Review of SM SMEE	I Dim-7 operators in SMEFT	1-loop RG running for Dim-7 operators	Phenomenology	Summary

RG running of the SMEFT dim-7 operators and the relevant phenomenology

Xiaodong Ma School of Physics, Nankai University, Tianjin In collaboration with Prof. Yi Liao

Nankai, Aug 19, 2018

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overvi					
Review of SM	SMEFT 000	Dim-7 operators in SMEFT	1-loop RG running for Dim-7 operators	Phenomenology	Summary 000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Oim-7 operators in SMEFT
- 4 1-loop RG running for Dim-7 operators
- 5 Phenomenology

6 Summary

Review of SM ●000	SMEFT 000	Dim-7 operators in SMEFT	1-loop RG running for Dim-7 operators	Phenomenology	Summary 000

Convention

- (ν)SM field contents: $H, Q, L, u, d, e, B_{\mu}, W_{\mu}^{I}, G_{\mu}^{A}$ (+ sterile neutrino: N),
- Symmetry:

Poincare \otimes Gauge = $T_{1,3} \ltimes SO^{\uparrow}_{+}(1,3) \otimes SU(3)_{\mathcal{C}} \otimes SU(2)_{\mathcal{L}} \otimes U(1)_{\mathcal{V}}$

SM Lagrangian:

$$\mathcal{L}_{\mathsf{SM}} = -\frac{1}{4}G^{A}_{\mu\nu}G^{A\mu\nu} - \frac{1}{4}W^{I}_{\mu\nu}W^{I\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} + (D_{\mu}H)^{\dagger}(D^{\mu}H) + \lambda v^{2}(H^{\dagger}H) \\ -\lambda(H^{\dagger}H)^{2} + \sum_{\Psi=Q,L,u,d,e}\bar{\Psi}i\bar{D}\Psi - \left[\bar{Q}Y_{u}u\tilde{H} + \bar{Q}Y_{d}dH + \bar{L}Y_{e}eH + \text{h.c.}\right]$$

• vSM Lagrangian:

$$\mathcal{L}_{\nu \text{SM}} = \mathcal{L}_{\text{SM}} + \bar{N}\partial N - \left[\frac{1}{2}(NCM_NN) + \bar{L}Y_NN\tilde{H} + \text{h.c.}\right]$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- $D_{\mu} = \partial_{\mu} ig_3 T^A G^A_{\mu} ig_2 T^I W^I_{\mu} ig_1 Y B_{\mu}, \quad \tilde{H}_i = \epsilon_{ij} H^*_j$ $Y_{u,d,e,N}$: the Yukawa couplings;
- M_N : symmetric mass matrix for N.

Review of SM SMEFT **Dim-7 operators in SMEFT** 0000

1-loop RG running for Dim-7 operators

SM fields and physical particles

SM		Befo	After SSB				
Spin	Fields	<i>SO</i> [↑] ₊ (1, 3)	$U(1)_Y \times SU(2)_L \times SU(3)_C$	Physical Particles			
Scalar: 0	Higgs: H	(0,0)	$(\frac{1}{2}, 2, 1)$		h		
				1st Gen.	2d Gen.	3rd Gen.	
	Quark: u	$(0, \frac{1}{2})$	$(\frac{2}{3}, 1, 3)$	u _r , u _b , u _g	c_r, c_b, c_g	t_r, t_b, t_g	
Coincer 1	Quark: Q	$(\frac{1}{2}, 0)$	$(\frac{1}{6}, 2, 3)$				
Spinor: 2	Quark: d	$(0, \frac{1}{2})$	$(-\frac{1}{3}, 1, 3)$	d_r, d_b, d_g	s r, s b, s g	b_r, b_b, b_g	
	-	-	-	νe	ν_{μ}	ν_{τ}	
	Lepton: L	$(\frac{1}{2}, 0)$	$(-\frac{1}{2}, 2, 1)$				
	Lepton: e	$(0, \frac{1}{2})$	$(-\overline{1}, 1, 1)$	е	μ	τ	
	B_{μ} $(\frac{1}{2}, \frac{1}{2})$ $(0, 0)$		(0, 0, 0)	14/± z 0			
Vector: 1	W_{μ}^{\prime}	$(\frac{1}{2}, \frac{1}{2})$	(0, 3, 0)	$\gamma, vv = , z$			
	Gluon: G^A_μ	$(\frac{1}{2}, \frac{1}{2})$	(0, 0, 8)	g	$g^{A}, A = 1,, 8$		

