JP. Ma's Note, 3.42 3.43 An interesting observation: $X^{-} \sim \frac{1}{|g^{+}|} \sim \frac{\sqrt{2}}{\chi_{B}} \gg \frac{1}{\Lambda} \sim R$ If XB is small enough, X->R or X->>R. At least, one interaction point is not located insider the hadron. How can the interaction happens outside the hadron ? Hot topic !! Small-x physics

.....

Parton Physics at Small-x

- Goal is to introduce some basic ideas about small-x physics
 - □ Why is it interesting, how relevant
 - Current theoretical approach
- Connections to the TMDs

References

- Al Mueller, arXiv: hep-ph/9911289, hep-ph/0111244
 - Dominguez, Marquet, Xiao, Yuan, 1101.0715

Gluon saturation inevitable at small-x

QCD evolution drives the gluon distribution rising at small-x

Figure 1.1: The processes related to the lowest order QCD splitting functions. Each splitting function $P_{p'p}(x/z)$ gives the probability that a parton of type p converts into a parton of type p', carrying fraction x/z of the momentum of parton p

$$\mu \frac{d}{d\mu} f_{j/h}(x,\mu) = \sum_{k} \int_{x}^{1} \frac{dz}{z} P_{jk}(z,\alpha_{s}(\mu)) f_{k/h}(x/z,\mu)$$
$$\mathcal{P}_{gg}(x) = \frac{x}{(1-x)_{+}} \left(\frac{1-x}{x}\right) x(1-x) + \delta(x-1)\beta_{0}$$

BFKL evolution becomes relevant at small-x

Balitsky-Fadin-Lipatov-Kuraev, 1977-78

 $\frac{\partial N(x, r_T)}{\partial \ln(1/x)} = \alpha_s K_{\text{BFKL}} \otimes N(x, r_T)$

Balitsky-Kovchegov: Non-linear term, 98

Saturation at small-x/large A

Small-x approximation

- Take the leading contribution of high energy scattering (eikonal approx)
- Take the small-x limit whenever applicable, and neglect all higher order terms

There have been some recent developments to deal with sub-leading contributions, however, very subtle and complicated

Light-cone decomposition $k^{\pm} = (k^0 \pm k^z)/\sqrt{2}$

Nucleon/nucleus moving in +z direction, the probe in –z direction

$$p^+ \gg p^-, \quad q^- \gg q^+$$

Useful Fourier transform

$$\int_{-\infty}^{+\infty} dx^{-} \Theta(-x^{-}) e^{-ik^{+}x^{-}} = \frac{i}{k^{+} + i\epsilon} \quad \Longrightarrow \quad \Theta(-x^{-}) = \int_{-\infty}^{+\infty} dk^{+} e^{ik^{+}x^{-}} \frac{i}{k^{+} + i\epsilon}$$

$$\int \frac{d^2 k_{\perp}}{(2\pi)^2} e^{ik_{\perp} \cdot x_{\perp}} \frac{k_{\perp}^{\alpha}}{k_{\perp}^2} = \frac{1}{2\pi} \frac{ix_{\perp}^{\alpha}}{x_{\perp}^2}$$

7/20/18

Small-x factorization

Mueller, 1994

eikonal approximation in high energy scattering

$$\int_{-\infty}^{+\infty} dx^{-}A^{+}(x^{-}, x_{\perp}) \Leftrightarrow \int_{-\infty}^{+\infty} dx_{1}^{-}dx_{2}^{-}\Theta(x_{1}^{-} - x_{2}^{-})A^{+}(x_{1}^{-}, x_{\perp})A^{+}(x_{2}^{-}, x_{\perp})$$

$$\longrightarrow \int d^{2}x_{\perp}e^{ik_{g}\perp\cdot x_{\perp}} (U(x_{\perp}) - 1)$$

$$U(x_{\perp}) = \mathcal{P}exp\left(-ig\int_{-\infty}^{+\infty} dx^{-}A^{+}(x^{-}, x_{\perp})\right)$$

$$7/20/18 \qquad 157$$

Basic rules

BERKELEY

Dipole amplitude

S-matrix describes quark-antiquark dipole scattering on nucleon/nucleus

$$S_Y^{(2)}(x_\perp, y_\perp) = \frac{1}{N_c} \left\langle \text{Tr}U(x_\perp)U^{\dagger}(y_\perp) \right\rangle_Y$$

Also referred as the un-integrated gluon distribution in heavy ion community

$$\mathcal{F}(k_{\perp}) = \int \frac{d^2 x_{\perp} d^2 y_{\perp}}{(2\pi)^2} e^{-ik_{\perp} \cdot (x_{\perp} - y_{\perp})} S_Y^{(2)}(x_{\perp}, y_{\perp})$$

The amplitude (transverse photon) proportional to

CCC.

$$A \propto \int d^{2}x_{1\perp}d^{2}x_{2\perp}e^{ik_{g1\perp} \cdot (x_{1\perp} - x_{2\perp})}e^{ik_{g\perp} \cdot x_{2\perp}} \\ \times \frac{k_{1\perp}^{\alpha} - k_{g1\perp}^{\alpha}}{(k_{1\perp} - k_{g1\perp})^{2} + z(1 - z)Q^{2}} (U(x_{1})U^{\dagger}(x_{2}) - 1)$$

$$F_{2}(x,Q^{2}) = \sum_{f} e_{f}^{2} \frac{Q^{2}}{4\pi^{2}\alpha_{em}} \int_{0}^{1} dz \int d^{2}x_{\perp}d^{2}y_{\perp} \left[|\psi_{T}(z,r_{\perp},Q)|^{2} + |\psi_{L}(z,r_{\perp},Q)|^{2} \right] \\ \times [1 - S(r_{\perp})], \quad \text{with} \quad r_{\perp} = x_{\perp} - y_{\perp}.$$

$$7/20/18 \qquad 162$$

7/20/18

Amplitude squared proportional to

$$\begin{aligned} |\mathcal{A}|^2 &\propto \quad \frac{(k_{1\perp}+k_{2\perp})^2}{k_{2\perp}^2(k_{2\perp}-z_2k_{g\perp})^2} \int d^2x_{\perp}d^2y_{\perp}e^{ik_{g\perp}\cdot(x_{\perp}-y_{\perp})} \langle U(x_{\perp})U^{\dagger}(y_{\perp})\rangle \\ &= \quad \frac{1}{k_{2\perp}^2(k_{2\perp}-z_2k_{g\perp})^2}k_{g\perp}^2\mathcal{F}(k_{g\perp}) \end{aligned}$$

Directly probe the dipole gluon distribution

Example #4: quark distribution at small-x

It can be shown that the DIS quark is the same as the DY quark, although the

diagrams are not

.....

