The Threshold Effects of Fermionic Electroweak Multiplet Dark Matter Model

Jin-Wei Wang (王金伟)

Key Laboratory of Particle Astrophysics,

Institute of High Energy Physics, CAS

THFP

PhysRevD.97.035021 [arXiv:1711.05622]

Tianjin, August 21, 2018

- Introduction and motivation
- Matching schemes and threshold effects
- Triplet-Quadruplet fermionic dark matter model
- Results
- Summary

Dark matter in the Universe

 The astrophysical and cosmological observations have provided compelling evidences of the existence of dark matter (DM).

WIMP models

Weakly interacting massive particles (WIMPs) are very compelling DM candidates. WIMPs are typically introduced in the extensions of the SM.

- **Supersymmetry**: the lightest neutralino $(\tilde{\chi}_1^0)$;
- Universal Extra Dimensions: the lightest KK particles $(B^{(1)}, W^{3(1)} \text{ or } v^{(1)})$;

For DM phenomenology, it is quite natural to construct WIMP models by extending the SM with a dark sector consisting of $SU(2)_L$ multiplet, whose neutral components could provide a viable DM candidate

- 1 multiplet in a high dim rep. : minimal DM model [Cirelli et al., 0512090]
 - (DM stability is explained by an 'accidental symmetry')
- 2 types of multiplets: an artificial Z_2 symmetry is usually needed
 - Singlet-doublet DM model [0510064, 0705.4493, 1109,2604]
 - Doublet-triplet DM model [1403.7744, 1707.03094]
 - Triplet-quadruplet DM model [1601.01354, 1711.05622]

Matching and Running

To extrapolate a theory from the electroweak scale to high energies, we require two ingredients:

- (1) the initial values of couplings at low energy scale;
- (2) the RGE running of all parameters.

There are two different matching schemes:

For the tree level matching:
$$\begin{cases} \beta_{SM} & \text{for } \Lambda < \Lambda_{BSM} \\ \beta_{SM} + \beta_{BSM} & \text{for } \Lambda > \Lambda_{BSM} \end{cases}$$

For the loop level matching: consider the loop corrections of BSM to the initial value, and then we use the complete RGE $\beta_{SM} + \beta_{BSM}$

We would like to calculate and compare these two different schemes.

All MS bar parameters have gauge-invariant renormalisation group equations and are gauge invariant. Strumia et .al [arXiv:1307.3536]

So we shall always work in msbar scheme and determine the MS bar parameters in terms of physical observables:

Observables <=> **OS parameters** <=> **MS bar parameters** This can be easily done by using the following relations:

$$\theta_0 = \theta_{\rm OS} - \delta \theta_{\rm OS} = \theta(\bar{\mu}) - \delta \theta_{\overline{\rm MS}}$$
 or $\theta(\bar{\mu}) = \theta_{\rm OS} - \delta \theta_{\rm OS} + \delta \theta_{\overline{\rm MS}}$

The divergent parts are canceled with each other, while for the finite part there is a higher-order discrapancy, but this can be ignored for one-loop level.

$$\theta(\bar{\mu}) = \theta_{\rm OS} - \left. \delta \theta_{\rm OS} \right|_{\rm fin} + \Delta_{\theta}$$

Input values of the SM observables:

$$\begin{array}{rcl} M_W &=& 80.384 \pm 0.014 \; {\rm GeV} & {\rm Pole \; mass \; of \; the \; W \; boson} \\ M_Z &=& 91.1876 \pm 0.0021 \; {\rm GeV} & {\rm Pole \; mass \; of \; the \; Z \; boson} \\ M_h &=& 125.15 \pm 0.24 \; {\rm GeV} & {\rm Pole \; mass \; of \; the \; higgs} \\ M_t &=& 173.34 \pm 0.76 \pm 0.3 \; {\rm GeV} & {\rm Pole \; mass \; of \; the \; top \; quark} \\ V &\equiv (\sqrt{2}G_{\mu})^{-1/2} &=& 246.21971 \pm 0.00006 \; {\rm GeV} & {\rm Fermi \; constant \; for \; \mu \; decay} \\ \alpha_3(M_Z) &=& 0.1184 \pm 0.0007 & {\rm \overline{Ms} \; gauge \; SU(3)_c \; coupling \; (5 \; {\rm flavours})} \end{array}$$

the SM fundamental parameters $(\lambda, m, y_t, g_2, g_Y)$ can be defined by those observables:

$$\lambda_{\rm OS} = \frac{G_{\mu}}{\sqrt{2}} M_h^2, \qquad m_{\rm OS}^2 = M_h^2.$$

$$y_{tos} = 2\left(\frac{G_{\mu}}{\sqrt{2}}M_t^2\right)^{1/2}, \quad g_{2os} = 2\left(\sqrt{2}\,G_{\mu}\right)^{1/2}M_W, \quad g_{Yos} = 2\left(\sqrt{2}\,G_{\mu}\right)^{1/2}\sqrt{M_Z^2 - M_W^2}.$$

