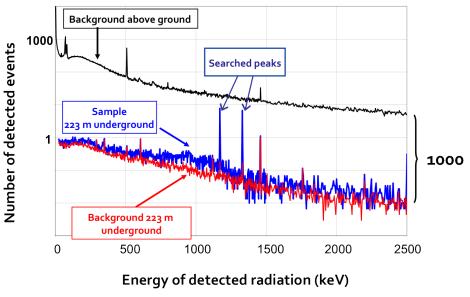
The Experiments: the details

Experiment	Isotope	Technique	lsotope Mass [kg]	Status
GERDA, phase I	⁷⁶ Ge	^{enr} Ge diodes in LAr	18	completed
GERDA, phase II	⁷⁶ Ge	^{enr} Ge diodes in LAr	31	running
MJD	⁷⁶ Ge	point contact enr Ge diodes in vacuum	26	running
SuperNemo	⁸² Se	foils with tracking	7	under constr.
CUPID-0	⁸² Se	Zn ^{enr} Se scintillating bolometers	5.2	running
CUPID-Mo	⁸² Se	Li ^{enr} MoO ₄ scintillating bolometers	5	start: 2018
CUORE	¹³⁰ Te	^{nat} TeO ₂ bolometer	210	running
SNO+, phase I	¹³⁰ Te	0.5% nat TeBD in liquid scintillator	1357	start: 2019
EXO-200	¹³⁶ Xe	liquid ^{enr} Xe in TPC	160	running
KamLAND-Zen 400	¹³⁶ Xe	2.7% enrXe in liquid scintillator	380	completed
KamLAND-Zen 800	¹³⁶ Xe	enr Xe in liquid scintillator	750	start: 2018
NEXT-100	¹³⁶ Xe	high pressure enr Xe TPC	91	start: 2019
Legend-200	⁷⁶ Ge	enr Ge diodes in LAr, active LAr veto	175	0
Legend-1000	⁷⁶ Ge	enr Ge diodes in LAr, active LAr veto	873	il ^{OK}
CUPID	Se/Mo/Te	enriched scintillating bolometers	300-500	d'ar
SNO+, phase II	¹³⁰ Te	3% nat Te in liquid scintillator	7960	cene
nEXO	¹³⁶ Xe	liquid ^{enr} Xe in TPC	4500	X
KamLAND2-Zen	¹³⁶ Xe	enrXe in liquid scintillator	1000	Net Generation
NEXT-2.0	¹³⁶ Xe	high pressure ^{enr} Xe TPC	91	1/2

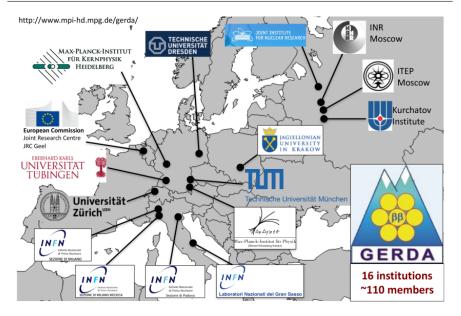
LNGS

Depth: 3600 m.w.e

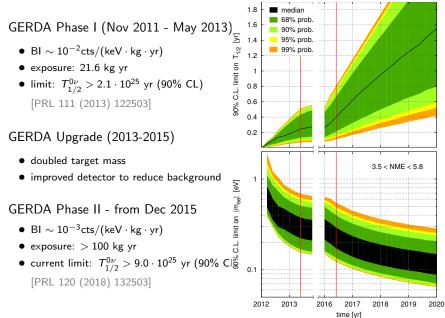
Three large experimental halls Environmental rates:


muons: $2.58 \times 10^{-8}/(\text{cm}^2 \text{ s})$

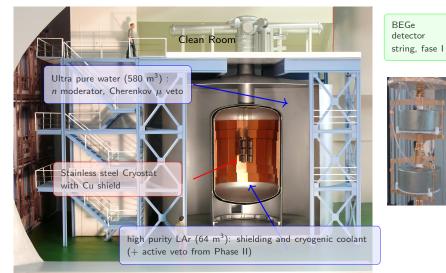
gammas: $0.73/(cm^2 s)$


neutrons: $4 \times 10^{-6}/(\text{cm}^2 \text{ s})$

Double Beta Decay Experiments:

