ATLAS 实验综述

· Grant - -

Xuai Zhuang (庄胥爱)

IHEP, Beijing, China

第十三届TeV物理工作组学术研讨会, 18-21 Aug. 2018

中國科學院為能物記編完所 Institute of High Energy Physics Chinese Academy of Sciences

Outline

- Introduction of LHC, ATLAS
- SM Precision Measurements
- Higgs Measurements and BSM Higgs Search
- BSM Physics Search
- Conclusion and Outlook

HCb

- 世界最大,能量最高的加速器,进行最前沿的粒子物理研究
- 质心系能量14TeV (Tevatron的7倍),可以发现5TeV以下的较重的新粒子
- 积分亮度10³⁴ cm⁻² s⁻¹ (Tevatron 的100倍),可以发现微小衰变截面的稀有事例

CERN

ATLAS and CMS detector @ LHC ATLAS and CMS: two multi-purpose detectors @LHC

A Toroidal LHC ApparatuS

- 42m×22m, 7000 ton
- Solenoid + Toroidal magnet (2T)

CMG

- Fine granularity liquid Ar/Tile calorimeters

Large Hadron Collider (LHC):

Proton-Proton synchrotron World's highest and largest collider

Compact Muon Spectrometer

ATLAS

- 21m×15m, 125000 ton
- All silicon trackers, 4T solenoid magnet
- PbWO4+Tile calorimeters

ATLAS 中国组

单位	成员	作者	physicists	博士生	硕士生
高能所	57	24	18	20	0
南京大学	6	3	4	2	0
清华大学	5	1	1	4	0
中国科大	58	27	20	20	9
山东大学	25	11	6	6	10
上海交大	19	12	9	10	0
李政道所	3	1	1	4	0
总数	173	79	59	66	19

作者数占ATLAS总数 2.8%

▶ Institute of High Energy Physics (高能所)

娄辛丑(千人)、Joao Costa (外专千人)、 欧阳群、庄胥爱(百人)、方亚泉(青千)、朱宏博 (青千)、黄燕萍(青千)、梁志均(百人)、史欣(青千)、李一鸣(青千)、吕峰、单连友、徐过

Nanjing University (南大)

陈申见、祁鸣、金山(万人、杰青)、张雷

▶ Tsinghua University (清华)

陈新(青千)

IHEP-NJU-THU cluster

- ► Shandong University (山大)
- 张学尧、马连良(青千)、冯存峰、祝成光、李海峰
- Shanghai Jiao Tong University (上海交大)
 杨海军(青千)、李亮(青千)、郭军(青千)、周宁(青千)

T. D. Lee Institute (李政道所) 李教

- ▶ University of Science and Technology of China (科大)
 - 赵政国(院士、千人)、韩良(万人、杰青)、蒋一、刘衍文(优青)、刘建北(青千)、彭海平 (杰青、百人)、朱莹春、刘明辉、吴雨生(青千)、Rustem Ospanov

USTC-SJTU-SDU cluster

LHC Performance and data-set

Detector performance Highlights

Outline

Introduction of LHC, ATLAS

- SM Precision Measurements
- Higgs Measurements and BSM Higgs Search
- BSM Physics Search
- Conclusion and Outlook

Standard Model Production Cross Section Measurements

Status: July 2018

Top measurement

Top mass

WZ+jj production

Differential EW cross-section:

Process sensitive to triple and quartic gauge couplings and anomalous couplings

Observation of electroweak WZjj process: 5.6 σ (3.3 σ) obs (exp)

Total fiducial WZ jet jet cross section: $\sigma_{EW} (pp \rightarrow W^{+-}Z \text{ jet jet}) = 0.57 + -0.15 \text{ fb}$ LO (Sherpa): 0.32 + -0.03 fb

ATLAS-CONF-2018-033

Outline

- Introduction of LHC, ATLAS
- SM Precision Measurements
- Higgs Measurements and BSM Higgs Search
- BSM Physics Search
- Conclusion and Outlook

Higgs production/decay modes

Decay mode	Branching fraction [%]	中国组贡献
$H \rightarrow bb$	57.5 ± 1.9	1
$H \rightarrow WW$	21.6 ± 0.9	1
$H \rightarrow gg$	8.56 ± 0.86	1
$H \rightarrow \tau \tau$	6.30 ± 0.36	1
$H \rightarrow cc$	2.90 ± 0.35	
$H \rightarrow ZZ$	2.67 ± 0.11	1
$H ightarrow \gamma \gamma$	0.228 ± 0.011	1
$H \rightarrow Z\gamma$	0.155 ± 0.014	1
$H ightarrow \mu \mu$	0.022 ± 0.001	1

(a) Gluon-gluon fusion (ggF) observed since 2012 and used for precision measurement (~10%)

Prod. mode	Obs.	Exp.	Ref.
(c) VH	5.3σ	4.8σ	ATLAS-CONF-2018-036
(d)VBF	6.5σ	5.3σ	ATLAS-CONF-2018-031
(b) ttH	6.3σ	5.1σ	arXiv:1806.00425

Observed all major Higgs production modes $! \rightarrow$ Consistent with SM.