Example #4: one gluon radiation BK evolution

7/20/18

$$\mathcal{M}(x_{\perp}, z_{\perp}, y_{\perp}) = 4\pi g T^a \left[rac{\epsilon_{\perp} \cdot (x_{\perp} - z_{\perp})}{(x_{\perp} - z_{\perp})^2} - rac{\epsilon_{\perp} \cdot (y_{\perp} - z_{\perp})}{(y_{\perp} - z_{\perp})^2}
ight] \Rightarrow$$

7/20/18

TMD Gluons at small-x

Conventional gluon distribution

Collins-Soper, 1981

$$xG^{(1)}(x,k_{\perp}) = \int \frac{d\xi^{-}d^{2}\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}}$$
$$\times \langle P|F^{+i}(\xi^{-},\xi_{\perp})\mathcal{L}_{\xi}^{\dagger}\mathcal{L}_{0}F^{+i}(0)|P$$

Gauge link in the adjoint representation

$$\mathcal{L}_{\xi} = \mathcal{P} \exp\{-ig \int_{\xi^{-}}^{\infty} d\zeta^{-} A^{+}(\zeta, \xi_{\perp})\}$$
$$\mathcal{P} \exp\{-ig \int_{\xi_{\perp}}^{\infty} d\zeta_{\perp} \cdot A_{\perp}(\zeta^{-} = \infty, \zeta_{\perp})\}$$

7/20/18

Physical interpretation

Choosing light-cone gauge, with certain boundary condition (either one, but not the principal value) $A_{\perp}(\zeta^{-} = \infty) = 0$

Gauge link contributions can be dropped

- Number density interpretation, and can be calculated from the wave functions of nucleus
 - McLerran-Venugopalan
 - Kovchegov-Mueller

Classic YM theory: WW-gluon

McLerran-Venugopalan

$$xG^{(1)}(x,k_{\perp}) = \frac{S_{\perp}}{\pi^2 \alpha_s} \frac{N_c^2 - 1}{N_c} \int \frac{d^2 r_{\perp}}{(2\pi)^2} \frac{e^{-ik_{\perp} \cdot r_{\perp}}}{r_{\perp}^2} \left(1 - e^{-\frac{r_{\perp}^2 Q_s^2}{4}}\right)$$

See also, Kovchegov-Mueller

Weizsacker-Williams gluon distribution is the conventional one

DIS dijet probes WW gluons

- Hard interaction includes the gluon attachments to both quark and antiquark
- The q_t dependence is the gluon distribution w/o gauge link contribution at this order

Fundamental representation

$$xG^{(1)}(x,k_{\perp}) = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}}$$
$$\times \langle P|\operatorname{Tr}\left[F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}\right]|P\rangle$$
$$\mathcal{U}_{\xi}^{[+]} = U^{n}\left[0,+\infty;0\right]U^{n}\left[+\infty,\xi^{-};\xi_{\perp}\right]$$

• Apply the following identity

$$\partial_{i}U(v) = ig_{S} \int_{-\infty}^{\infty} dv^{+} U[-\infty, v^{+}; v] \left(\partial_{i}A^{-}(v^{+}, v)\right) U[v^{+}, \infty; v]$$

$$- \langle \operatorname{Tr} \left[\partial_{i}U(v)\right] U^{\dagger}(v') \left[\partial_{j}U(v')\right] U^{\dagger}(v) \rangle_{x_{g}} =$$

$$g_{S}^{2} \int_{-\infty}^{\infty} dv^{+} dv'^{+} \langle \operatorname{Tr} \left[F^{i-}(\vec{v})\mathcal{U}^{[+]\dagger}F^{j-}(\vec{v}')\mathcal{U}^{[+]}\right] \rangle_{x_{g}}$$

7/20/18

Dipole calculation

7/20/18

Expansion in the correlation limit, q_t<<P_t

- There is cancellation between two-point and four-point functions
- final result

$$\frac{d\sigma^{\gamma_T^*A \to q\bar{q}X}}{d\mathcal{P}.\mathcal{S}.} = \alpha_{em} e_q^2 \alpha_s \delta\left(x_{\gamma^*} - 1\right) z(1-z) \left(z^2 + (1-z)^2\right) \frac{P_\perp^4 + \epsilon_f^4}{(P_\perp^2 + \epsilon_f^2)^4} \times (16\pi^3) \int \frac{d^3v d^3v'}{(2\pi)^6} e^{-iq_\perp \cdot (v-v')} 2 \left\langle \mathrm{Tr} F^{i+}(v) \mathcal{U}^{[+]\dagger} F^{i+}(v') \mathcal{U}^{[+]} \right\rangle_{x_g}$$

□ Agrees with the TMD result

7/20/18

Photon-jet correlation probes the dipole gluon distribution

 $-\Gamma^a T^b$

(f)

There is no color structure corresponding to this, We have to express the gluon Distribution in the Fundamental representation

(-ig)

 $rac{i}{a_2^++i\epsilon}T^b\Gamma^a+rac{i}{a_2^++i\epsilon}\Gamma^aT^b
ight)$

Dipole gluon distribution

$$xG^{(2)}(x,k_{\perp}) = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}}$$
$$\langle P|\operatorname{Tr}\left[F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}\right]|P$$

This is the dipole gluon distribution, also called unintegrated gluon distribution

$$xG^{(2)}(x,q_{\perp}) \simeq \frac{q_{\perp}^2 N_c}{2\pi^2 \alpha_s} S_{\perp} \int \frac{d^2 r_{\perp}}{(2\pi)^2} e^{-iq_{\perp} \cdot r_{\perp}} S_{x_g}^{(2)}(0,r_{\perp})$$

Intuitive explanations

- Final state interactions in DIS can be eliminated by choosing the light-cone gauge

 -> number density interpretation
- Photon-jet correlation have both initial/final state interactions, can not be eliminated by choosing LC gauge → there is no number density interpretation → dipole gluon distribution

Dijet-correlation at RHIC

Standard (naïve) Factorization breaks!