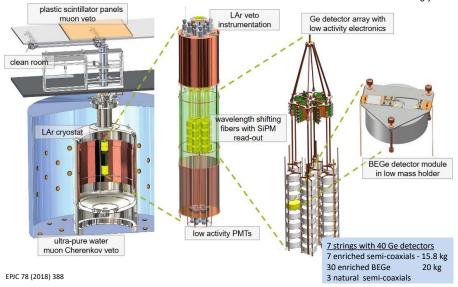

- GERDA,
- CUORE,
- CUPID-0

The GERDA Collaboration



GERDA history and Sensitivity

The GERDA Detector


- onion-like shielding against environmental background
- Careful selection (screening) of employed materials

GERDA Phase-II Setup

LNGS 3600 m w.e.

Phase I from Nov 2011 to May 2013 21 kg yr

GERDA germanium detectors

- \bullet the use of Germanium detector to search for $0\nu\beta\beta$ goes back to 1967
- allow a calorimetric approach, being the best detector for gamma spectroscopy in the MeV range
- $\bullet\,$ search for neutrinoless double beta decay of $^{76}{\rm Ge}$ $^{76}{\rm Ge} \to {}^{76}{\rm Se} + 2e^-$
- $^{76}\mathrm{Ge}$ Q-value: $Q_{\beta\beta}=2039$ keV
- \bullet need isotopic enrichment (dioded enriched to 86% in $^{76}{\rm Ge})$
- three type of detectors used:
- Broad Energy Germanium detectors (BEGe)
- Coaxial detectors (Coax)
- Inverted Coax Point Contact germanium detectors (ICPC) (since May 2018)

COAX

BEGE

GERDA germanium detectors strings

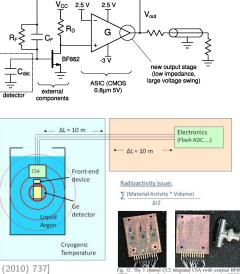
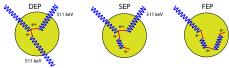
LAr veto bottom view with pilot string in open lock

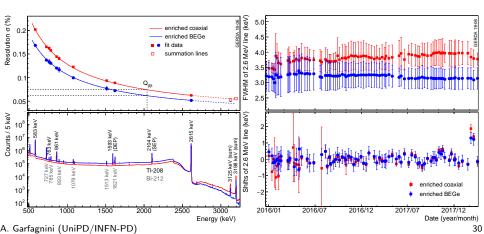
Detector array assembly: 40 detectors in 7 strings

GERDA electronics

- a charge sensitive amplifier very close to the detectors output
- radioactive contamination of electronics is a very important aspect
- Phase I → CC2 (Commercial C-Mos 2)
- 3 channel CSA, 1 JFET & 1 CMOS OpAmp (limited dynamics)
- Phase II → CC3 "v1"
- VFE (JFET: SF291, Cf and Rf) separated from the main CSA
- 4 channel CSA, 1 JFET & 1 CMOS & 1 SiGe OpAmp (12 V)
- Phase II → CC3 "v2" (current version)
- VFE (JFET: BF862, Cf and Rf) close but separated from main CSA
- 4 channel CSA, 1 JFET & 2 OpAmps

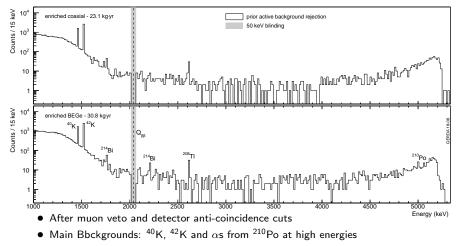
[S. Riboldi et al, IEEE Trans. Nucl. Sci. 75 (2010) 737]

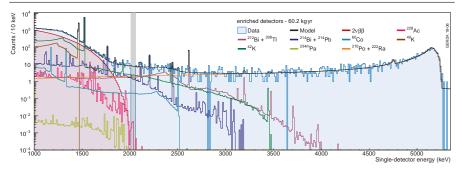




Fig. 12: The 3 channel CC2 integrated CSA (with external BF862 JFET), used as the Ge front-end readout electronics for GERDA Phase I.