 $SO^{\uparrow}_{+}(1,3) \sim SU(2)_{I} \times SU(2)_{r}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 Review of SM
 SMEFT
 Dim-7 operators in SMEFT

 0000
 000
 000
 000

1-loop RG running for Dim-7 operators

Phenomenology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary

The spectra of SM particles

- A big gap between neutrinos and other particles;
- $M(F_1) < M(F_2) < M(F_3)$ when neutrino's mass ignored.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Problems unanswered by SM

- Experimental side:
 - Neutrino oscillation \rightarrow nonvanishing neutrino mass;
 - The nature of dark matter;
 - Anomaly or bump from collider experiments: g_{μ} 2, $R_{K}(R_{K}^{*})$, ...

• ...

- Theoretical side:
 - Hierarchy problem: $\delta m_h^2 \propto \Lambda^2$;
 - Vacuum stability: $\lambda(\Lambda) \leq 0$;
 - Strong CP: θ_{CP} < 10⁻¹⁰;

• ...

Remark 1: Probably the anomalies are due to the uncertainties both from theory and experiment, and the naturalness problems from theory are people's biased taste of beauty.

Remark 2: Nevertheless, new physics(NP) must be involved from m_{ν} and DM: Top-down: Model building vs Bottom-up: EFT \rightarrow SMEFT

- Assume NP beyond the SM exist, with $\Lambda_{NP} \gg v$;
- Ingredients: SM fields + SM gauge symmetry;
- SMEFT= all possible local, SM gauge invariant operators building from SM fields parameterized by the inverse power of Λ_{NP}, i.e.,

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}^{D-4}} \sum_{D \ge 5} C_i^D \mathcal{O}_i^D,$$

Wilson coefficients C_i^D encode the contribution from unknown NP.

- Merit: Model-independent;
- Connection with full theory: Integrating out the heavy d.o.f in full theory, then running and matching with SMEFT.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The state of the art for the basis of (ν) SMEFT

SMEFT

• Dim-5: $1(\not L \cap B)$ [Weinberg 79] \rightarrow Dim- $D \in$ odd [Liao 10]

$$\mathcal{O}_{LH}^{D} = \left[(L^{\mathsf{T}} \epsilon H) C (L^{\mathsf{T}} \epsilon H)^{\mathsf{T}} \right] (H^{\dagger} H)^{(D-5)/2}$$

- Dim-6: 59(*L* ∩ *B*) + 4(*L* ∩ *B*) [Buchmuller *et al* 86; Grzadkowski *et al* 10]
- Dim-7: 12(∠ ∩ B) + 6(∠ ∩ B) [Lehman 14; 1607.07309]
- Dim-8, 9, ... [Lehman et al 15; Henning et al 15, 17[1706.08520]]

• ν SMEFT:

- Dim-5: 2(∠∩ B) [0904.3244]
- Dim-6: $16(L \cap B) + 1(L \cap B) + 2(L \cap B)$ [0806.0876; **1612.04527**]
- Dim-7: $47(\not L \cap B) + 5(\not L \cap B)$ [1505.05264; **1612.04527**]
- $D \in$ even: $|\not B + \not L| = 0$ vs $D \in$ odd: $|\not B \not L| = 2$ for SMEFT;
- $D \in \text{odd}$: *L* is violated;
- Note: The true counting of complete and independent operators needs the number of flavors, since many operators can be related with flavor symmetry.

The state of the art for the 1-loop RGE

Dim-5: [Babu 93; Antusch et al 01; 1701.08019]

$$16\pi^{2}\mu \frac{d}{d\mu}C_{LH}^{d\,pr} = \left[(3d^{2} - 18d + 19)\lambda - \frac{3}{4}(d - 5)g_{1}^{2} - \frac{3}{4}(3d - 11)g_{2}^{2} + (d - 3)W_{H} \right] C_{LH}^{d\,pr} - \frac{3}{2} \left[(Y_{e}Y_{e}^{\dagger})_{vp}C_{LH}^{d\,vr} + (Y_{e}Y_{e}^{\dagger})_{vr}C_{LH}^{d\,pv} \right],$$

$$W_H = \text{Tr}[3(Y_u^{\dagger}Y_u) + 3(Y_d^{\dagger}Y_d) + (Y_e^{\dagger}Y_e)]$$

- Dim-6: [J. Elias-Miro et al 13; Jenkins et al 13, 14]
- Dim-7: [1607.07309 for 6(∠ ∩ B)+present work 12(∠ ∩ B)]
- Feature 1: holomorphic structure for the γ-matrix → many zeros in γ [1409.0868; Clifford Cheung and Chia-Hsien Shen: 1505.01844]
- Feature 2: Power counting for the γ-matrix [1309.0819;1701.08019].