Becchetta-Bomhof-Mulders-Pijlman, 04-06 Collins-Qiu 08; Vogelsang-Yuan 08 Rogers-Mulders 10; Xiao-Yuan, 10

Modified factorization

Dilute system on a dense target, in the large Nc limit,

$$\frac{d\sigma^{(pA \to \text{Dijet}+X)}}{d\mathcal{P}.\mathcal{S}.} = \sum_{q} x_{1}q(x_{1}) \frac{\alpha_{s}^{2}}{\hat{s}^{2}} \left[\mathcal{F}_{qg}^{(1)} H_{qg \to qg}^{(1)} + \mathcal{F}_{qg}^{(2)} H_{qg \to qg}^{(2)} \right]
+ x_{1}g(x_{1}) \frac{\alpha_{s}^{2}}{\hat{s}^{2}} \left[\mathcal{F}_{gg}^{(1)} \left(H_{gg \to q\bar{q}}^{(1)} + H_{gg \to gg}^{(1)} \right)
+ \mathcal{F}_{gg}^{(2)} \left(H_{gg \to q\bar{q}}^{(2)} + H_{gg \to gg}^{(2)} \right) + \mathcal{F}_{gg}^{(3)} H_{gg \to gg}^{(3)} \right],$$

Hard partonic cross section

$$\begin{split} H_{qg \to qg}^{(1)} &= \frac{\hat{u}^2 \left(\hat{s}^2 + \hat{u}^2 \right)}{-2 \hat{s} \hat{u} \hat{t}^2}, \quad H_{qg \to qg}^{(2)} = \frac{\hat{s}^2 \left(\hat{s}^2 + \hat{u}^2 \right)}{-2 \hat{s} \hat{u} \hat{t}^2} \\ H_{gg \to q\bar{q}}^{(1)} &= \frac{1}{4N_c} \frac{2 \left(\hat{t}^2 + \hat{u}^2 \right)^2}{\hat{s}^2 \hat{u} \hat{t}}, \quad H_{gg \to q\bar{q}}^{(2)} = \frac{1}{4N_c} \frac{4 \left(\hat{t}^2 + \hat{u}^2 \right)}{\hat{s}^2} \\ H_{gg \to gg}^{(1)} &= \frac{2 \left(\hat{t}^2 + \hat{u}^2 \right) \left(\hat{s}^2 - \hat{t} \hat{u} \right)^2}{\hat{u}^2 \hat{t}^2 \hat{s}^2}, \quad H_{gg \to gg}^{(2)} = \frac{4 \left(\hat{s}^2 - \hat{t} \hat{u} \right)^2}{\hat{u} \hat{t} \hat{s}^2} \\ H_{gg \to gg}^{(3)} &= \frac{2 \left(\hat{s}^2 - \hat{t} \hat{u} \right)^2}{\hat{u}^2 \hat{t}^2}, \end{split}$$

7/20/18

Kt-dependent gluon distributions

$$\mathcal{F}_{qg}^{(1)} = xG^{(2)}(x, q_{\perp}), \quad \mathcal{F}_{qg}^{(2)} = \int xG^{(1)}(q_{1}) \otimes F(q_{2}) ,$$

$$\mathcal{F}_{gg}^{(1)} = \int xG^{(2)}(q_{1}) \otimes F(q_{2}), \quad \mathcal{F}_{gg}^{(2)} = \int \frac{q_{1\perp} \cdot q_{2\perp}}{q_{1\perp}^{2}} xG^{(2)}(q_{1}) \otimes F(q_{2})$$

$$\mathcal{F}_{gg}^{(3)} = \int xG^{(1)}(q_{1}) \otimes F(q_{2}) \otimes F(q_{3}) ,$$

Violation effects

7/20/18
Further developments

 Sudakov resummation for small-x TMDs
 Mueller-Xiao-Yuan, PRL110, 082301 (2013); Xiao-Yuan-Zhou, NPB921, 104 (2017)
 Balitsky-Tarasov, JHEP1510,017 (2015)
 Transverse spin-dependent TMD gluon at small-x

Related to the spin-dependent odderon, Boer-Echevarria-Mulders-Zhou, PRL 2016

GPDS

DVCS and GPDs at small-x

 $\frac{1}{P^{+}} \int \frac{d\zeta^{-}}{2\pi} e^{ixP^{+}\zeta^{-}} \langle p'|F^{+i}(-\zeta/2)F^{+j}(\zeta/2)|p\rangle \qquad \begin{array}{l} \text{Hoodbhoy-Ji 98} \\ \text{Diehl 01} \\ = \frac{\delta^{ij}}{2} x H_{g}(x,\Delta_{\perp}) + \frac{x E_{Tg}(x,\Delta_{\perp})}{2M^{2}} \left(\Delta_{\perp}^{i}\Delta_{\perp}^{j} - \frac{\delta^{ij}\Delta_{\perp}^{2}}{2}\right) + \end{array}$

All other GPDs suppressed at small-x

Dipole formalism

$$F_x(q_\perp, \Delta_\perp) = \int \frac{d^2 r_\perp d^2 b_\perp}{(2\pi)^4} e^{ib_\perp \cdot \Delta_\perp + ir_\perp \cdot q_\perp} S_x\left(b_\perp + \frac{r_\perp}{2}, b_\perp - \frac{r_\perp}{2}\right)$$

Elliptic gluon distribution (Hatta-Xiao-Yuan 16)

 $F_x(q_{\perp}, \Delta_{\perp}) = F_0(|q_{\perp}|, |\Delta_{\perp}|) + 2\cos 2(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}})F_{\epsilon}(|q_{\perp}|, |\Delta_{\perp}|)$

GPDs and dipole

$$egin{aligned} xH_g(x,\Delta_{ot}) &= rac{2N_c}{lpha_s}\int d^2q_{ot}q_{ot}^2F_0\,, \ xE_{Tg}(x,\Delta_{ot}) &= rac{4N_cM^2}{lpha_s\Delta_{ot}^2}\int d^2q_{ot}q_{ot}^2F_\epsilon \end{aligned}$$

Elliptic gluon distribution

DVCS: Helicity-conserved Amp.