GERDA Calibration and Energy Resolution

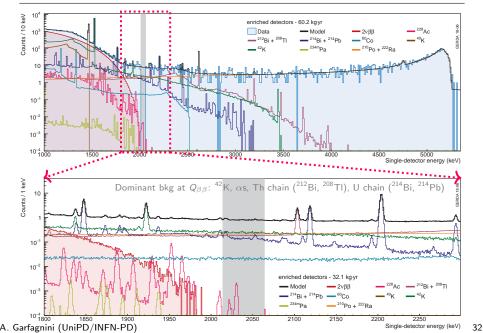
- weekly calibration runs with ²²⁸Th
- pulser used to monitor energy scale
- $\bullet\,$ small changes between energy calibrations (< 1 keV) allowed



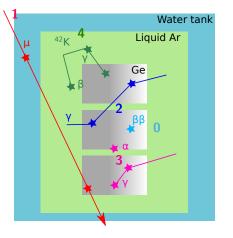


GERDA Full Spectrum

- Phase II data taking going on since Dec 2015
- blind window: ± 25 keV around $Q_{\beta\beta}$



GERDA Background Model

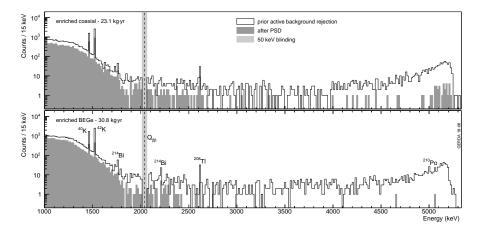


- Features of the spectrum (from left to right):
- 39 Ar (*E* < 500 keV)
- 2
 uetaetaeta continuum
- ${}^{40}{\rm K}$ and ${}^{42}{\rm K}$ γ lines,
- α particles

GERDA Background Model

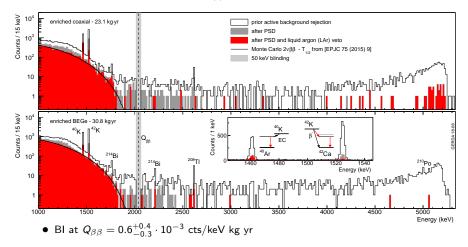
GERDA background reduction techniques

Background

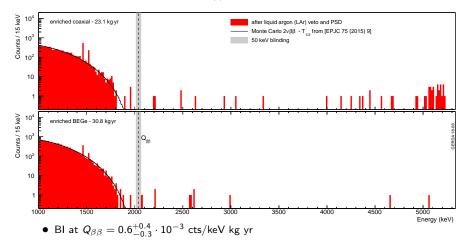

- 1 Muon Veto: Cherenkov photons in the water tank
- 2 Reject background via anti-coincidence of multiple detectors
- 3 Pulse Shape Discrimination (PSD): identify multiple interactions (Multiple Site Events) and surface events
- 4 LAr Veto: detect scintillation light from γ and β in Liquid Argon

Signal

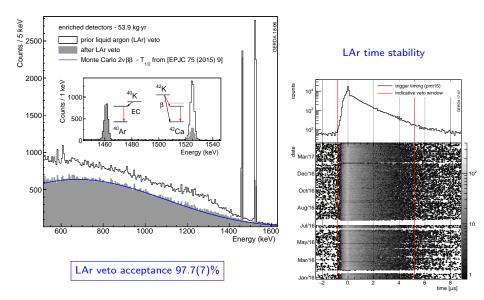
0 single energy deposition within a small detector volume (Single Site Events)