(ロ) (同) (三) (三) (三) (○) (○)

Summary

Basis for dim-7 operators [Lehman 14; 1607.07309]

	$\psi^2 H^4$ + h.c.	$\psi^2 H^3 D$ + h.c.			
\mathcal{O}_{LH}	$\epsilon_{ij}\epsilon_{mn}(L^iCL^m)H^jH^n(H^{\dagger}H)$	\mathcal{O}_{LeHD}	$\epsilon_{ij}\epsilon_{mn}(L^iC\gamma_{\mu}e)H^jH^miD^{\mu}H^n$		
	$\psi^2 H^2 D^2 + h.c.$		$\psi^2 H^2 X$ + h.c.		
\mathcal{O}_{LHD1}	$\epsilon_{ij}\epsilon_{mn}(L^iCD^{\mu}L^j)H^m(D_{\mu}H^n)$	\mathcal{O}_{LHB}	$g_1 \epsilon_{ij} \epsilon_{mn} (L^i C \sigma_{\mu\nu} L^m) H^j H^n B^{\mu\nu}$		
O_{LHD2}	$\epsilon_{im}\epsilon_{jn}(L^iCD^{\mu}L^j)H^m(D_{\mu}H^n)$	\mathcal{O}_{LHW}	$g_2 \epsilon_{ij} (\epsilon \tau^I)_{mn} (L^i C \sigma_{\mu\nu} L^m) H^j H^n W^{I\mu\nu}$		
	$\psi^4 D$ + h.c.		$\psi^4 H$ + h.c.		
$\mathcal{O}_{\overline{d}uLLD}$	$\epsilon_{ij}(\bar{d}\gamma_{\mu}u)(L^{i}CiD^{\mu}L^{j})$	$\mathcal{O}_{\bar{e}LLLH}$	_{€ij} ∈ _{mn} (ēL ⁱ)(L ^j CL ^m)H ⁿ		
		$\mathcal{O}_{\overline{d}LQLH1}$	$\epsilon_{ij}\epsilon_{mn}(\bar{d}L^i)(Q^jCL^m)H^n$		
		O _{dLQLH2}	$\epsilon_{im}\epsilon_{jn}(\bar{d}L^i)(Q^jCL^m)H^n$		
		OdlueH	$\epsilon_{ij}(\bar{d}L^i)(uCe)H^j$		
		OQULLH	$\epsilon_{ij}(\bar{Q}u)(LCL^i)H^j$		
$\mathcal{O}_{\overline{L}OddD}$	$(\overline{L}\gamma_{\mu}Q)(dCiD^{\mu}d)$	0 I dud Ĥ	(Ēd)(uCd)Ĥ		
<i>O</i> _{ēdddD}	$(\bar{e}\gamma_{\mu}d)(dCiD^{\mu}d)$	\mathcal{O}_{LdddH}	(Ēd)(dCd)H		
		<i>O</i> _{ēQddĤ}	$\epsilon_{ij}(\bar{e}Q')(dCd)\tilde{H}^{j}$		
		Ο _{LdQQĤ}	$\epsilon_{ij}(\bar{L}d)(QCQ^i)\tilde{H}^j$		

- Neutrino mass: O_{LH};
- Magnetic moment: O_{LHB}, O_{LHW};