Matching and Running

 $\delta^{(i)}$

the one-loop correction of SM parameters: A. Sirlin and R. Zucchini, Nucl. Phys. B 266 (1986) 389

$${}^{11}\lambda_{\rm OS} = \frac{G_{\mu}}{\sqrt{2}}M_h^2 \left\{ \Delta r_0^{(1)} + \frac{1}{M_h^2} \left[\frac{T^{(1)}}{v_{\rm OS}} + \delta^{(1)}M_h^2 \right] \right\} \qquad \delta^{(1)}m_{\rm OS}^2 = 3\frac{T^{(1)}}{v_{\rm OS}} + \delta^{(1)}M_h^2$$

$$\delta^{(1)}y_{t_{\rm OS}} = 2\left(\frac{G_{\mu}}{\sqrt{2}}M_t^2\right)^{1/2} \left(\frac{\delta^{(1)}M_t}{M_t} + \frac{\Delta r_0^{(1)}}{2}\right) \qquad \delta^{(1)}g_{2_{\rm OS}} = \left(\sqrt{2}G_{\mu}\right)^{1/2}M_W \left(\frac{\delta^{(1)}M_W^2}{M_W^2} + \Delta r_0^{(1)}\right)$$

$$\delta^{(1)}g_{Y_{\rm OS}} = \left(\sqrt{2}G_{\mu}\right)^{1/2}\sqrt{M_Z^2 - M_W^2} \left(\frac{\delta^{(1)}M_Z^2 - \delta^{(1)}M_W^2}{M_Z^2 - M_W^2} + \Delta r_0^{(1)}\right)$$

these corrections only depend on mass corrections of higgs and gauge boson and Δr_0

we need to calculate the loop corrections to the muon decay process:

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{1}{2v_0^2} (1 + \Delta r_0) \qquad \Delta r_0^{(1)} = V_W^{(1)} - \frac{A_{WW}^{(1)}}{M_W^2} + \frac{\sqrt{2}}{G_{\mu}} \mathcal{B}_W^{(1)} + \mathcal{E}^{(1)}$$

 V_W is the vertex contribution; A_{WW} is the W self-energy at zero momentum;

 \mathcal{B}_W is the box contribution; \mathcal{E} is the term due to renormalization of exernal legs;

All these terms are computed at zero external momenta.

Triplet-quadruplet DM model PhysRevD.97.035021 [arXiv:1711.05622]

Dark sector Weyl fermions $(SU(2)_L \times U(1)_Y)$:

$$T = \begin{pmatrix} T^+ \\ T^0 \\ -T^- \end{pmatrix} \in (\mathbf{3}, 0), \quad Q_1 = \begin{pmatrix} Q_1^+ \\ Q_1^0 \\ Q_1^- \\ Q_1^- \\ Q_1^- \end{pmatrix} \in (\mathbf{4}, -\frac{1}{2}), \quad Q_2 = \begin{pmatrix} Q_2^{++} \\ Q_2^+ \\ Q_2^0 \\ Q_2^0 \\ Q_2^- \end{pmatrix} \in (\mathbf{4}, +\frac{1}{2})$$

Gauge invariant kinetic terms, mass terms and Yukawa couplings:

$$\mathcal{L}_{T} = iT^{\dagger}\bar{\sigma}^{\mu}D_{\mu}T - (m_{T}a_{ij}T^{i}T^{j} + \text{h.c.})$$
$$\mathcal{L}_{Q} = iQ_{1}^{\dagger}\bar{\sigma}^{\mu}D_{\mu}Q_{1} + iQ_{2}^{\dagger}\bar{\sigma}^{\mu}D_{\mu}Q_{2} - (m_{Q}b_{ij}Q_{1}^{i}Q_{2}^{j} + \text{h.c.})$$
$$\mathcal{L}_{HTQ} = y_{1}c_{ijk}Q_{1}^{i}T^{j}H^{k} + y_{2}d_{ijk}Q_{2}^{i}T^{j}\tilde{H}^{k} + \text{h.c.}$$