Pulse Shape Discrimination in GERDA

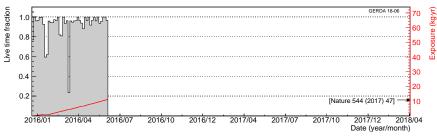
[a.u.] Phase I: p-type semi-coaxial charge t 9.0 single site event SSE Phase II: p-type, Broad Energy Germanium multi site event MSE 0.4 (BEGe) ...(A) time Signal structure allows to discriminate between Single-Site-Events (SSE) and 60-80 mm Multiple-Site-Events (MSE) MSE - Charge 70-110 mm Coaxia Current p-type Ge GERDA 12-0 p⁺ electrode n⁺ electrode (read-out) 3-4 kV 0.2 25-50 mm p-type BEG 82000 Ge t ínsl A. Garfagnini (UniPD/INFN-PD) 34 65-80 mm


GERDA Full Spectrum: after PSD + LAr Veto

- High efficient LAr and PSD cuts
- blind window: ± 25 keV around $Q_{\beta\beta}$



GERDA Final Spectrum


- High efficient LAr and PSD cuts
- blind window: ± 25 keV around $Q_{\beta\beta}$

The GERDA LAr active veto

GERDA-II Data Taking

Background-free search for neutrinoless double- β decay of ⁷⁶Ge with GERDA

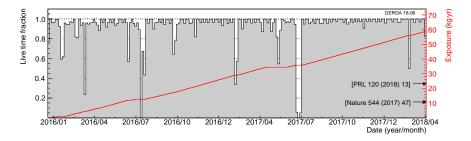
June 2016 10.8 kg yr

The GERDA Collaboration*

[M. Agostini et al, Nature 544, (2017) 47]

Many extensions of the Standard Model of particle physics explain the dominance of matter over antimatter in our Universe by neutrinos being their own antiparticles. This would imply the existence of neutrinoless double- β decay, which is an extremely rare lepton-number-violating radioactive decay process whose detection requires the utmost background suppression. Among the programmes that aim to detect this decay, the CERDA Collaboration is searching for neutrinoless double- β decay of ²⁶Ce by operating bare detectors, made of germanium with an enriched ²⁶Ce fraction, in liquid argon. After having completed Phase I data taking, we have recently launched Phase II. Here we report that in GERDA Phase II we have achieved a background level of approximately 10^{-2} counts keV⁻¹kg⁻¹yr⁻¹. This implies that the experiment is background -free, even when increasing the exposure up to design level. This is achieved by use of an active veto system, superior germanium detector energy resolution and improved background recognition of our new detectors. No signal of neutrinoless double- β decay wis found when Phase I and Phase II data were combined, and we deduce a lower-limit half-life of 5.3 × 10³⁵ years at the 90 per cent confidence level. Our half-life sensitivity of 4.0 × 10³⁵ years is competitive with the best experiments that use a substantially larger isotope mass. The potential of an essentially background-free search for neutrinoless double- β decay wis flatilitate a larger germanium experiment with sensitivity levels that will bring us closer to clarifying whether neutrinos are their own antiparticles.

GERDA-II Data Taking

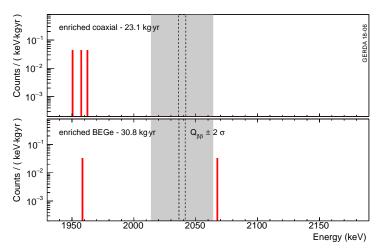

Improved Limit on Neutrinoless Double-*b* Decay of ⁷⁶Ge from GERDA Phase II

(Received 17 November 2017; revised manuscript received 23 January 2018; published 26 March 2018)

The GERDA experiment searches for the lepton-number-violating neutrinoless double- β decay of $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^-$) operating bare Ge diodes with an enriched ^{76}Ge fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of $1.0^{+0.6}_{-0.4} \times 10^{-3}$ counts/(keV kg yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any $0\nu\beta\rho$ experiment. No signal is observed and a new 90% C.L. lower limit for the half-life of 8.0×10^{25} yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8×10^{25} yr.