 $g_{\perp}^{\mu
u}\mathcal{A}_{0}(\Delta_{\perp}) + h_{\perp}^{\mu
u}\mathcal{A}_{2}(\Delta_{\perp})$ $h_{\perp}^{\mu
u} = rac{2\Delta_{\perp}^{\mu}\Delta_{\perp}^{
u}}{\Delta_{\perp}^{2}} - g_{\perp}^{\mu
u}$

190

$$\int dz d^2 q_\perp d^2 k_\perp \frac{(z^2 + (1-z)^2)k_\perp \cdot (k_\perp + q_\perp)}{(k_\perp + q_\perp)^2 (k_\perp^2 + \epsilon_q^2)} F_x(q_\perp, \Delta_\perp)$$

$$\epsilon_q^2 = z(1-z)Q^2$$

Dominant contributions from z~1 or 0,

$$\int \frac{d^2 k_{\perp}'}{(2\pi)^2} \frac{1}{k_{\perp}'^2} \int d^2 q_{\perp} q_{\perp}^2 F_x(q_{\perp}, \Delta_{\perp}) \qquad \Longrightarrow \int \frac{d^2 k_{\perp}'}{(2\pi)^2} \frac{1}{k_{\perp}'^2} x H_g(x)$$

Hatta-Xiao-Yuan 1703.02085

Helicity-flip amplitude

$$\int dz d^2 q_{\perp} d^2 q_{1\perp} rac{z(1-z) \left[2q_{1\perp} \cdot \Delta_{\perp} k_{\perp} \cdot \Delta_{\perp} - q_{1\perp} \cdot k_{\perp} \Delta_{\perp}^2
ight]}{q_{1\perp}^2 (k_{\perp}^2 + \epsilon_q^2) \Delta_{\perp}^2} F_x(q_{\perp}, \Delta_{\perp})$$

In the DVCS limit, Q>>Δ

$$\mathcal{A}_2 = -\sum_q rac{e_q^2 N_c}{Q^2} \int d^2 q_\perp q_\perp^2 F_\epsilon(q_\perp, \Delta_\perp)$$

$$= -\frac{e_q^2 \alpha_s \Delta_{\perp}^2}{4Q^2 M^2} E_{Tg}(x, \Delta_{\perp})$$

7/20/18

Hatta-Xiao-Yuan 1703.02085

DVCS: Collinear factorization

$$T^{\mu\nu} = i \int d^4 z e^{-iq \cdot z} \langle P' | j^{\mu}(z/2) j^{\nu}(-z/2) | P \rangle \equiv g_{\perp}^{\mu\nu} T_0 + h_{\perp}^{\mu\nu} T_2$$
$$T_0 = -\sum_q e_q^2 \int dx \,\alpha(x) H_q(x,\xi,\Delta_{\perp}^2) ,$$
$$T_2 = \sum_q e_q^2 \frac{\alpha_s}{4\pi} \frac{\Delta_{\perp}^2}{4M^2} \int dx \,\alpha(x) E_{Tg}(x,\xi,\Delta_{\perp}^2)$$
$$\mathsf{Hoodbhoy-Ji 98}$$

Imaginary part at xi=x

$$\operatorname{Im} T_0 = \frac{\pi}{\xi} \sum_q e_q^2 \left[\xi H_q(\xi, \xi, \Delta_{\perp}^2) + \xi H_{\bar{q}}(\xi, \xi, \Delta_{\perp}^2) \right]$$
$$\operatorname{Im} T_2 = -\frac{\pi}{\xi} \frac{\alpha_s}{2\pi} \frac{\Delta_{\perp}^2}{4M^2} \sum_q e_q^2 \xi E_{Tg}(\xi, \xi, \Delta_{\perp}^2) ,$$

7/20/18

Quark/GPD quark at small-x

DGLAP splitting dominated by gluon distribution/GPD gluon

$$xq(x) = \frac{\alpha_s}{2\pi} \frac{1}{2} \int_x^1 d\zeta \left(\zeta^2 + (1-\zeta)^2 \right) x' G(x') \int \frac{dk_{\perp}^2}{k_{\perp}^2} \quad \approx xG(x) \frac{\alpha_s}{2\pi} \frac{1}{2} \cdot \frac{2}{3} \int \frac{dk_{\perp}^2}{k_{\perp}^2}$$

$$xH_q(x,\xi,\Delta_{\perp}^2) = \frac{\alpha_s}{2\pi} \frac{1}{2} \int_x^1 d\zeta \frac{\zeta^2 + (1-\zeta)^2 - \frac{\xi^2}{x^2} \zeta^2}{(1-\frac{\xi^2}{x^2} \zeta^2)^2} x' H_g(x',\xi,\Delta_{\perp}^2) \int \frac{dk_{\perp}^2}{k_{\perp}^2}$$

GPD quark distribution

 $\approx \xi H_g(\xi,\xi) \frac{\alpha_s}{2\pi} \frac{1}{2} \cdot 1 \int \frac{dk_{\perp}^2}{k_{\perp}^2}$

7/20/18

193

- We have established the consistency between the small-x dipole formalism and the collinear GPD framework
- The cos(2phi) asymmetry in DVCS will provide information on the elliptic gluon distribution at small-x
- Extension to polarized parton distributions/ OAMs is anticipated, but much more involved
 - □ Kovchegov et al, 1511.06737,1610.06188
 - □ Hatta et al, 1612.02445

Grand Jewels of Hadron Physics

□ Wigner distributions (Belitsky, Ji, Yuan)

Hatta-Xiao-Yuan,1601.01585 earlier: Mueller, NPB 1999

Probing 3D Tomography of Protons at Small-x at EIC

Diffractive back-to-back dijet productions at EIC:

Hatta-Xiao-Yuan,1601.01585

 In the Breit frame, by measuring the recoil of final state proton, one can access Δ_T. By measuring jets momenta, one can approximately access q_T.

The diffractive dijet cross section is proportional to the square of the Wigner distribution.