Higgs properties

中国组所

Precise differential measurement

- New ATLAS $H \rightarrow \gamma \gamma$ measurement with 80 fb⁻¹ of Run-2 data.
- All distributions in agreement with expectations.
- No sign of New Physics in $p_T(H)$ tail yet!

See details at Yanping's talk

Higgs coupling measurements

Higgs coupling (to fermions or bosons) depends on the particle mass

- All couplings to high mass particles measured.
- Next challenge: muon, charmquark...

Interaction with gauge bosons: $H \rightarrow ZZ^*$ ATLAS-CONF-2018-018 Well established in run-1 $H \rightarrow WW^*$ ATLAS-CONF-2018-004 6.3 (5.2) σ obs (exp) (run-2 only) wightigh Yukawa coupling to fermions: **Top-quark:** *ttH* (80 fb⁻¹) $6.3\sigma(5.1\sigma) obs (exp)$ Phys. Lett. B 784 (2018) 173 Bottom-quark $H \rightarrow bb$ (80 fb⁻¹) $5.4\sigma(5.5\sigma)$ obs (exp) *ATLAS-CONF-2018-036 Tau-lepton:* $H \rightarrow \tau \tau$ 6.4σ (5.4 σ) obs (exp) *ATLAS-CONF-2018-021* $(80 \, fb^{-1})$ Muon $H \rightarrow \mu \mu$ $\sigma_{limit} / \sigma_{SM} < 2.1 \text{ (obs)}$ ATLAS-CONF-2018-026 **Charm-quark: H→cc** $\sigma_{limit} / \sigma_{SM} < 104 \text{ (obs)}$ PRL 120 (2018) 211802

Gauge boson and Yukawa fermion coupling

Interaction with gauge bosons:

Run1: Higgs boson discovered at 7-8TeV. Main channels: $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ$, $H \rightarrow WW$

Recent Run2 results: H → WW

中国5家单位参与了H→γγ, ZZ 的分析。 See details of VBF H→γγ at Yaquan's talk

Yukawa coupling to fermions:

Run1: Only glimpse at 7-8 TeV (2012) ATLAS/CMS combined $H \rightarrow \tau\tau$: 5.5 σ (5.0 σ) obs (exp) for 7/8 TeV (JHEP 08 (2016) 045)

Observation of ttH production

_					
	Analysis Integrated		$t\bar{t}H$ cross		Exp.
		luminosity $[fb^{-1}]$	section [fb]	sign.	sign.
	$H \to \gamma \gamma$	79.8	710 $^{+210}_{-190}$ (stat.) $^{+120}_{-90}$ (syst.)	$4.1 \ \sigma$	3.7σ
	$H \rightarrow \text{multilepton}$	36.1	790 ±150 (stat.) $^{+150}_{-140}$ (syst.)	$4.1 \ \sigma$	$2.8~\sigma$
	$H \to b\bar{b}$	36.1	$400 {}^{+150}_{-140}$ (stat.) ± 270 (syst.)	1.4 σ	1.6 σ
	$H \to ZZ^* \to 4\ell$	79.8	< 900 (68% CL)	0σ	$1.2~\sigma$
	Combined (13 TeV)	36.1 - 79.8	$670 \pm 90 \text{ (stat.)} ^{+110}_{-100} \text{ (syst.)}$	5.8σ	4.9σ
	Combined $(7, 8, 13 \text{ TeV})$	4.5, 20.3, 36.1 - 79.8	_	6.3σ	5.1 σ

Direct observation of top Higgs coupling. Confirmation of Yukawa coupling to fermions.

Phys. Lett. B 784 (2018) 173

Consistent with SM Higgs boson

Observation of H \rightarrow bb

Run 2 VH, $H \rightarrow bb$ sign.: 4.9 σ (4.3 σ) obs (exp) Combined with Run 1: 4.9 σ (5.1 σ) obs (exp) Combined with *VBF*(+ggF) and ttH (Run1+Run2): 5.4 σ (5.5 σ) obs (exp)

See details from Zhijun's talk

Higgs rare decays

SM Di-higgs production

BSM Higgs exclusion in the hMSSM:

Outline

- Introduction of LHC, ATLAS
- SM Precision Measurements
- Higgs Measurements and BSM Higgs Search
- BSM Physics Search
- Conclusion and Outlook

New Physics beyond the SM

SUSY Introduction

SUSY is one of the most favorite candidate for New Physics.

- SUSY establishes a symmetry between fermions (matter) and bosons (forces)
 - Unification
 - \circ $\,$ Solves deep problems of the SM $\,$
 - Provide Dark Matter candidate
 - 0 ...