Review of SM	SMEFT	Dim-7 operators in SMEFT
		000

1-loop RG running for Dim-7 operators

Phenomenology Summary

Flavor structure of the basis

Class	Operator	flavor symmetries
$\psi^2 H^4$	\mathcal{O}_{LH}	$\mathcal{O}_{LH}^{pr} - p \leftrightarrow r = 0$
$\psi^2 H^3 D$	\mathcal{O}_{LeHD}	X
$\psi^2 H^2 D^2$	\mathcal{O}_{LHD1}	$(\mathcal{O}_{LDH1}^{pr} + \mathcal{K}^{pr}) - p \leftrightarrow r = 0$
	\mathcal{O}_{LHD2}	$\left[4\mathcal{O}_{LHD2}^{pr}+2(Y_{e})_{rv}\mathcal{O}_{LeHD}^{pv}-\mathcal{O}_{LHW}^{pr}+2\mathcal{K}^{pr}\right]-p\leftrightarrow r=\mathcal{O}_{LHB}^{pr}$
$\psi^2 H^2 X$	\mathcal{O}_{LHB}	$\mathcal{O}_{LHB}^{pr} + p \leftrightarrow r = 0$
	\mathcal{O}_{LHW}	×
$\psi^4 H$	$\mathcal{O}_{\bar{e}LLLH}$	$(\mathcal{O}_{\overline{e}LLLH}^{prst} + r \leftrightarrow t) - r \leftrightarrow s = 0$
	O _{dLQLH1}	×
	O _{dLQLH2}	Х
	OdLueH	X
	O _{QuLLH}	X
$\psi^4 D$	$\mathcal{O}_{\overline{d}uLLD}$	$\left[\mathcal{O}_{\bar{d}uLLD}^{prst} + (Y_d)_{VP} \mathcal{O}_{\bar{d}uLLH}^{Vrst} - (Y_u^{\dagger})_{VV} \mathcal{O}_{\bar{d}LQLH2}^{psvt}\right] - s \leftrightarrow t = 0$
$B : \psi^4 H$	$\mathcal{O}_{\bar{L}dud\tilde{H}}$	×
	$\mathcal{O}_{\bar{L}dddH}$	$\mathcal{O}_{\bar{L}dddH}^{prst} + s \leftrightarrow t = 0, \mathcal{O}_{\bar{L}dddH}^{prst} + \mathcal{O}_{\bar{L}dddH}^{pstr} + \mathcal{O}_{\bar{L}dddH}^{ptrs} = 0$
	$\mathcal{O}_{\overline{e}Qdd\widetilde{H}}$	$\mathcal{O}_{\bar{o}Odd\tilde{H}}^{prst} + s \leftrightarrow t = 0$
	0 Idooñ	X
B : ψ ⁴ D	$\mathcal{O}_{\widetilde{L}QddD}$	$\left[\mathcal{O}_{\bar{L}OddD}^{prst} + (Y_u)_{rv}\mathcal{O}_{\bar{L}dud\tilde{H}}^{psvt}\right] - s \leftrightarrow t = -(Y_e^{\dagger})_{vp}\mathcal{O}_{\bar{e}Odd\tilde{H}}^{vrst} - (Y_d)_{rv}\mathcal{O}_{\bar{L}dddH}^{pvst}$
	$\mathcal{O}_{\bar{e}dddD}$	$\mathcal{O}_{\bar{e}dddD}^{\rho r s t} - r \leftrightarrow s = (Y_d^{\dagger})_{tv} \mathcal{O}_{\bar{e}Qdd\bar{H}}^{\rho v r s}, \ (\mathcal{O}_{\bar{e}dddD}^{\rho r s t} + r \leftrightarrow t) - s \leftrightarrow t = (Y_e)_{vp} \mathcal{O}_{\bar{L}dddH}^{v r s t}$

$$\mathcal{K}^{\textit{pr}} \equiv (Y_{\textit{u}})_{\textit{vw}} \mathcal{O}_{\bar{\textit{Q}}\textit{u}LLH}^{\textit{vwpr}} - (Y_{\textit{d}}^{\dagger})_{\textit{vw}} \mathcal{O}_{\bar{\textit{d}}\textit{L}\textit{U}L2}^{\textit{vpwr}} - (Y_{\textit{e}}^{\dagger})_{\textit{vw}} \mathcal{O}_{\bar{\textit{e}}\textit{L}\textit{LLH}}^{\textit{vwpr}}$$

Note: such relations make the RG running complicated, since we need to choose a basis with flavor specified to determine γ -matrix.