Parton Physics: Lattice QCD

- The only known rigorous framework for abinitio calculation of the structure of protons and neutrons with controllable errors.
- After decades of effort, one can finally calculate nucleon properties with dynamical fermions at physical pion mass!

Nucleon Structure from Lattice QCD

J.R. Green et al, 2012 & 2014

Strange Quark Magnetic Moment R.S. Sufian et al, (2+1) flavor of overlap domain wall fermions at physical pion mass

Directly compute PDFs from lattice QCD Ji, PRL, 2013

Alexsandrou et al., 2016

Chen et al., 2016

7/20/18

200

Directly compute PDFs from lattice QCD at physical pion mass

Alexsandrou et al., 2018

Chen et al., 2018

7/20/18

201

Fundamental Understanding of the Nucleon Structure in QCD

Back-up

Transverse momentum distributions: A unified picture

Small-x evolution: Non-linear term at high density Balitsky-Fadin-Lipatov-Kuraev, 1977-78

 $\frac{\partial N(x, r_T)}{\partial \ln(1/x)} = \alpha_s K_{\rm BFKL} \otimes N(x, r_T)$

Balitsky-Kovchegov: Non-linear term, 98

205

Therefore

- x-dependence of the TMDs at small-x, in principle, can be calculated from the QCD evolution (BK-JIMWLK)
- How about Q²
 - Sudakov double log resummation (which controls Q-evolution) can be performed consistently in the small-x formalism

Mueller, Xiao, Yuan, PRL110,082301 (2013); Phys.Rev. D88 (2013) 114010; Xiao, Yuan, Zhou, NPB 2017

Gluon tomography at small x (GPDs)

Unpolarized quark distribution

BERKELEY LAD

Hadron tomography via GPDs

GPDs: fully correlated parton distributions in both momentum and coordinate space

From the Fourier transform of the momentum transform, we will obtain the partons' 3-d image in nucleon

> Burkardt 00,02; Belitsky-Ji-Yuan, PRD04

3D image of quarks at fixed-x

- GPDs can be used to picture quarks in the proton (Belitsky-Ji-Yuan, PRD 04)
 - Fourier transform of the GPDs (respect to the momentum transfer) is a function of position r and Feynman momentum x: f(r,x)
 - One can plot this distribution as a 3D function at fixed x

Quark imaging from EIC

BERKELEY LAB

In particular

Kt-dependence

7/20/18

214

Di-hadron correlations

Partonic cross section $eq \rightarrow e'q'$

• Cross symmetry with $e+e-\rightarrow qq$

$$d\sigma = \frac{d^{3}k'}{2s|\vec{k'}|} \frac{1}{(q^{2})^{2}} L^{\mu\nu}(k,q) W_{\mu\nu}(p,q) \qquad L^{\mu\nu} \equiv \frac{e^{2}}{8\pi^{2}} tr \left[\not{k}\gamma^{\mu} \not{k'}\gamma^{\nu} \right]$$

$$|\overline{\mathcal{M}}|^{2} = \frac{1}{(q^{2})^{2}} L_{\mu\nu} W_{\mu\nu} = e_{q}^{2} \frac{e^{4}}{(q^{2})^{2}} 2 \left[s^{2} + u^{2} \right]$$

$$u = (k'-p)^{2} = -2k' \cdot p = -s(1-y), \quad y = \frac{q \cdot p}{k \cdot p}$$

$$(s^{2} + u^{2}) = s^{2} (1 + (1-y)^{2})$$

$$d\sigma(ep \to e' + X) = \int dx dy \frac{2\pi\alpha^{2}}{Q^{2}} \left[1 + (1-y)^{2} \right] \sum_{q} e_{q}^{2} \phi_{q/P}(x)$$

$$\frac{7/20/18}{q} = \frac{1}{2} \left[1 + (1-y)^{2} \right] \sum_{q} e_{q}^{2} \phi_{q/P}(x)$$

BACK-UP

SIDIS: at Large P_T

- When $q_T >> \Lambda_{QCD}$, the P_t dependence of the TMD parton distribution and fragmentation functions can be calculated from pQCD, because of hard gluon radiation
- Single Spin Asymmetry at large P_T is not suppressed by 1/Q, but by 1/P_T

Fragmentation function at p_T **>** Λ_{QCD}

See, e.g., Ji, Ma, Yuan, 04

Sivers Function at large k_T

Qiu-Sterman matrix element

$$T_{a,F}(x_1, x_2) = \int \frac{dy_1^- dy_2^-}{4\pi} e^{ix_1 P^+ y_1^- + i(x_2 - x_1)P^+ y_2^-} \\ \times \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \left[\epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^+(y_2^-) \right] \psi_a(y_1^-) | P, \vec{s}_T \rangle$$

Sivers Function at Large k_T

$$q_T(x,k_{\perp}) = -\frac{\alpha_s}{4\pi^2} \frac{2M_p}{(k_{\perp}^2)^2} \int \frac{dx}{x} \{A + C_F T_F(x) \\ \times \delta(\xi - 1) \left(\ln \zeta^2 / \vec{k}_{\perp}^2 - 1 \right) \}$$

- $1/k_T^4$ follows a power counting
- Drell-Yan Sivers function has opposite sign
- Plugging this into the factorization formula, we indeed reproduce the polarized cross section calculated from twist-3 correlation

SSA in the Twist-3 approach

Collinear Factorization:

$$d\sigma \propto \epsilon^{eta lpha} S_{ot eta} P_{hot lpha} \int rac{dx}{x} rac{dz}{z} \widehat{q}(z) T_F(x,x-xg) imes \cdots$$

Qiu, Sterman, 91

Factorization guidelines

Reduced diagrams for different regions of the gluon momentum: along P direction, P', and soft Collins-Soper 81

Final Results

\blacksquare P_T dependence

Which is valid for all P_T range Resummation can be performed further

Extend to other TMDs

Polarized TMD Quark Distributions

G	Nucleon Quark	Unpol.	Long.	Trans.		
ι	Jnpol.	$f_1(x,k_\perp)$		$f_{1T}^{\perp}(x,k_{\perp})$		
L	_ong.	and and	$g_1(x,k_\perp)$	$g_{1T}(x,k_{\perp})$		
1	Frans.	$h_1^\perp(x,k_\perp)$	$h_{1L}(x,k_{\perp})$	$egin{aligned} h_1(x,k_ot)\ h_{1T}^ot(x,k_ot) \end{aligned}$		
	/	Boer, Mulders, Tangerman (96&98)				

rrrr

BERKELEY

TMDs and Quark-gluon Correlations (twist-3)