OUR WORLD...

NEW WORLD?

New Physics beyond the SM

SUSY Search @ LHC

Strong production:

- targeting gluinos and squarks
- □ by far largest cross-sections

Electroweak production:

- targeting Electroweakinos, sleptons
- Lowest mass sparticles, clean signature

RPV/LL:

- targeting R-parity violating models and long lived sparticles
- ❑ More exotic models

Direct squark & gluino decays (all had.)

Corresponding sparticle mass limits for **BF=100%**:

- ~g (~q): up to (2.05)1.55 TeV Gluinos with neutralinos up to 1.1 TeV
- Gtt(Gbb): Gluinos up to 1.97(2.05) TeV with N1 up to 1.19 (1.2) TeV

Multi-step decays

Signal: single lepton/photons, jets and MET

Corresponding sparticle mass limits for BF=100%:
Gluino mass up to ~2 TeV, N1 (~G) up to 1(2) TeV

Stop search (leptonic)

Strong Production (summary)

Stop search

From Run1 to Run2 ($8 \rightarrow 13$ TeV, lumi $20 \rightarrow 36$ fb⁻¹): stop mass exclusion extend ~300 GeV

Strong Production (summary)

In simplified model approach (depending on decay mode and/or mass splittings):

- $M(\sim g) \le O(1 \text{ TeV}) O(2 \text{ TeV}) @95\% CL$
- $M(\sim q) \le O(0.5 \text{ TeV}) O(1.5 \text{ TeV}) @95\% \text{ CL}$
- $M(\sim t) \le O(0.7 \text{ TeV}) O(1.1 \text{ TeV}) @95\% \text{ CL}$

Can be even worse in some corners of simplified model space

Gaugino pair production (2I/3I)

PRD97(2018)052010

Compressed scenarios with soft leptons

Summary: gaugino production

Powerful exclusions in decays via sleptons (C1/N2 up to 0.6-1.1 TeV)
 Exclusions is not so large in decays via bosons (up to 250-600 GeV)
C1N2 Production (via boson) combination

Statistical combination of all CMS analyses targeting direct decays of neutralino/chargino pairs to SM bosons. 6 main publications of CMS
 Setting even higher limits in the electroweak SUSY energy scale