 Review of SM
 SMEFT
 Dim-7 operators in SMEFT

 0000
 000
 00●

1

1-loop RG running for Dim-7 operators

Phenomenology Summary

An example for determining the basis

• Determine the relation in class $\psi^4 D$:

$$\begin{split} \mathcal{D}_{\overline{d}uLLD}^{prst} &- s \leftrightarrow t \\ &= \epsilon_{ij}(\overline{d}_{p}\gamma_{\mu}u_{r})(L_{s}^{i}CiD^{\mu}L_{t}^{j}) - s \leftrightarrow t \\ &\stackrel{\text{IBP}}{=} -\epsilon_{ij}(\overline{d}_{p}i\overleftarrow{D}u_{r})(L_{s}^{i}CL_{t}^{j}) - \epsilon_{ij}(\overline{d}_{p}i\overrightarrow{D}u_{r})(L_{s}^{i}CL_{t}^{j}) \\ &\stackrel{\text{EoMs}}{=} (Y_{d})_{vp} \Big[\epsilon_{ij}\delta_{mn}(\overline{Q}_{v}^{m}u_{r})(L_{s}^{i}CL_{t}^{j})H^{n}\Big] - (Y_{u}^{\dagger})_{rv} \Big[\epsilon_{ij}\epsilon_{mn}(\overline{d}_{p}Q_{v}^{m})(L_{s}^{i}CL_{t}^{j})H^{n}\Big] \\ &\stackrel{\text{Fierz}}{=} \Big[-(Y_{d})_{vp}\mathcal{O}_{\overline{Q}uLLH}^{vrst} + (Y_{u}^{\dagger})_{rv}\mathcal{O}_{\overline{d}LQLH2}^{psvt}\Big] - s \leftrightarrow t \end{split}$$

- IBP: Integration by part;
- EoM: Equation of motion ~ field redefinition;
- Fierz: Fierz identity for fermion bilinears.
- Such relations indicate the true number of basis must include flavor.

Review of SM	SMEFT	Dim-7	operators	in SMEFT

Basics for RG evolution

Dimensional regularizaton($d = 4 - 2\epsilon$) + $\overline{\text{MS}}$ scheme + R_{ξ} -gauge

$$16\pi^2\beta_i = 16\pi^2\mu\frac{d}{d\mu}C_i = \sum_j \gamma_{ij}C_j$$

- Focus only on the correction from SM interactions: leading order in the expansion of Λ;
- Calculation of β -function or γ is boiling down to determine the counterterm:

$$C^{\mathsf{T}}\mathcal{O}_{b} \xrightarrow{1-\mathrm{loop}} -\frac{1}{\epsilon}C^{\mathsf{T}}(\mathcal{P}\mathcal{O}_{b}+\mathcal{R}\mathcal{O}_{r}) \to -\frac{1}{\epsilon}C^{\mathsf{T}}(\mathcal{P}+\mathcal{R}\mathcal{M})\mathcal{O}_{b} \quad \text{with} \quad \mathcal{O}_{r}=\mathcal{M}\mathcal{O}_{b}$$

$$\gamma_{ij} = \sum_{\alpha} \rho_{\alpha} g_{\alpha} \Big(\frac{\partial P_{ji}}{\partial g_{\alpha}} + \frac{\partial R_{jk}}{\partial g_{\alpha}} M_{ki} + R_{jk} \frac{\partial M_{ki}}{\partial g_{\alpha}} \Big)$$

$$\rho_{\alpha} = 1 \text{ for } g_{\alpha} \in \{g_{1,2,3}, Y_{e,d,u}\} \text{ and } \rho_{\alpha} = 2 \text{ for } g_{\alpha} = \lambda.$$

• ξ independent as a check for the calculation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Review of SM SMEFT Dim-7 operators in SMEFT