Kt-odd distribution

$$f_{1T}^{\perp}(x,k_{\perp}) \bigoplus G_D(x_1,x_2 \widetilde{G}_D(x_1,x_2))$$

$$T_F(x,k_{\perp}) \bigoplus T_F(x_1,x_2) \widetilde{T}_F(x_1,x_2)$$

$$T_F(x,k_{\perp}) \bigoplus T_F^{(\sigma)}(x_1,x_2)$$

$$h_{1L}^{\perp}(x,k_{\perp}) \bigoplus H_D(x_1,x_2)$$

$$T_F(x,k_{\perp}) \bigoplus H_D(x_1,x_2)$$

$$T_F(x,k_{\perp}) \bigoplus H_D(x_1,x_2)$$

$$T_F(x,k_{\perp}) \bigoplus \tilde{T}_F^{(\sigma)}(x_1,x_2)$$

$$\tilde{T}_F(x,k_{\perp}) \bigoplus \tilde{T}_F^{(\sigma)}(x_1,x_2)$$

BERKELEY LAD

7/20/18

228

Quark-gluon correlations (twist-three)

Have long been studied,

 $D_{\Gamma}^{i}(y_{1}, y_{2}, s) = \langle P, s | \bar{\psi}(0) \Gamma D^{i}(y_{2}) \psi(y_{1}) | P, s \rangle$ $F_{\Gamma}^{i}(y_{1}, y_{2}, s) = \langle P, s | \bar{\psi}(0) \Gamma n_{\mu} F^{i\mu}(y_{2}) \psi(y_{1}) | P, s \rangle$

F-type and D-type are related to each other, Ellis-Furmanski-Petronzio 82, Eguchi-Koike-Tanaka 06

$$G_D(x, x_1) = P \frac{1}{x - x_1} T_F(x, x_1),$$

$$\tilde{G}_D(x, x_1) = P \frac{1}{x - x_1} \tilde{T}_F(x, x_1) + \delta(x - x_1)\tilde{g}(x),$$

$$E_D(x, x_1) = P \frac{1}{x - x_1} T_F^{(\sigma)}(x, x_1),$$

$$H_D(x, x_1) = P \frac{1}{x - x_1} \tilde{T}_F^{(\sigma)}(x, x_1) + \delta(x - x_1)\tilde{h}(x)$$

twist and collinear expansion

.....

BERKELEY L

Large kt TMDs

(b2)

(c2)

gee'eee

(c1)

BERKELEY

(a3)

(c3)

00000

(c4)

• Color factors, C_F : a1-4,b1-4, e2 $\langle \bar{\psi} \partial_{\perp} \psi \rangle$ 1/2N_c: c1,c3, d1 $\langle \bar{\psi} A_{\perp} \psi \rangle$ $C_A/2$: e1-4 • a1-4 b1-4,c1,c3,e1-4 b1-4,c1-4,d1-4,e1-4 111111 7/20/18

Generic results

Kt-even TMDs

Zhou,Liang,Yuan,2010

$$f_{1}(x_{B},k_{\perp}) = \frac{\alpha_{s}}{2\pi^{2}} \frac{1}{\vec{k}_{\perp}^{2}} C_{F} \int \frac{dx}{x} f_{1}(x) \begin{bmatrix} 1+\xi^{2} \\ (1-\xi)_{+} \end{bmatrix} + \delta(1-\xi) \left(\ln \frac{x_{B}^{2}\xi^{2}}{\vec{k}_{\perp}^{2}} - 1 \right) \\ g_{1L}(x_{B},k_{\perp}) = \frac{\alpha_{s}}{2\pi^{2}} \frac{1}{\vec{k}_{\perp}^{2}} C_{F} \int \frac{dx}{x} g_{1L}(x) \begin{bmatrix} 1+\xi^{2} \\ (1-\xi)_{+} \end{bmatrix} + \delta(1-\xi) \left(\ln \frac{x_{B}^{2}\xi^{2}}{\vec{k}_{\perp}^{2}} - 1 \right) \\ h_{1}(x_{B},k_{\perp}) = \frac{\alpha_{s}}{2\pi^{2}} \frac{1}{\vec{k}_{\perp}^{2}} C_{F} \int \frac{dx}{x} f_{1}(x) \begin{bmatrix} 2\xi \\ (1-\xi)_{+} \end{bmatrix} + \delta(1-\xi) \left(\ln \frac{x_{B}^{2}\xi^{2}}{\vec{k}_{\perp}^{2}} - 1 \right) \\ \end{bmatrix}$$
Splitting kernel
Iarge logs

Sivers and Boer-Mulders

$$\begin{aligned} f_{1T}^{\perp}|_{\rm DY}(x_B,k_{\perp}) &= \frac{\alpha_s}{\pi} \frac{M^2}{(\vec{k}_{\perp}^2)^2} \int \frac{dx}{x} \left[A_{f_{1T}^{\perp}} + C_F T_F(x,x) \delta(1-\xi) \left(\ln \frac{x_B^2 \zeta^2}{\vec{k}_{\perp}^2} - 1 \right) \right] \\ h_1^{\perp}|_{\rm DY}(x_B,k_{\perp}) &= \frac{\alpha_s}{\pi} \frac{M^2}{(\vec{k}_{\perp}^2)^2} \int \frac{dx}{x} \left[A_{h_1^{\perp}} + C_F T_F^{(\sigma)}(x,x) \delta(1-\xi) \left(\ln \frac{x_B^2 \zeta^2}{\vec{k}_{\perp}^2} - 1 \right) \right] \end{aligned}$$

$$\begin{aligned} A_{f_{1T}^{\perp}} &= -\frac{1}{2N_c} T_F(x,x) \frac{1+\xi^2}{(1-\xi)_+} + \frac{C_A}{2} T_F(x,x_B) \frac{1+\xi}{(1-\xi)_+} + \frac{C_A}{2} \tilde{T}_F(x_B,x) \\ A_{h_1^{\perp}} &= -\frac{1}{2N_c} T_F^{(\sigma)}(x,x) \frac{2\xi}{(1-\xi)_+} + \frac{C_A}{2} T_F^{(\sigma)}(x,x_B) \frac{2}{(1-\xi)_+} \ . \end{aligned}$$