Summary: Slepton Production

Mass limit on selectron/smuon up to 500 GeV, not yet on staus

RPV search

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits July 2018

_

Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	V Reference
$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1		1.55 r m(ā	$1(\tilde{k}_1^0) < 100 \text{ GeV}$ 1712.02332)- $m(\tilde{k}_1^0) = 5 \text{ GeV}$ 1711.03301
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0	2-6 jets	Yes	36.1	ğ ğ Forbidden	2.0 r 0.95-1.6 r	n(\tilde{k}_1^0)<200 GeV 1712.02332 n(\tilde{k}_1^0)=900 GeV 1712.02332
$\tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e,μ ee,μμ	4 jets 2 jets	- Yes	36.1 36.1	ξ̃ ξ	1.85 r 1.2 m(g̃)	$\begin{array}{ll} n(\tilde{\chi}_1^0) {<} 800 \ {\rm GeV} & 1706.03731 \\ m(\tilde{\chi}_1^0) {=} 50 \ {\rm GeV} & 1805.11381 \end{array}$
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 3 <i>e</i> , µ	7-11 jets 4 jets	Yes -	36.1 36.1	ğ ğ 0.98	1.8 m m(ỹ)-r	$\begin{array}{c} (\chi_1^0) <\!$
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$	0-1 e,μ 3 e,μ	3 <i>b</i> 4 jets	Yes -	36.1 36.1	ξ̃ ξ	2.0 r 1.25 m(g̃)-r	$h(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ 1711.01901 $h(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$ 1706.03731
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	\$\bar{b}_1\$ Forbidden 0.9 \$\bar{b}_1\$ Forbidden 0.58-0.82 \$\bar{b}_1\$ \$b	$m(\tilde{\xi}_1^0)$ =300 G $m(\tilde{\chi}_1^0)$ =300 GeV, BR($b\tilde{\xi}_1^0$ $m(\tilde{\xi}_1^0)$ =200 GeV, $m(\tilde{\xi}_1^\pm)$ =300 G	eV, BR($k \tilde{k}^0_1$)=1 =BR($k \tilde{t}^+_1$)=0.5 ieV, BR($k \tilde{t}^+_1$)=0.5 1708.09266 ieV, BR($k \tilde{t}^+_1$)=1 1706.03731
$\tilde{b}_1 \tilde{b}_1, \tilde{t}_1 \tilde{t}_1, M_2 = 2 \times M_1$		Multiple Multiple		36.1 36.1	<i>ĩ</i> ₁ 0.7 <i>ĩ</i> ₁ Forbidden 0.9	r	$\begin{array}{ll} m(\tilde{\chi}^0_1){=}60~{\rm GeV} & 1709.04183, 1711.11520, 1708.03247 \\ n(\tilde{\chi}^0_1){=}200~{\rm GeV} & 1709.04183, 1711.11520, 1708.03247 \end{array}$
$\tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \text{ or } \tilde{\chi}_{1}^{0}$ $\tilde{i}_{1}\tilde{i}_{1}, \tilde{H} \text{ LSP}$	0-2 <i>e</i> , <i>µ</i> 0	0-2 jets/1-2 Multiple Multiple	b Yes	36.1 36.1 36.1	Ĩι 1.0 Ĩι 0.4-0.9 Ĩι Forbidden 0.6-0.8 0.6-0.8	$m(\tilde{x}_{1}^{0}) = 150 \text{ GeV}, m(\tilde{x}_{1}^{+}) \cdot m(\tilde{x}_{1}^{0}) = m(\tilde{x}_{1}^{0}) = 300 \text{ GeV}, m(\tilde{x}_{1}^{+}) \cdot m(\tilde{x}_{1}^{0})$	$\begin{array}{l lllllllllllllllllllllllllllllllllll$
$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP		Multiple		36.1	ĩ ₁ 0.48-0.84	$m(\tilde{x}_1^0) = 150 \mathrm{GeV}, m(\tilde{\chi}_1^{\pm}) \cdot m(\tilde{\chi}_1^0)$	=5 GeV, $\tilde{t}_1 \approx \tilde{t}_L$ 1709.04183, 1711.11520
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i> mono-jet	Yes Yes	36.1 36.1	ζι 0.85 ζι 0.46 ζι 0.43	$m(ilde{r}_1, ilde{c})$ $m(ilde{r}_1, ilde{c})$	$\begin{array}{ll} m(\tilde{k}_{1}^{V})\!=\!0GeV & 1805.01649 \\ m(\tilde{k}_{1}^{U})\!=\!50GeV & 1805.01649 \\)\!\cdot\!m(\tilde{k}_{1}^{U})\!=\!5GeV & 1711.03301 \end{array}$
$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , <i>µ</i>	4 <i>b</i>	Yes	36.1	ĩ ₂ 0.32-0.88	$m(\widetilde{\chi}_1^0)=0$ GeV, $m(\widetilde{t}_1)$ -m	($\tilde{\chi}_1^0$)= 180 GeV 1706.03986