DOI: 10.1103/PhysRevLett.120.132503

GERDA-II Data Taking



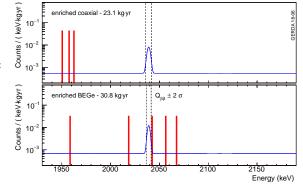
June 2018 : +35.7 kg yr

paper in preparation, to be submitted soon

GERDA $0\nu\beta\beta$ analysis

• result in region of interest (ROI) before unblinding

A. Garfagnini (UniPD/INFN-PD)


• Combined unbinned maximum likelihood fit of Phase I and Phase II data sets in (1930-2190) keV energy interval

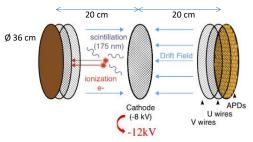
Frequentist analysis

- best fit $N^{0\nu} = 0$
- $T_{1/2}^{0
 u} > 9.1\cdot 10^{25}$ yr at (90% CL)
- median sensitivity (no signal):
- $T_{1/2}^{0
 u} > 11.0\cdot 10^{25}$ yr at (90% CL)

Bayesian analysis

- best fit $N^{0\nu} = 0$
- $T_{1/2}^{0
 u} > 7.6\cdot 10^{25}$ yr at (90% CL)
- median sensitivity (no signal):
- $T_{1/2}^{0
 u} > 8.2\cdot 10^{25}$ yr at (90% CL)

 ${\sf BI} = 0.6^{+0.4}_{-0.3} \cdot 10^{-3} \; {\sf cts/\,(keV \; kg \; yr)}$


The Experiments: time schedule

		Running	Mid-Term	Long-Term
High Mass (scalability)	Xe-based TPC	EXO-200		nEXO
		NEXT-10	NEXT-100	NEXT-2.0
			PandaX-III 200	PandaX-III 1000
	Source embedded in Liquid Scintillator	KamLAND- SNO+ pł	KamLAND2-Zen SNO+ phase II	
High E resolution and Efficiency	Germanium diodes	gerda-II MJD	LEGEND-200	LEGEND-1000
	Bolometers	AMoRE pilot, I	AMoRE, II	
		CUORE		
		CUPID-0	CUPID-Mo	CUPID

EXO-200 / ¹³⁶Xe

principle

WIPP, Carlsbad, NM 1624 m.w.e.

- cylindrical single phase TPC filled with ${\approx}200$ kg of liquid Xe enriched to 80.6% in ^{136}Xe
- fiducial volume 76.5 kg
- discrimination between single-site (signal-like) and multi-site (background) events
- 1st working hundred-kilogram-scale detector

Phase I 2011 exposure 10 kg·yr; break in 2014-2015 due to fire and radiation problems in WIPP; upgrade, restart 2016

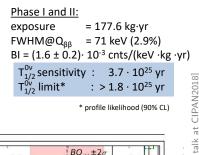
Scintillation vs. ionization, 228Th calibration:

anti-correlation between charge and scintillation response exploited for improved energy resolution

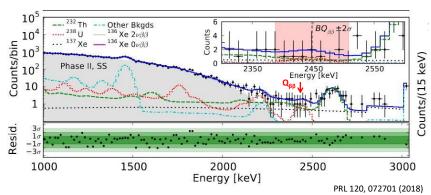
Phase I:

$T_{1/2}^{0v}$ sensitivity	: 1.9 · 10 ²⁵ yr	
	$: > 1.1 \cdot 10^{25} \text{ yr}$	

* profile likelihood (90% CL)

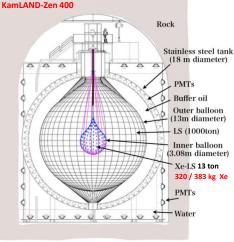

Nature 510 (2014) 229

136Xe EXO-200


Upgrade for Phase II

Cathode voltage $-8kV \rightarrow -12kV$ Radon suppression by factor of 10 Noise reduction, improved resolution

Will run up to $5 \cdot 10^{25}$ yr sensitivity


* profile likelihood (90% CL)