1-loop RG running for Dim-7 operators

Phenomenology

Summary

An example for 1-loop correction from SM interactions to \mathcal{O}_{LH}

500

ъ

Review of SM	SMEFT	Dim-7 operators in SMEF

1-loop RG running for Dim-7 operators

Phenomenology Summary

The structure and power counting of γ -matrix

	$(\omega, \bar{\omega})$	(5, 3)	(5, 3)	(5, 3)	(5, 5)	(5, 5)	(5, 5)	(7,3)	(7, 3)	(7, 3)	(7,3)	(7, 3)	(7,5)
$(\omega, \bar{\omega})$	γ_{ij}	\mathcal{O}_{LHD1}	\mathcal{O}_{LHD2}	$\mathcal{O}_{\overline{d}uLLD}$	\mathcal{O}_{LeHD}	<i>O</i> _{dLueH}	$\mathcal{O}_{\overline{Q}ULLH}$	$\mathcal{O}_{\bar{e}LLLH}$	$\mathcal{O}_{\overline{d}LQLH1}$	$\mathcal{O}_{\overline{d}LQLH2}$	$g_1 \mathcal{O}_{LHB}$	$g_2 \mathcal{O}_{LHW}$	\mathcal{O}_{LH}
(5, 3)	O_{LHD1}	g^2	g^2	g^2	0	0	0	0	0	0	0	0	0
(5, 3)	O_{LHD2}	g^2	g ²	0	0	0	0	0	0	0	0	0	0
(5, 3)	$\mathcal{O}_{\overline{d}uLLD}$	g^2	g^2	g^2	0	0	0	0	0	0	0	0	0
(5, 5)	0 _{LeHD}	g^3	g^3	0	g^2	g^2	0	0	0	0	$\Sigma \rightarrow 0$	$\Sigma \rightarrow 0$	0
(5, 5)	0 dLueH	g^3	g^3	g^3	g^2	g ²	g^2	0	Y _u Y _e	Y _u Y _e	0	0	0
(5, 5)	$\mathcal{O}_{\overline{Q}ULLH}$	g^3	g^3	g^3	0	g^2	g^2	Y _u Y _e	Y _u Y _d	Y _u Y _d	0	0	0
(7, 3)	<i>O</i> _{ēLLLH}	g^3	g^3	0	0	0	$Y_u^{\dagger} Y_e^{\dagger}$	g^2	g^2	g^2	g^3	g^3	0
(7, 3)	O _{dLQLH1}	g^3	g^3	g^3	0	$Y_u^{\dagger} Y_e^{\dagger}$	$Y_{u}^{\dagger}Y_{d}^{\dagger}$	g^2	g ²	g^2	g^3	g^3	0
(7, 3)	O _{dLQLH2}	g^3	g^3	g^3	0	$Y_u^{\dagger} Y_e^{\dagger}$	$Y_{u}^{\dagger}Y_{d}^{\dagger}$	g^2	g ²	g ²	g^3	g^3	0
(7, 3)	$g_1 \mathcal{O}_{LHB}$	g ²	g ²	0	Υ¢	0	0	g^1	g^1	0	g^2	g^2	0
(7, 3)	$g_2 \mathcal{O}_{LHW}$	g ²	g ²	0	Υ¢	0	0	g^1	g^1	g^1	g^2	g^2	0
(7, 5)	\mathcal{O}_{LH}	g^4	g^4	0	g^3	0	g^3	g^3	g^3	0	0	g^4	g^2

 The zeros in the gray area can be explained using non-renormalization theorem in [1505.01844]

• The power of $g \sim Y_{e,d,u} \sim g_{1,2,3} \sim \sqrt{\lambda}$ can be explained in [1701.08019], for n-loop the power is

 $\chi[\gamma_{jj}] = 2n + \chi[\mathcal{O}_j] - \chi[\mathcal{O}_j]$

where $\chi[\Psi] = \frac{1}{2}, \ \chi[X_{\mu\nu}] = 1, \ \chi[D_{\mu}] = 1, \ \chi[g_{1,2,3}] = \chi[Y] = 1, \ \chi[\lambda] = 2.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Review of SM SMEFT Dim-7 operators in SMEFT

1-loop RG running for Dim-7 operators

Phenomenology •ooooo

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

Neutrino transition magnetic moment

After SSB,

$$\mathcal{L} \supset \frac{1}{2} v^2 e \Big(C_{LHB}^{pr} - C_{LHW}^{pr} \Big) (\nu_p C \sigma^{\mu\nu} P_L \nu_r) F_{\mu\nu} + \text{h.c.}$$

Define

$$\Lambda_{pr}=2v^2e\Big(C_{LHB}^{pr}-C_{LHW}^{pr}\Big)$$

Take the constraints from [1510.01684], we obtain

$$\begin{split} \left| \left(U^{\mathsf{T}} (C_{LHB} - C_{LHW}) U \right)_{12} \right| &\leq \frac{3.1 \times 10^{-11} \mu_B}{ev^2} \sim 2 \left(\frac{1}{100 \text{TeV}} \right)^3, \\ \left| \left(U^{\mathsf{T}} (C_{LHB} - C_{LHW}) U \right)_{13} \right| &\leq \frac{4.0 \times 10^{-11} \mu_B}{ev^2} \sim 2.6 \left(\frac{1}{100 \text{TeV}} \right)^3, \\ \left| \left(U^{\mathsf{T}} (C_{LHB} - C_{LHW}) U \right)_{23} \right| &\leq \frac{5.6 \times 10^{-11} \mu_B}{ev^2} \sim 3.6 \left(\frac{1}{100 \text{TeV}} \right)^3. \end{split}$$

where μ_B is the Bohr magneton.