There are four independent parameters: m_T, m_Q, y_1, y_2

State mixing

Before the EWSB the mass matrix are:

$$\mathcal{M}_N = \begin{pmatrix} m_T & 0 & 0 \\ 0 & 0 & m_Q \\ 0 & m_Q & 0 \end{pmatrix}, \qquad \mathcal{M}_C = \begin{pmatrix} m_T & 0 & 0 \\ 0 & 0 & -m_Q \\ 0 & -m_Q & 0 \end{pmatrix}$$

Before rewrite the gauge eigenstates into mass eigenstates:

$$\begin{pmatrix} T^{0} \\ Q_{1}^{0} \\ Q_{2}^{0} \end{pmatrix} = \mathcal{N} \begin{pmatrix} \chi_{1}^{0} \\ \chi_{2}^{0} \\ \chi_{3}^{0} \end{pmatrix}, \qquad \begin{pmatrix} T^{+} \\ Q_{1}^{+} \\ Q_{2}^{+} \end{pmatrix} = C_{L} \begin{pmatrix} \chi_{1}^{+} \\ \chi_{2}^{+} \\ \chi_{3}^{+} \end{pmatrix}, \qquad \begin{pmatrix} T^{-} \\ Q_{1}^{-} \\ Q_{2}^{-} \end{pmatrix} = C_{R} \begin{pmatrix} \chi_{1}^{-} \\ \chi_{2}^{-} \\ \chi_{3}^{-} \end{pmatrix}$$

- (1) 3 Majorana fermions, 3 singly charged fermions, 1 doubly charged fermion.
- (2) The triplet and quadruplets are decoupled, and there are some interesting properties for the couplings to higgs, W, and Z boson.
- (3) If Z_2 symmetry is conserved, χ_1^0 will be the excellent DM candidate.

Beta Functions

First of all, we would like to calculate the β function of g_1, g_2, g_3 ;

$$(1) \ \beta(g_{1}) = \beta^{SM}(g_{1}) + \frac{g_{1}^{3}}{(4\pi)^{2}} \left(\sum_{i} \frac{4}{3} n_{f} Q_{i}^{2}\right) = \beta^{SM}(g_{1}) + \frac{g_{1}^{3}}{(4\pi)^{2}} \left(\frac{4}{3} \times 4 \times \left(-\frac{1}{2}\right)^{2} + \frac{4}{3} \times 4 \times \left(\frac{1}{2}\right)^{2}\right) \times \frac{1}{2} = \beta^{SM}(g_{1}) + \frac{g_{1}^{3}}{(4\pi)^{2}} \frac{4}{3} = \frac{1}{16\pi^{2}} \left(\frac{41}{6} + \frac{4}{3}\right) g_{1}^{3};$$

$$(2) \ \beta(g_{2}) = \beta^{SM}(g_{2}) + \left(\frac{-g_{2}^{3}}{(4\pi)^{2}} \left(-\sum_{i} \frac{4}{3} n_{f} C(r)\right)\right) \xrightarrow{C(3) = tr[t^{3}t^{3}] = 2}{C(4) = tr[t^{3}t^{3}] = 5} \rightarrow \beta^{SM}(g_{2}) + \frac{g_{2}^{3}}{(4\pi)^{2}} \left(\frac{4}{3} \times 2 + \frac{4}{3} \times 5 + \frac{4}{3} \times 5\right) \times \frac{1}{2} = \frac{1}{16\pi^{2}} \left(-\frac{19}{6} + \frac{24}{3}\right) g_{2}^{3};$$

$$(3) \ \beta(g_{3}) = \beta^{SM}(g_{3}) = \frac{1}{16\pi^{2}} (-7) g_{3}^{3};$$

For other Yukawa couplings we use the formulas:

$$\frac{\partial g}{\partial \ln \mu} = \beta(g) \qquad \qquad \beta(g) = M \frac{\partial}{\partial M} \left(-\delta_g + \frac{1}{2}g \sum_i \delta_{Z_i} \right)$$

we use PyR@TE compute the two loop beta functions

For higgs quartic couplings we use effective potential:

$$\left(\frac{1}{4}\beta(\lambda) - \gamma\lambda\right)\phi_{c}^{4} = -\mu_{R}\frac{\partial V_{3-4}}{\partial\mu_{R}} \qquad \gamma = \frac{1}{2}M\frac{\partial}{\partial M}\overline{\delta_{h}}$$

el: $V_{eff,3-4} = -\frac{2}{64\pi^{2}}m_{-}^{4}(\phi_{c})\left[\ln\frac{m_{-}^{2}(\phi_{c})}{\mu_{R}^{2}} - \frac{3}{2}\right] - \frac{2}{64\pi^{2}}m_{+}^{4}(\phi_{c})\left[\ln\frac{m_{+}^{2}(\phi_{c})}{\mu_{R}^{2}} - \frac{3}{2}\right]$