[K. T. Knoepfle,

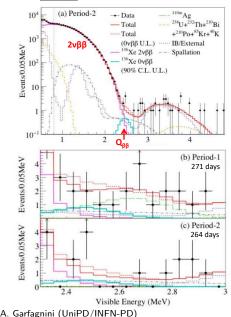
KamLAND-Zen 400 / ¹³⁶Xe

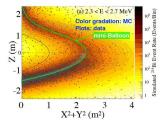
¹³⁶Xe (≈ 3%) loaded liquid scintillator (90% enrichment)

Phase I (2011-2012) 89.5 kg·yr

 $\begin{array}{rrr} T_{1/2}^{0\nu} \, sensitivity & : & 1.0 \cdot 10^{25} \, \text{yr} \\ T_{1/2}^{0\nu} \, limit^{*} & : & > 1.9 \cdot 10^{25} \, \text{yr} \end{array}$

PRL, 062502 (2013)


unexpected contamination in ROI identified as ^{110m}Ag from Fukushima accident or spallation

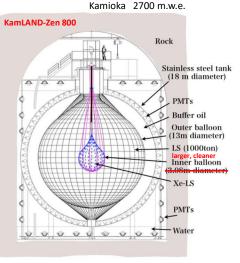

purification reduces ^{110m}Ag by factor of 1(

Phase II (2013-2015) 504 kg·yr

KamLAND-Zen 400 / ¹³⁶Xe

Phase II

Background dominated by ²¹⁴Bi decays at MIB

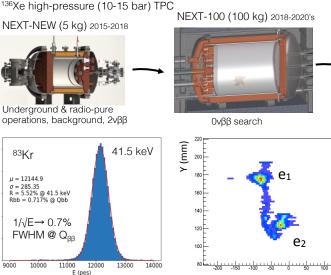

exposure	= 593.5 kg·yr			
FWHM@Q _{ββ}	≈ 270 keV (11%)			
BI $\approx 0.4 \cdot 10^{-3}$ cnts/(keV ·kg ·yr)				
$T_{1/2}^{0\nu}$ sensitivity $T_{1/2}^{0\nu}$ limit* $T_{1/2}^{0\nu}$ limit**	$\begin{array}{rl} : & 5.6 \cdot 10^{25} \text{ yr} \\ : & > 9.2 \cdot 10^{25} \text{ yr} \\ : & > 10.7 \cdot 10^{25} \text{ yr} \end{array}$			

profile likelihood (90% CL)
 ** Phase I + II combined

PRL, 082503 (2016)

KamLAND-Zen 800 & SNO+

expected to start in 2018/19


≈750kg of ¹³⁶Xe in liquid scintillator (LS) (90% enrichment), new Inner Balloon

SNOLAB 6000 m.w.e.

<u>Plan for Phase I</u>: 0.5% ^{nat}Te, i.e. 1.3 tons of ¹³⁰Te, in 780 tons of LS, - all contained in the Ø12m acrylic vessel

[S. Schoenert, talk at TAUP2017]

NEXT-ton

hYZ weight

Mean v

Entries 29857 Mean x -53.12

RMS x 29.24 RMS y 25.77

148.5 5

-0.25

0.2

0.15

0.1

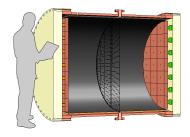
0.05

A. Garfagnini (UniPD/INFN-PD)

10000

8000

6000

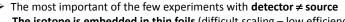

4000

2000

0

Entries

Xenon Experiments: PandaX-III



- First 200-kg module:
 - Microbulk Micromegas for charge readout
 - 3% FWHM, 1×10^{-4} c/keV/kg/y in the ROI
- Ton-scale:
 - Four more modules with upgraded charge readout and better low-background material screening.
 - 1% FWHM, 1 x 10⁻⁵ c/keV/kg/y in the ROI

