Higgs property Measurement @ ATLAS

Yanping Huang

IHEP, CHINA

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

Higgs particle

- The Higgs particle is responsible for the masses of elementary particles, while was the missing corner stone of the SM before LHC.
- Great effects of both the theoretical and experimental HEP Higgs community before LHC
 - precise predictions from the theory community (early days to LHCHXWG)
 - excellent tools due to previous experiments (e.g. PDFs from HERA)
 - restrictions on the m_H phase space

Before LHC:

m_H > 15 GeV (NA31, 1989)

 $m_{\rm H} > 114.4 \text{ GeV}$ (LEP, 2000)

 $m_{\rm H} < 156 \text{ GeV OR } m_{\rm H} > 177 \text{ GeV}$ (Tevatron, 2011)

Ш

ш

LHC Timely Discovery

Summer 2011: EPS and Lepton-Photon

First (and last) focus on limits (scrutiny of the p₀)

- December 2011: CERN Council
 First hint
- Summer 2012: CERN Council and ICHEP

Discovery on 4th of July 2012:

- Higgs-like boson at ~125GeV
- 5.9σ @ATLAS, 5σ @CMS (*PLB, 716, 2012*)
- December 2012: CERN Council

A new era of particle physics — measure the properties of the new particle

 October 2013: Nobel prize to Englert and Higgs

Higgs production and decay @ LHC

Panorama of Higgs analysis

			g 0000000 q		q — — H			
Channel	ggF	VBF	g 0000000 (a) q		- q			
			W,Z W,Z	$f = \frac{1}{2} \xrightarrow{g} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	Mass	CP	X-sec.	Width
	$g \xrightarrow{(a)} g \xrightarrow{(a)} g$	\overline{q} (b) \overline{q} \overline{q}	q (c) W, Z	$f \otimes g \otimes $	Ē			
γγ	W,Z W		$\sqrt{}$	$\sqrt{\sqrt{1}}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
ZZ*(4l)	q q $w, z(c)$ (c)	(d)	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
WW*(lvlv)	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{}$	$\sqrt{\sqrt{1}}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
ττ	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$		$\sqrt{\sqrt{1}}$		\checkmark		
bb	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{\sqrt{1}}$				
Ζγ	$\sqrt{\sqrt{1}}$	$\sqrt{}$						
γ*γ	\checkmark	\checkmark						
μμ	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$						
invisible	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{}$					

 \checkmark ready @run1, but no yet @ run2, \checkmark still on the way

Higgs Mass

• Precise measurement with excellent detector performance : $\sigma(m_H)/m_H \sim 0.17\%$.

Single experiments are better/comparable w.r.t. ATLAS+CMS Run-1 combination

Still dominated by statistical uncertainties, uncertainty on coupling ~ 0.5%

Mass Measurement: Applications

Higgs Width

It is impossible to extract the coupling and Higgs width separately from on-shell cross section measurement \rightarrow Importance of $\Gamma_{\rm H}$ measurement.

$$\sigma_{i \to H \to f}^{on-shell}(SM) \sim \frac{g_i^2 g_f^2}{\Gamma_H}$$

 $m_{\rm H}\,{=}\,125GeV \rightarrow \Gamma_{\rm H}\,{=}\,4.07MeV$

 $\Gamma_{\rm H}$ cannot be accessed directly due to the experiment resolution

Run-1 direct Higgs width	measurement:
--------------------------	--------------

Г: obs.(exp.) @ 95% CL	Н→үү	H→ZZ
ATLAS	5.0 (6.2) GeV	2.6 (6.2) GeV
CMS	2.4 (3.1) GeV	3.4 (2.8) GeV
Latest CMS:		1.1 (1.6) GeV

3 orders of magnitude larger than SM width

Indirect Higgs Width Measurement

Extract the Higgs width with the mass shift from the interference of the $H \rightarrow \gamma \gamma$ w.r.t the continuum background (gg $\rightarrow \gamma \gamma$ box diagrams)

Comprehensive Measurements (*a*) **Run2**

.0

$\begin{array}{c} \mu = 0.98 \pm 0.14 (\text{stat.})^{+0.17}_{-0.16} (\text{syst.}) \\ H \longrightarrow 0.0 \end{array}$

- More precise measurements in future $2_{1.20^{+0.20}_{-0.18}}$ $\mu = 1.06^{+0.36}_{-0.33}$
 - Differential / Fiducial cross section measurement (limited by the sensitivity)
 - Branch ratio measurement for $H \rightarrow bb$
 - Heavy resonance search in ZH channel

40 60 80 100 120 140 160 180 200

st)

st)

7

scovery

au au

tons)

ATLAS (up to 80 fb⁻¹) Run-2: **5.8**σ (4.9σ exp.) Run-I+Run-2: **6.3** σ (5.1 σ exp.)

CMS Run-I+Run-2: **5.2** σ (4.2 σ exp.)

More study in t_{κ_V}

- The discovery in each individual channel
 - + $H \rightarrow \gamma \gamma$: dominated by the Stats. Un.
 - + H→multi-lepton: size theoretical uncertainty and mis-modeling effect

 $\mu_{tH} < 26.5 \ (13.6 \ \text{exp.})$

- + H→bb : Large background contamination
- Further constraint on the κt sign
- CP measurement
- bbH

Higgs Measurement Methodology

Run1 legency

Production process	Measured significance (σ)	Expected significance (σ)
VBF	5.4	4.6
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
$H \to \tau \tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

Signal strength

Observe all main production modes.

Significance obs (exp.)	ATLAS+CMS Run-I	ATLAS (single exp)
VBF	5.4σ (4.6σ)	6.5σ (5.3σ)
VH	3.5σ (4.2σ)	5.3σ (4.8σ)
ttΗ	4.4σ (2.0σ)	5.8σ (5.3σ)

к-framework

Good agreement with the SM prediction

Fiducial and diff

┛ 1.2

320

⊃ 1.2

0

0.2 0.4

0.6

0.8

1.2

120

100

60

80

140

160

180 200

ATLAS Simulation Preliminary

2.2 2.4

Cross section combination between $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$

Fiducial and Differential cross section measurement

- * Measurement designed as model independent as possible.
- * Direct comparison with theoretical predictions at particle level.
- * A wide and diverse range of physical phenomena to be probed:
 - Higgs boson kinematics, Jet activity, VBF-sensitive variables, Spin-CP sensitive variables
- Differential X-sections (20 variables):

- Fiducial X-sections:
 - 1-/2-/3- jet and inclusive regions
 - Inclusive 1-lepton / MET / VBF / VH enriched regions

Simplified template cross section

Di-Higgs search

Getting close to 10*SM rate for Di-Higgs production

 $H \rightarrow Z\gamma$

• Similar to $H \rightarrow \gamma \gamma$ ones via **loop interaction** (BR($H \rightarrow Z \gamma$) =0.15%, BR($H \rightarrow \gamma \gamma$)

BD

Higgs Projection @ HL_LHC

Summary

Comprehensive Higgs property measurements: mass, width, fiducial/differential cross section, simplified template cross section.

Principal production modes:

Observation: ggH, VBF, ttH, VH

Principal decay modes:

- Observation: γγ, WW, ZZ, ττ, bb
- Probe coupling to 2nd / 1st generation

Excellent agreement with SM so far.

Plan to have a regular theory-experiment discussion:

EXP-PH-TH-COMM@maillist.ihep.ac.cn

Contactor: Minshui Chen, Yanping Huang, Hao Zhang