$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e,μ ee,μμ	<u>-</u> ≥ 1	Yes Yes	36.1 36.1	$\dot{\chi}^{\pm}_{1}/\dot{\chi}^{0}_{0}$ 0.6 $\dot{\chi}^{\pm}_{1}/\dot{\chi}^{0}_{2}$ 0.17	$m(\widetilde{\ell}_1^\pm)$	$\begin{array}{c c} \hline m(\tilde{\chi}^0_1)=0 & 1403.5294, 1806.02293 \\ m(\tilde{\chi}^0_1)=10 \ {\rm GeV} & 1712.08119 \end{array}$
$\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0} \operatorname{via} Wh$ $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}/\widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{1}^{+} \to \widetilde{\tau}\nu(\tau\widetilde{\nu}), \widetilde{\chi}_{2}^{0} \to \widetilde{\tau}\tau(\nu\widetilde{\nu})$	<i>ℓℓ/ℓγγ/ℓbb</i> 2 τ	-	Yes Yes	20.3 36.1		$m(\tilde{\chi}_1^{\circ})=0, m(\tilde{\tau}, \tilde{\nu})=0.t$ $m(\tilde{\chi}_1^{\circ})=100 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu})=0.t$	$m(\tilde{\chi}_1^0)=0$ 1501.07110 $m(\tilde{\chi}_1^0)+m(\tilde{\chi}_1^0)$ 1708.07875 $i(m(\tilde{\chi}_1^0)+m(\tilde{\chi}_1^0))$ 1708.07875
$ \tilde{\tilde{\ell}}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 $	2 e,μ 2 e,μ	0 ≥ 1	Yes Yes	36.1 36.1	ζ 0.18 0.5	m(či)	$\begin{array}{c} m(\tilde{x}_{1}^{0}) \!=\! 0 & 1803.02762 \\ p\!\!\cdot\!\!m(\tilde{x}_{1}^{0}) \!=\!\!5 \ GeV & 1712.08119 \end{array}$
$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 4 <i>e</i> , <i>µ</i>	$\geq 3b$	Yes Yes	36.1 36.1	Ĥ 0.13-0.23 0.29-0.88 Ĥ 0.3 0.3	E	$ \begin{array}{c} R(\tilde{\chi}^0_1 \to h\tilde{G}) \!\!=\!\! 1 \\ R(\tilde{\chi}^0_1 \to Z\tilde{G}) \!\!=\!\! 1 \\ \end{array} \qquad \begin{array}{c} 1806.04030 \\ 1804.03602 \\ \end{array} $
Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1	$ ilde{\chi}^{\pm}_1$ 0.46 $ ilde{\chi}^{\pm}_1$ 0.15		Pure Wino 1712.02118 Pure Higgsino ATL-PHYS-PUB-2017-019
Stable \tilde{g} R-hadron	SMP	-	-	3.2	ξ.	1.6	1606.05129
Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\chi_1^{\circ}$	2 v	wuitipie -	Ves	32.8 20.3	$g = [\tau(g) = 100 \text{ ns}, 0.2 \text{ ns}]$ \tilde{v}^0 0.44	1.6 2.4 $1 < \tau(\tilde{Y}^0) < 3 n$	(X ₁)=100 GeV 1/10.04901, 1604.04520 s. SPS8 model 1409 5542
$\tilde{g}\tilde{g}, \tilde{\chi}^0_1 \rightarrow eev/e\mu v/\mu\mu v$	displ. ee/eµ/µ	μ -	-	20.3	ğ	1.3 $6 < c\tau(\tilde{\chi}_1^0) < 1000 \text{ mm}$	n, m $(\tilde{\chi}_1^0)$ =1 TeV 1504.05162
$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \end{array} $	<i>eμ,eτ,μτ</i> 4 <i>e</i> ,μ 0 4·	- 0 -5 large- <i>R</i> j Multiple	- Yes ets -	3.2 36.1 36.1 36.1	\tilde{v}_{τ} $\tilde{\lambda}_{1}^{\pm}/\tilde{\lambda}_{2}^{0}$ $[\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ 0.82 \tilde{g} $[m(\tilde{\lambda}_{1}^{0})=200 \text{ GeV}, 1100 \text{ GeV}]$ \tilde{g} $[\lambda_{112}^{0}=2e-4, 2e-5]$ 1.09	1.9 $\lambda'_{311}=0.11, \lambda$ 1.33 n 1.3 1.9 $m(\tilde{x}_1^0)=200$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \widetilde{g}\widetilde{g}, \widetilde{g} \to tbs / \widetilde{g} \to t\widetilde{k}_{1}^{0}, \widetilde{\chi}_{1}^{0} \to tbs t\widetilde{t}, \widetilde{t} \to t\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \to tbs t\widetilde{t}_{1}, \widetilde{t}_{1} \to bs $	0	Multiple Multiple 2 jets + 2	b -	36.1 36.1 36.7	\tilde{g} $[\mathcal{A}'_{133}=1, 1e-2]$ \tilde{g} $[\mathcal{A}'_{233}=2e-4, 1e-2]$ \tilde{I}_1 $[gg, bs]$ 0.42 0.61	1.8 2.1 $m(\tilde{\chi}_1^0)=200$ $m(\tilde{\chi}_1^0)=200$	GeV, bino-like ATLAS-CONF-2018-003 GeV, bino-like ATLAS-CONF-2018-003 1710.07171