1-loop RG running for Dim-7 operators

Phenomenology

Summary

The relevant Feynman diagrams for $0\nu\beta\beta$

- Short-range interactions: (a) and (b) → A;
- Long-range interactions: (c) and (d) \rightarrow B;
- Mass mechanism: (e)→ C;

Review of SM SMEFT Dim-7 operators in SMEFT

1-loop RG running for Dim-7 operators

Phenomenology Summary

Effective field theory description

After integrating out the W- gauge boson, the effective Lagrangian contributing to $0\nu\beta\beta$ is

• Short-range interaction: $\mathcal{L}_S = \sum_{n=1}^2 \mathcal{C}_{Sn} \mathcal{O}_{Sn}$ [Deppisch *et al* 1208.0727; Horoi *et al* 1706.05391]

$$\mathcal{O}_{S1} = \left[(\overline{u}\gamma^{\mu}P_{L}d)(\overline{u}\gamma_{\mu}P_{L}d)(\overline{e}P_{R}e^{C}) \right], \quad C_{S1} = -2\sqrt{2}G_{F}C_{LHD1}^{\dagger 11} = 4\frac{G_{F}^{2}}{m_{p}}\epsilon_{3}^{LLR},$$

$$\mathcal{O}_{S2} = \left[(\overline{u}\gamma^{\mu}P_{L}d)(\overline{u}\gamma_{\mu}P_{R}d)(\overline{e}P_{R}e^{C}) \right], \quad C_{S2} = -2\sqrt{2}G_{F}C_{duLLD}^{\dagger 111} = 4\frac{G_{F}^{2}}{m_{p}}\epsilon_{3}^{LRR}.$$

• Long-range interaction: $\mathcal{L}_L = \sum_{n=0}^{5} C_{Ln} \mathcal{O}_n$

Review of SMSMEFTDim-7 operators in SMEFT0000000000

1-loop RG running for Dim-7 operators

Phenomenology

Summary

The experimental constraints •••

Assume only one operator dominates each time [Horoi et al 1706.05391]:

	⁴⁸ Ca	⁷⁶ Ge	⁸² Se	¹³⁰ Te	¹³⁶ Xe
$ \epsilon_3^{LLR} $	3.8×10^{-7}	8.9×10^{-9}	$6.7 imes 10^{-8}$	2.0×10^{-8}	4.1×10^{-9}
$ \epsilon_3^{LRR} $	6.3×10^{-7}	1.4×10^{-8}	1.1×10^{-7}	3.2×10^{-8}	$6.7 imes 10^{-9}$
$ \epsilon_{V-A}^{V+A} $	1.1×10^{-7}	2.2×10^{-9}	1.7×10^{-8}	5.1×10^{-9}	1.1×10^{-9}
$ \epsilon_{V+A}^{V+A} $	1.3×10^{-5}	$4.3 imes 10^{-7}$	2.2×10^{-6}	$9.3 imes 10^{-7}$	2.0×10^{-7}
$ \epsilon_{S\pm P}^{S+P} $	3.4×10^{-7}	7.9×10^{-9}	6.1×10^{-8}	1.4×10^{-8}	2.9×10^{-9}
$ \epsilon_{TR}^{TR} $	1.8×10^{-8}	7.9×10^{-10}	$5.9 imes 10^{-9}$	2.0×10^{-9}	4.2×10^{-10}