For 3-4 model:

$$m_{-} = \frac{\left(M_{T} + M_{Q}\right) - \sqrt{\left(M_{T} + M_{Q}\right)^{2} - 4\left[M_{T}M_{Q} - \phi_{c}^{2}\left(A^{2}y_{1}^{2} + B^{2}y_{2}^{2}\right)\right]}}{2}, \quad m_{+} = \frac{\left(M_{T} + M_{Q}\right) + \sqrt{\left(M_{T} + M_{Q}\right)^{2} - 4\left[M_{T}M_{Q} - \phi_{c}^{2}\left(A^{2}y_{1}^{2} + B^{2}y_{2}^{2}\right)\right]}}{2}$$

The mass correction of higgs:

$$\delta_{3-4}^{(1)}m_h^2 = -\frac{6}{16\pi^2} \left\{ \left(\frac{(y_1 - y_2)^2}{6} \left[(m_Q + m_T)^2 - m_h^2 \right] + \frac{(y_1 + y_2)^2}{6} \left[(m_Q - m_T)^2 - m_h^2 \right] \right\} B_0(m_h, m_Q, m_T) + \left(\frac{y_1^2 + y_2^2}{3} \right) \left[A_0(m_Q) + A_0(m_T) \right] \right\}$$

The mass correction of W and Z boson:

$$\Sigma_T^{WW}(m_w^2) = \frac{(loop - diagrams)_{finite}}{i} = \frac{1}{16\pi^2} (5g_2^2) f(m_w, m_Q, m_Q) + \frac{1}{16\pi^2} (g_2^2) f(m_w, m_T, m_T)$$

$$\Sigma_T^{zz}(m_w^2) = \frac{(loop - diagrams)_{finite}}{i} = \frac{1}{16\pi^2} \left(g_1^2 \sin^2\theta + 5g_2^2 \cos^2\theta\right) f(m_w, m_Q, m_Q) + \frac{1}{16\pi^2} \left(g_2^2 \cos^2\theta\right) f(m_w, m_T, m_T)$$

in which: $f(m_w, m, m) = 2 \times \left[-m_w^2 B_0(m_w, m, m) - 4B_{00}(m_w, m, m) + 2A_0(m) \right]$

The mass correction of W and Z boson only depend on m_T, m_Q .

Running Couplings

For a banch mark pont: $y_1 = 0.5$, $y_2 = 0.7$, $m_T = m_Q = 1TeV$. We will compare: (1) tree/loop level matching scheme; (2) one/two loop RGE;

The stability of vacuum

The present value of the vacuum-decay probability p_0 is

 $H_0 \approx 67.4 \,\mathrm{km/sec}$ Mpc

0

The conditions for different status of vacuum:

- (1) stable: if $\lambda(\Lambda_B) > 0$ until Planck scale;
- (2) metastable: if $\lambda(\Lambda_B) < 0$ and $p_0 < 1$;
- (3) unstable: if $\lambda(\Lambda_B) < 0$ and $p_0 > 1$;

Perturbation constrains

Perturbation constrains

Perturbation constrains

Constrains of vacuum status

Constrains of vacuum status

Constrains of vacuum status

Summary

- I introduce the motivations of the DM research, and investigate the status of vacuum through RGE;
- Introduce the matching scheme and threshold effects, and use triplet-quadruplet dark matter model to illustrate the calculation method;
- Evaluate the effects of one/two loop RGE and tree/loop level of matching schemes;
- According to our calculations, the threshold effects are significant, and it deserves the more careful calculation.

Summary

- I introduce the motivations of the DM research, and investigate the status of vacuum through RGE;
- Introduce the matching scheme and threshold effects, and use triplet-quadruplet dark matter model to illustrate the calculation method;
- Evaluate the effects of one/two loop RGE and tree/loop level of matching schemes;
- According to our calculations, the threshold effects are significant, and it deserves the more careful calculation.