*0 phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

TV

New Physics beyond the SM

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2018

 $\int \mathcal{L} dt = (3.2 - 79.8) \text{ fb}^{-1} \qquad \sqrt{2}$

	Model	ℓ, γ Jets	E ^{miss} T	∫£ dt[ft	b ⁻¹] Limit	Reference
额外维 粒子	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/\lambda$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	j Yes - - - - J/2j Yes 3 j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1	$\begin{tabular}{ c c c c c c } \hline M_D & 7.7TeV & $n=2$ \\ \hline M_S & 8.6FeV & $n=3 \text{HZ NLO}$ \\ \hline m_{th} & 8.9FeV & $n=6$ \\ \hline M_{th}$ & 8.2FeV & $n=6$ \\ \hline M_{th}$ & 9.55FeV & $n=6$ \\ \hline M_{th}$ & 0.1C \\ \hline M_{th}$ & $0.1 \ \ M_{th}$ \\ \hline M_{th}$ & $0.1 \ $	1711.03301 1707.04147 1703.09217 1606.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.09678
W ′, Z′	$\begin{array}{c} \mathrm{SSM}\ Z' \to \ell\ell \\ \mathrm{SSM}\ Z' \to \tau\tau \\ \mathrm{Leptophobic}\ Z' \to bb \\ \mathrm{Leptophobic}\ Z' \to tt \\ \mathrm{SSM}\ W' \to \ell\nu \\ \mathrm{SSM}\ W' \to \tau\nu \\ \mathrm{HVT}\ V' \to WV \to qqq \\ \mathrm{HVT}\ V' \to WH/ZH \ \mathrm{mc} \\ \mathrm{LRSM}\ W'_R \to tb \end{array}$	$\begin{array}{cccc} 2 \ e, \mu & - \\ 2 \ \tau & - \\ - & 2 \ b \\ 1 \ e, \mu & \geq 1 \ b, \geq 1 \\ 1 \ e, \mu & - \\ 1 \ \tau & - \\ q \ model \ B & 0 \ e, \mu & 2 \ J \\ del \ B & multi-channel \\ multi-channel \end{array}$	– – J/2j Yes Yes –	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1	Z' mass 4.5 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV V' mass 5.6 TeV W' mass 3.7 TeV V' mass 4.15 TeV V' mass 2.93 TeV V' mass 3.25 TeV	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
interactions	CI qqqq CI llqq CI tttt	$\begin{array}{ccc} - & 2j\\ 2e, \mu & -\\ \geq 1e, \mu & \geq 1b, \geq \end{array}$	- - 1 j Yes	37.0 36.1 36.1	Λ 21.8 TeV η_{LL} Λ 40.0 TeV η_{LL} Λ 2.57 TeV $ C_{4t} = 4\pi$	1703.09217 1707.02424 CERN-EP-2018-174
Dark matte	Axial-vector mediator (D Colored scalar mediator $VV_{\chi\chi}$ EFT (Dirac DM)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	i Yes i Yes j Yes	36.1 36.1 3.2	$\begin{tabular}{ c c c c c } \hline m_{med} & $1.55 \mbox{ TeV}$ & $g_q = 0.25, $g_\chi = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_q = 0.25, $g_\chi = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_q = 0.25, $g_\chi = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_q = 0.25, $g_\chi = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $m(\chi) < 150 \mbox{ GeV}$ $	1711.03301 1711.03301 1608.02372
leptoquark	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	$\begin{array}{rrl} 2 \ e & \geq 2 \ j \\ 2 \ \mu & \geq 2 \ j \\ 1 \ e, \mu & \geq 1 \ b, \geq \end{array}$	– – 3j Yes	3.2 3.2 20.3	LQ mass 1.1 TeV $\beta = 1$ LQ mass 1.05 TeV $\beta = 1$ LQ mass 640 GeV $\beta = 0$	1605.06035 1605.06035 1508.04735
Heavy quar	$\begin{array}{c} \text{VLQ } TT \rightarrow Ht/Zt/Wb\\ \text{VLQ } BB \rightarrow Wt/Zb+2 \\ \text{VLQ } T_{5/3}T_{5/3}T_{5/3} T \\ \text{VLQ } T_{5/3}T_{5/3}T_{5/3} \rightarrow W \\ \text{VLQ } P \rightarrow Wb + X \\ \text{VLQ } Q \rightarrow WqWq \end{array}$	$\begin{array}{lll} + X & \mbox{multi-channel} \\ X & \mbox{multi-channel} \\ Vt + X & 2(SS)/23 \ e, \mu \ge 1 \ b, \ge \\ & 1 \ e, \mu & \ge 1 \ b, \ge \\ & 0 \ e, \mu, 2 \ \gamma & \ge 1 \ b, \ge \\ & 1 \ e, \mu & \ge 4 \ j \end{array}$	1 j Yes 1j Yes 1j Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mass 1.37 TeV SU(2) doublet B mass 1.34 TeV SU(2) doublet $T_{5/3}$ mass 1.64 TeV SU(2) doublet Tymass 1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3} Wt) = 1$ Y mass 1.44 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c(YWb) = 1/\sqrt{2}$ B mass 1.21 TeV $\kappa_B = 0.5$	ATLAS-CONF-2018-XXX ATLAS-CONF-2018-XXX CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2018-XXX 1509.04261
重费米子	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	$ \begin{array}{cccc} - & 2j \\ 1 \gamma & 1j \\ - & 1 b, 1 \\ 3 e, \mu & - \\ 3 e, \mu, \tau & - \\ \end{array} $	- - - - -	37.0 36.7 36.1 20.3 20.3	q* mass 6.0 TeV only u* and d*, A = m(q*) q* mass 5.3 TeV only u* and d*, A = m(q*) b* mass 2.6 TeV only u* and d*, A = m(q*) ℓ* mass 3.0 TeV A = 3.0 TeV v* mass 1.6 TeV A = 1.6 TeV	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
其他	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$ \begin{array}{rcl} 1 e, \mu &\geq 2j \\ 2 e, \mu & 2j \\ 2,3,4 e, \mu (SS) &- \\ 3 e, \mu, \tau &- \\ 1 e, \mu & 1b \\ - &- \\ - &- \\ - &- \\ 1 e, \mu & 1b \\ - &-$	Yes - - Yes - -	79.8 20.3 36.1 20.3 20.3 20.3 7.0	Nº mass560 GeVNº mass2.0 TeVMº mass2.0 TeVH** mass870 GeVH** mass400 GeVSpin-1 invisible particle mass657 GeVmulti-charged particle mass785 GeVDY production, $ g = 5e$ monopole mass1.34 TeVDY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1506.06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059
		vs = 0 10v vs =	10 100		10^{-1} 1 1 Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

 $\sqrt{s} = 8, 13 \text{ TeV}$

Resonance (di-X: X=lep, jet, photon, boson etc.)