SuperNEMO

source \neq detector

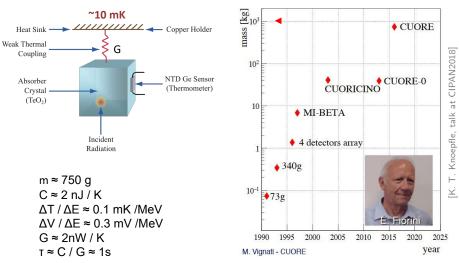
- The isotope is embedded in thin foils (difficult scaling low efficiency ~30%)
- Built on the succesfull NEMO-3 experiment ≻
- ≻ Main advantage: full topological reconstruction of a $\beta\beta$ event

Investigation of the **mechanism** \rightarrow crucial task in case of discovery Easier access to other physics channels (i.e. Majoron)

범 김 250 200

> 150 100

E = 0.72 ± 0.03 h

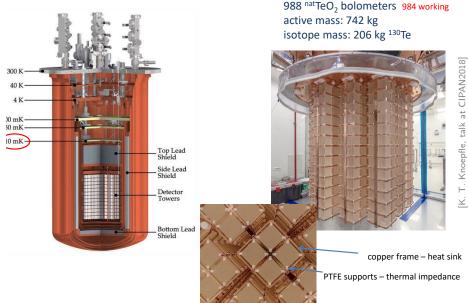

- Sensitivity of the order of 10²⁶ y requires ~100 kg of ⁸²Se 20 modules
- Plans to move to ¹⁵⁰Nd enrichment by centrifugation is expensive but now possible higher phase space by a factor 6 - Rn free background

Neutrino2018]

talk at

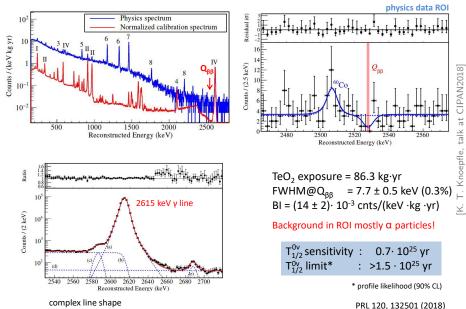
Giuliani,

Energy, KeV

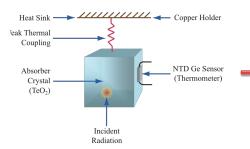


1st ton-scale cryogenic bolometer

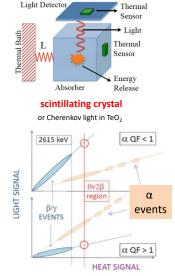
CUORE / ¹³⁰Te


cryostat and bolometer array

LNGS 3600 m.w.e.


results

CUORE / ¹³⁰Te



CUORE with Particle ID = CUPID

$\textbf{CUORE} \quad \text{dominant BGND: surface } \alpha \text{ particles}$

R&D for highly radiopure scintillating crystals

$$\label{eq:2} \begin{split} &Zn^{82}Se \hfill \\ &Zn^{100}MoO_4.....CUPID-0\\ &LUCIFER, LUMINEU\\ &Li_2^{100}MoO_4.....dto\\ &^{40}Ca^{100}MoO_4.....AMORE\\ &^{116}Cd^{100}MoO_4.....KINR-ITEP-DAMA \end{split}$$

Poda, Giuliani, arXiv:1711.01075

MAJORANA D & GERDA / ⁷⁶Ge

•

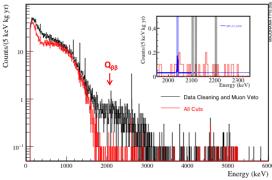
SURF 4300 m.w.e.

Ge diodes in vacuo, electro-formed copper & lead shield

≈ 44 kg Ge, 29.7 kg thereof enriched, p-type point contact HPGe detectors

searching for the optimum shielding

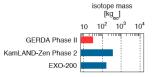
LNGS 3600 m.w.e.