$(\frac{1}{100 \text{ TeV}})^3$	⁴⁸ Ca	⁷⁶ Ge	⁸² Se	¹³⁰ Te	¹³⁶ Xe
$ C_{LHD1}^{11\dagger} $	6.68×10^{3}	0.156×10^{3}	1.178×10^{3}	$0.352 imes 10^3$	0.072×10^{3}
$ C_{\overline{d}uLLD}^{1111\dagger} $	11.076×10^{3}	$0.246 imes 10^3$	1.934×10^{3}	$0.563 imes 10^{3}$	0.118×10^{3}
$ C_{LeHD}^{11\dagger} $	0.021×10^{3}	0.4	3.2	1.0	0.2
C_{\bar{d}LueH}^{1111†}	$4.927 imes 10^3$	0.163×10^{3}	$0.834 imes 10^3$	$0.352 imes 10^3$	0.076×10^{3}
$ C_{\bar{Q}uLLH}^{1111\dagger} $	0.064×10^{3}	1.5	$0.012 imes 10^3$	2.7	0.5
$ C_{\bar{d}LQLH1}^{1111\dagger} $	0.129×10^{3}	3.0	$0.023 imes 10^3$	5.3	1.1
$ C_{\bar{d}LQLH2}^{1111\dagger} $	0.051×10^{3}	0.9	7.1	1.1	0.2

 \Rightarrow The bound for the NP scale is around 10 - 100TeV if the O(1) coupling is assumed.

Review of SM SMEFT Dim-7 operators in SMEFT

1-loop RG running for Dim-7 operators

Phenomenology Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The evolution of the Wilson coefficient

In the RG equation we take all Yukawa couplings except top-Yukawa to zero, and neglect the threshold effect from EW scale to the hadron scale for simplicity:

- Point to the similar scale as the constraint from transition magnetic moment, i.e., around 100TeV;
- The running effect is small.

0000	000	000	000	ococoo●	ooo		
Other processes							

- Nuclear muon-positron/anti-muon conversion: $\mu^- X \rightarrow e^+(\mu^+)X'$.
- Trimuon production from neutrino-muon collision: $\nu p \rightarrow \mu^{-} \mu^{+} \mu^{+}$.
- Production of Majorana neutrino from electron-proton collison: $e^+p \rightarrow \overline{\nu} l_1^+ l_2^+ X$ from HERA.
- The tau lepton decaying into three muons: $au
 ightarrow \mu^- \mu^- \mu^+$
- Kaon meson decaying into a pair of same charged leptons plus a pion: *K*[±] → *I*[±]*I*[±]π[∓].
- Also for the lepton number violating decays from other mesons like *D* and *B*.

A D F A 同 F A E F A E F A Q A

Review of SM	SMEFT 000	Dim-7 operators in SMEFT	1-loop RG running for Dim-7 operators	Phenomenology	Summary ●00
Summ	ary				

Basis of Dim-7 operators in (ν)SMEFT determined up to Dim-7;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1-loop RGE of Dim-7 operators finished;
- New features of γ -matrix in SMEFT is analyzed;
- The rich phenomenologies explored, especially $0\nu\beta\beta$.

Review of SM	SMEFT	Dim-7 operators in SMEFT	1-loop RG running for Dim-7 operators	Phenomenology	Summary
					000

Thanks for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Summary

Non-renormalization theorem [1505.01844] •••

Define the **holomorphic** and **anti-holomorphic** weight of an operator \mathcal{O} as

 $\omega(\mathcal{O}) = n(\mathcal{O}) - H(\mathcal{O}), \bar{\omega}(\mathcal{O}) = n(\mathcal{O}) + H(\mathcal{O}).$

 $n(\mathcal{O})$: the minimal # of particles generated by the operator \mathcal{O} ; $h(\mathcal{O})$: the total helicity of the operator \mathcal{O} . **The weights of the SM fields**:

SM fields	Н	Ψ	Ψ	D	X_	<i>X</i> ₊
weights $(\omega, \bar{\omega})$	(1, 1)	$(\frac{1}{2}, \frac{3}{2})$	$(\frac{3}{2}, \frac{1}{2})$	(0, 0)	(0, 2)	(2, 0)

Where Ψ is choosing as SM right handed fermion fields $(\overline{Q^C}, L^C, u, d, e)$ and $\overline{\Psi}$ as its left-handed counterpart, $X_{\pm}^{\mu\nu} = X^{\mu\nu} \mp i/2\epsilon^{\mu\nu\rho\sigma}X_{\rho\sigma}$. **Theorem:** an operator \mathcal{O}_i can only be renormalized by an operator \mathcal{O}_j if $\omega_i \geq \omega_j \cup \overline{\omega}_i \geq \overline{\omega}_j$, i.e.,

 $\gamma_{ij} = 0$ when $\omega_i < \omega_i$ or $\bar{\omega}_i < \bar{\omega}_j$,

and the anomalous case is from the non-holomorphic Yukawa coupling.