Resonance search (W', Z')

W' →WZ

Z' →Zh

W' > 2.8-3.3 TeV

Z' > 2.2-2.7 TeV

Dark Matter

DM Mass [TeV]

- Searches in the Mono-X final states: Many models constrained up to 1-2 TeV
- Searches also in the Di-Jet final states exclude up to 2.6 TeV for almost whole DM range

Summary and Outlook

■ ATLAS 13TeV 36-80 fb⁻¹ 的分析结果表明:

- 标准模型:开始研究稀有的电弱过程。
- Higgs物理: 对Higgs所知越多,越"像"标准模型。
 - 费米子衰变方面取得重大进展: direct confirmation of coupling to all 3rd generation fermions (topquark, bottom-quark, taus)
- 新物理(SUSY+ Exotics+ BSM Higgs):目前未见新粒子 或新物理迹象。
- LHC实验测量目前与标准模型预期符合很好,随着Run2-3数 据显著增加,我们期待发现希格斯粒子之外的新物理!
- ATLAS中国组研究队伍和实力显著提升,目前包含7家单位,作者 数占总数的~2.8%,在合作组中发挥越来越重要的作用:在 ATLAS决策和管理层担任多项职务,担任多个重要物理分析组和 探测器运行及性能研究组的召集人,在众多重要物理课题中担任负 责人和论文编辑。

谢谢大家!

LHC Data-taking Plan

2015+2016 – A milestone for SUSY

This means:

- We explored 85% of our mass reach for gluino pair production, about 75% for stop
- ~60% for gauginos, and just above 50% for higgsinos

Places to hunt for SUSY?

For discovery potential:

- O We explored 85%
 of our mass reach
 (2 → 2.5 TeV)
- with a small
 window remaining
 between 1-2 TeV
- 300/fb 5σ
 discovery case is
 practically
 excluded

ATL-PHYS-PUB-2013-011

Prospects at HL-LHC

For exclusions (all hadronic):

- stop: ~ 1 TeV now
- 1.2 TeV @ 300 fb-1
- 1.4 TeV @ 3000 fb-1

For discovery:

- 1.0 TeV @ 300 fb-1
- 1.2 TeV @ 3000 fb-1

ATL-PHYS-PUB-2014-010

Prospects at HL-LHC

For exclusions:

- o gaugino: ~ 0.45 TeV now
- 0.8 TeV @ 300 fb-1
- 1.1 TeV @ 3000 fb-1

For discovery:

- 0.55 TeV @ 300 fb-1
- 0.8 TeV @ 3000 fb-1

Some room for discovery

Direct stau

For exclusions:

- stau: ~ 0.1 TeV now
- 0.7 TeV @ 3000 fb-1

For discovery:

0.5 TeV @ 3000 fb-1

Very promising at LHC

Prospects at HL-LHC

ATL-PHYS-PUB-2014-010

 ATLAS studied long term prospects for the (HL-)LHC with 300, 3000 fb⁻¹@14TeV
 Discovery potential up to 2.5 TeV gluinos, 1.3 TeV squarks/sbottom and 800 GeV Electroweakinos, 500 GeV stau with 3000 fb⁻¹.

Prospects at Future Collider

Discovery (Exclusion) potential with 3000 fb⁻¹@33,100 TeV

Gluinos ~ 11 (13) TeV

Stop ~ 6.5 (8) TeV

EWKinos ~ 2.1 (3.2) TeV

Prospects at Future Collider

Higgs Summary

With the first 36-80 fb⁻¹ of Run-2 data:

- Direct observation achieved for all main production and decay modes!
 - The bosonic decay channels entered a precision era (~3x improvement w.r.t. Run-1)
 - Direct confirmation of coupling to all 3rd generation fermions (top-quark, bottom-quark, taus)
 - Sensitivity to double Higgs production approaching 10 x SM

Higgs physics an important indirect probe for New Physics: so far no deviations from SM...

Challenge to cope with pile-up interactions

- Large number of additional interactions (pile-up) cause performance degradation.
- Powerful pile-up mitigation techniques developed.
- The performance loss is well described by Monte Carlo simulation.