Ge diodes in active LAr shield, low-mass holders, water shield

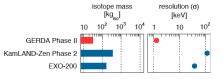
 \approx 43 kg Ge, 35.8 kg thereof enriched, semicoaxial and BEGe HPGe detectors

MAJORANA DEMONSTRATOR

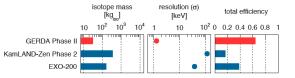
1st data release

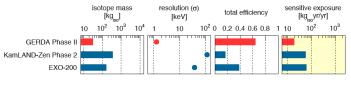


- 6000 ⁷⁶Ge exposure = 9.95 kg·yr FWHM@Q_{RR} = 2.52 ± 0.08 keV (0.12%)
- $BI = (6.7 \pm 1.4) \cdot 10^{-3} \text{ cnts}/(\text{keV} \cdot \text{kg} \cdot \text{yr}) \text{ (total)}$ = $(1.6 \pm 1.1) \cdot 10^{-3}$ cnts/(keV·kg·yr) (best)

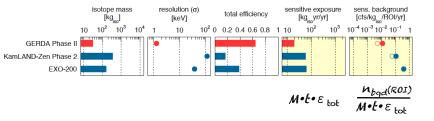

$T_{1/2}^{0v}$ sensitivity	:	2.1· 10 ²⁵ yr
$T_{1/2}^{0v}$ limit*		>1.9 · 10 ²⁵ yr

* profile likelihood (90% CL)

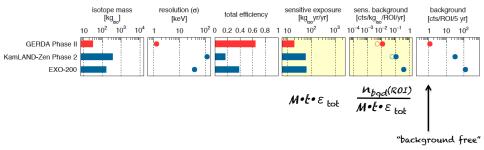

- Best resolution of any $\beta\beta$ experiment to date: 2.52 keV at Q_{BB}
- Projected background rate 4 c/(FWHM·t·yr)
- Analysis of ≈ 26 kg·yr data in progress, expected sensitivity 5.10²⁵ yr


adopted from [Agostini, Benato, Detwiler, arXiv: 1705.02996]

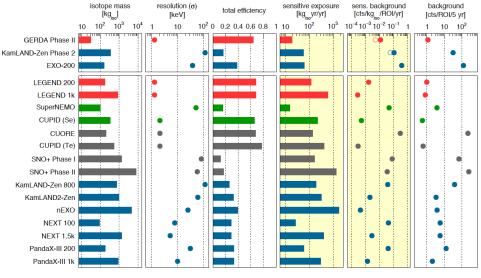
adopted from [Agostini, Benato, Detwiler, arXiv: 1705.02996]

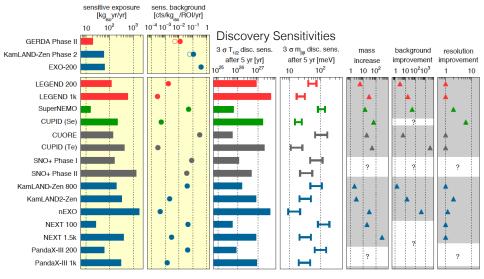


adopted from [Agostini, Benato, Detwiler, arXiv: 1705.02996]



M.t. E tot


adopted from [Agostini, Benato, Detwiler, arXiv: 1705.02996]


adopted from [Agostini, Benato, Detwiler, arXiv: 1705.02996]

adopted from [Agostini, Benato, Detwiler, arXiv: 1705.02996]

adopted from [Agostini, Benato, Detwiler, arXiv: 1705.02996]

adopted from [Agostini, Benato, Detwiler, arXiv: 1705.02996]

Acknowledgements

- material presented reflects the work of many people
- special thanks to:
- M. Agostini, talk at the XXXIX International School of Nuclear Physics, September 16-24, 2017, Erice (Italy)
- K. T. Knoepfle, talk at the CPANP18 conference, May 28 June 3, Palm Strring, USA
- A. J. Zsigmond, talk at Neutrino 2018, June 4-9 2018, Heidelberg, Germany
- A. Giuliani, talk at Neutrino 2018, June 4-9 2018, Heidelberg, Germany
- C. Ransom, talk at XXX Rencontres de Blois Particle Physics and Cosmology, June 3-8, Blois, France
- S. Schoenert, talk at TAUP 2017, July 24-28, SNOIab, Sunbury, Canada
- and to
- S. Riboldi (Politecnico Milano) for the GERDA electronics material