7/20/18

233

• g_{1T} and h_{1L}

$$g_{1T}(x_B, k_{\perp}) = \frac{\alpha_s}{\pi^2} \frac{M^2}{(k_{\perp}^2)^2} \int \frac{dx}{x} \left\{ A_{g_{1T}} + C_F \tilde{g}(x) \delta(\xi - 1) \left(\ln \frac{x_B^2 \zeta^2}{k_{\perp}^2} - 1 \right) \right\}$$
$$h_{1L}(x_B, k_{\perp}) = \frac{\alpha_s}{\pi^2} \frac{M^2}{(k_{\perp}^2)^2} \int \frac{dx}{x} \left\{ A_{h_{1L}} + C_F \tilde{h}(x) \delta(\xi - 1) \left(\ln \frac{x_B^2 \zeta^2}{k_{\perp}^2} - 1 \right) \right\}$$

$$\begin{aligned} A_{g_{1T}} &= \int dx_1 \left\{ \frac{1}{2N_C} \tilde{g}(x) \frac{1+\xi^2}{(1-\xi)_+} \delta(x_1-x) \right. \\ &+ \left[C_F \left(\frac{x_B^2}{x^2} + \frac{x_B}{x_1} - \frac{2x_B^2}{x_1x} - \frac{x_B}{x} - 1 \right) + \frac{C_A}{2} \frac{(x_B^2 + xx_1)(2x_B - x - x_1)}{(x_B - x_1)(x - x_1)x_1} \right] \tilde{G}_D(x,x_1) \\ &+ \left[C_F \left(\frac{x_B^2}{x^2} + \frac{x_B}{x_1} - \frac{x_B}{x} - 1 \right) + \frac{C_A}{2} \frac{x_B^2 - xx_1}{(x_1 - x_B)x_1} \right] G_D(x,x_1) \right\} \end{aligned}$$

7/20/18

234

Asymptotical Freedom and Factorization

- QCD is an asymptotical freedom theory (Gross, Politzer, Wilczek, 1973), where perturbation method becomes relevant at large scale.
- While, because of confinement, a typical hadronic process contains multiple scales, e.g., the nonperturbative scale Λ_{QCD}, meaning that a QCD factorization must be proven in order to successfully separate different scales.

One Large Scale Factorization

- If the physics only involves one large scale, the factorization is the simplest,
 - □ Inclusive DIS and Drell-Yan
 - Jet production
 - Inclusive particle production at hadron collider
 - Hard exclusive processes, Pi form factor, DVCS, ...

Additional Large Scale Introduces Large Double Logarithms

For example, a differential cross section depends on Q_{1} , where $Q^2 \gg Q_1^2 \gg \Lambda^2_{QCD}$

$$\frac{d\sigma}{dQ_1^2} = \frac{1}{Q_1^2} f_1 \otimes f_2 \otimes \sum_i \alpha_s^i \ln^{2i-1} \frac{Q^2}{Q_1^2} + \cdots$$

- We have to resum these large logs to make reliable predictions
 - □ Q_T: Dokshitzer, Diakonov, Troian, 78; Parisi Petronzio, 79; Collins, Soper, Sterman, 85
 - Threshold: Sterman 87; Catani and Trentadue 89

Why Resummation is Relevant

Soft gluon radiation is very important for this kinematical limit

Real and Virtual contributions are "imbalanced" IR cancellation leaves large logarithms (implicit)

How Large of the Resummation effects

11111

General Structure of Large Logs

LO	1	ngum		
NLO	$\alpha_{s} L^{2}$	$\alpha_{s}L$	a,	
NNLO	$\alpha_s^2 L^4$	$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	+
N ³ LO	$\alpha_s^3 L^6$	$\alpha_s^3 L^5$	$\alpha_s^3 L^4$	+
N ^k LO	$\alpha_s^{k} L^{2k}$	$\alpha_s^{k} L^{2k-1}$	$\alpha_s^{k} L^{2k-2}$	+
	LL	NLL	NNLL	

240

Two Large Scales Processes

Include

- \Box DIS and Drell-Yan at small P_T (Q_T Resum) \checkmark
- DIS and Drell-Yan at large x (Threshold Resum)
- \Box Higgs production at small P_T or large x
- Semileptonic B Decays
- □Non-leptonic B Decays
- Thrust distribution
- Jet shape function

Collins-Soper-Sterman Resummation

- Introduce a new concept, the Transverse Momentum Dependent PDF
- Prove the Factorization in terms of the TMDs
- $σ(P_T,Q)=H(Q) f_1(k_{1T},Q) f_2(k_{2T},Q) S(λ_T)$
- Large Logs are resummed by solving the energy evolution equation of the TMDs

 $\frac{\partial}{\partial \ln Q} f(k_{\perp}, Q) = (K(q_{\perp}, \mu) + G(Q, \mu)) \otimes f(k_{\perp}, Q)$

(Coll<u>in</u>s-Soper 81, Collins-Soper-St

CSS Formalism (II)

K and G obey the renormalization group

eq.
$$\frac{\partial}{\partial \ln \mu} K = -\gamma_K = \frac{\partial}{\partial \ln \mu} G$$

The large logs will be resummed into the exponential form factor

$$W(Q,b) = e^{-\int_{1/b}^{Q} \frac{d\mu}{\mu} \left(\ln \frac{Q}{\mu} A + B \right)} C \otimes f_1 C \otimes f_2$$

 \square A,B,C functions are perturbative calculable.

(Collins-Soper-Sterman 85)

SSAs: DY as an example

$A(P_A, S_\perp) + B(P_B) \to \gamma^*(q) + X \to \ell^+ + \ell^- + X,$

\blacksquare P_T dependence

• Which is valid for all P_T range

CSS Resummation

$$\frac{d\Delta\sigma(S_{\perp})}{dydQ^2d^2q_{\perp}} = \sigma_0\epsilon^{\alpha\beta}S_{\perp}^{\alpha}W_{UT}^{\beta}(Q;q_{\perp})$$

Separate the singular and regular parts

$$W^{\alpha}_{UT}(Q;q_{\perp}) = \int \frac{d^2b}{(2\pi)^2} e^{i\vec{q}_{\perp}\cdot\vec{b}} \widetilde{W}^{\alpha}_{UT}(Q;b) + Y^{\alpha}_{UT}(Q;q_{\perp})$$

TMD factorization in b-space

$$\widetilde{W}_{UT}^{\alpha}(Q;b) = \widetilde{f}_{1T}^{(\perp\alpha)}(z_1,b,\zeta_1)\overline{q}(z_2,b,\zeta_2) \\ \times H_{UT}(Q) \left(S(b,\rho)\right)^{-1} ,$$

Leading order k_1 k_g (a)

Small-b expansion, 1/b>>intrinsic kt

$$\begin{split} \text{Fig.2} &= \int d^2 q_{\perp} e^{-i \vec{q}_{\perp} \cdot \vec{b}_{\perp}} \left(\frac{ig}{-(k_2^+ - k_1^+) - i\epsilon} \right) \\ &\times \left[\delta(q_{\perp} - k_{2\perp}) - \delta(q_{\perp} - k_{1\perp}) \right] \\ &= \left(\frac{ig}{-(k_2^+ - k_1^+) - i\epsilon} \right) \left[e^{-i \vec{k}_{2\perp} \cdot \vec{b}_{\perp}} - e^{-i \vec{k}_{1\perp} \cdot \vec{b}_{\perp}} \right] \\ &= \frac{ig}{-(k_2^+ - k_1^+) - i\epsilon} \left(-i b_{\perp}^{\alpha} \right) k_{g\perp}^{\alpha} \;, \end{split}$$

$$\widetilde{W}^{lpha(0)}_{UT}(Q,b) = \left(rac{-ib^{lpha}_{\perp}}{2}
ight) T_F(z_1,z_1)ar{q}(z_2)$$

7/20/18

246

 $\gamma^*(q_\perp)$

(b)

 k_2

Virtual diagrams

Soft divergence from real diagrams

7/20/18

248

Collinear divergence--splitting

$$\frac{\alpha_s}{2\pi} \left(\frac{-ib_{\perp}^{\alpha}}{2} \right) \left\{ \left[-\frac{1}{\epsilon} + \ln \frac{4}{b^2 \mu^2} e^{-2\gamma_E} \right] \left(\mathcal{P}_{q/q} \otimes \bar{q}(z_2') + \mathcal{P}_{qg \to qg}^T \otimes T_F(z_1', z_1'') \right) + C_F(1 - \xi_2) \delta(1 - \xi_1) + \left(-\frac{1}{2N_c} \right) (1 - \xi_1) \delta(1 - \xi_2) + \delta(1 - \xi_1) \delta(1 - \xi_2) + \left(-\frac{1}{2N_c} \right) (1 - \xi_1) \delta(1 - \xi_2) + \delta(1 - \xi_1) \delta(1 - \xi_2) + \left(-\frac{1}{2N_c} \right) \left(1 - \frac{1}{\epsilon} \right) \left(\frac{Q^2 b^2}{4} e^{2\gamma_E - \frac{3}{2}} \right) - \frac{23}{4} + \pi^2 \right] \right\} ,$$

• Sivers function $\begin{aligned} \tilde{f}_{1T}^{\alpha}(z_1, b_{\perp}) &= \frac{\alpha_s}{2\pi} \left(\frac{-ib_{\perp}^{\alpha}}{2} \right) \left\{ \left[-\frac{1}{\epsilon} + \ln \frac{4}{b^2 \mu^2} e^{-2\gamma_E} \right] \\ &\times \mathcal{P}_{qg \to qg}^T \otimes T_F(z_1', z_1'') + \delta(1 - \xi_1) C_F \left[-\frac{3}{2} \ln \frac{4}{b^2 \mu^2} e^{-2\gamma_E} \right] \\ &- \frac{1}{2} \ln^2 \left(\frac{z_1^2 \zeta_1^2 b^2}{4} e^{2\gamma_E - 1} \right) - \frac{3 + \pi^2}{2} \right] \\ &+ \left(-\frac{1}{2N_c} \right) (1 - \xi_1) \right\}.
\end{aligned}$

Hard factor at one-loop order

Same as the spin-average case

$$H_{UT}^{(1)\text{DY}} = H_{UU}^{(1)}|_{\text{DY}}$$

= $\frac{\alpha_s}{2\pi} C_F \left[\ln \frac{Q^2}{\mu^2} (1 + \ln \rho^2) - \ln \rho^2 + \ln^2 \rho + 2\pi^2 - 4 \right]$

Final resum form

$$\widetilde{W}_{UT}^{\alpha}(Q;b) = e^{-\mathcal{S}_{UT}(Q^2,b)} \widetilde{W}_{UT}^{\alpha}(C_1/b,b)$$

= $(-ib_{\perp}^{\alpha}/2) e^{-\mathcal{S}_{UT}(Q^2,b)} \Sigma_{i,j}$
 $\times \Delta C_{qi}^T \otimes f_{i/A}^{(3)}(z_1) C_{\bar{q}j} \otimes f_{j/B}(z_2)$

Sudakov the same

$$\mathcal{S}_{UT}(Q^2, b) = \int_{C_1^2/b^2}^{C_2^2Q^2} \frac{d\mu^2}{\mu^2} \left[\ln\left(\frac{C_2^2Q^2}{\mu^2}\right) A_{UT}(C_1; g(\mu)) + B_{UT}(C_1, C_2; g(\mu)) \right] ,$$

7/20/18

Coefficients at one-loop order

$$\begin{split} A_{UT}^{(1)} &= C_F, \ B_{UT}^{(1)} = -3/2C_F, \ \Delta C_{qq}^{T(0)} = \delta(1-x) \ , \\ \Delta C_{qq}^{T(1)} &= -\frac{1}{4N_c}(1-x) + \frac{C_F}{2}\delta(x-1)\left[\frac{\pi^2}{2} - 4\right] \ , \end{split}$$

It will be important to apply this resummation formalism to study the energy dependence of the SSAs
 Work in progress...