Trigger performance Highlights

- ATLAS trigger and DAQ systems form the basis for a successful data-taking.
- Main physics triggers for SUSY searches: Generic missing ET, jet, lepton triggers

Top measurement

The fraction of SM-like spin correlation (f_{SM})

Region	fsм	Significance (incl. theory uncert	ainties)
$m_{t\bar{t}} < 450 \text{ GeV}$	$1.11 \pm 0.04 \pm 0.13$	0.85 (0.84)	Previous analyses
$450 < m_{t\bar{t}} < 550 { m GeV}$	$1.17 \pm 0.09 \pm 0.14$	1.00 (0.91)	also measured
$550 < m_{t\bar{t}} < 800 \text{ GeV}$	$1.60 \pm 0.24 \pm 0.35$	1.43 (1.37)	stronger spin
$m_{t\bar{t}} > 800 \text{ GeV}$	$2.2\pm1.8\pm2.3$	0.41 (0.40)	correlations (with
inclusive	$1.250 \pm 0.026 \pm 0.063$	3.70 (3.20)	large uncertainties).

Table 2: Summary of extracted f_{SM} values for each explored region with total uncertainties as well as the significance of the result with respect to the SM hypothesis. The significance with respect to the SM hypothesis is calculated using the statistical and systematic uncertainties only. The values in brackets include the effect of scale variations and PDF uncertainties on the hypothesis templates but do not account for possible correlations between these variations and the experimental uncertainties of a similar nature.

H→µµ, сс

	Expected significance	Observed significance
Central low $p_{\rm T}^{\mu\mu}$	0.10	-0.49
Non-central low $p_{\rm T}^{\mu\mu}$	0.03	0.44
Central medium $p_{\rm T}^{\mu\mu}$	0.31	1.55
Non-central medium $p_{\rm T}^{\mu\mu}$	0.30	-1.16
Central high $p_{\rm T}^{\mu\mu}$	0.38	61C 0.48
Non-central high $p_{\rm T}^{\mu\mu}$	0.43	0.15
VBF Loose	0.24	-0.88
VBF Tight	0.42	-0.26
Combined	0.88	0.04

⁽¹⁾ Here a indicates just a Higgs boson that could be scalar or pseudo-scalar

Sbottom search

Multi-step decays

Signal: multi-leptons, jets and MET

Corresponding sparticle mass limits for **BF=100%**:

Gluino mass up to 1.6-1.9 TeV, LSP up to 0.7-1.2 TeV 66

Gaugino via WH decay

IHEP is working on Wh ($11\tau\tau$, 11bb, SS) analysis.

Gravitino LSP scenarios (GMSB)

0 tau, on-shell Z

Summary: Higgsino LSP

□ ATLAS exploring new regions for higgsino production, beyond LEP limits for the first time!

RPV SUSY

- Precision SM measurements support baryon and lepton number conservation, while some MSSM couplings do not
- Search for R-parity Violating SUSY
- Super-potential with RPV of lepton or baryon number

RPV SUSY signatures:

- Decaying LSP → lower Missing Transverse Energy (MET)
- Many jets (or leptons) in the final states

SUSY RPV: 1L + multi-jets

RPV SUSY signatures:

JHEP 09 (2017) 88

- Decaying LSP → lower Missing Transverse Energy (MET)
- Many jets (or leptons) in the final states
- Signatures showed: 1lepton + multi-jets (\geq 8-12) and (0, \geq 3) bjets

Heavy quarks

- Vector-like T quark models solve hierarchy problem
 new heavy partner of top in loop
- Search of T (q=2/3) and B (q=-1/3) VLQ decaying to W,H,Z and t,b produced in pairs
- Recent combination of 7 final states (H(bb)t, W(lv)b, W(lv)t, Z(vv)t, Z(ll)t/b, trilepton/same-sign dilepton, fully hadronic)
- Limits at the level of 1.3-1.4 TeV

Leptoquarks

m(LQ1,LQ2) > 1.1TeV
m(LQ3) > 0.9 TeV

- Leptoquarks (LQs) arise in many models, such as grand unified theories, compositeness models and superstring theories.
- LQs: carry colour charge, fractional electric charge, and both lepton and baryon quantum numbers.
- If exist, decay into a lepton and a quark. Search for resonance of lepton+jet in experiment.

New J. Phys. 18 (2016) 093016

CMS-PAS-B2G-16-028

No significant excess observed in 2~36fb -1. Results in terms of $\beta = BR(LQ \rightarrow lq)$

LHC / HL-LHC Plan

Detector consolidation 2015: FTK deployment Improve L1 Trigger, NSW and LAr electronics to cope with higher rates Prepare for 140-200 pile-up events Replace Inner Tracker New L0/L1 trigger scheme Upgrade muon/calorimeter electronics Upgrade of DAQ detector readout

the complementary search using the **Recursive Jigsaw Reconstruction (RJR) techniques** in the construction of a discriminating variable set ('RJR-based search'). By using a dedicated set of selection criteria, the RJR-search improve the sensitivity to supersymmetric models with small mass splittings between the sparticles (models with compressed spectra).

Recursive jigsaw reconstruction

- based on assumption of decay tree
- fix set of rules to resolve combinatorics and unknowns in invisible system
- can form set of variables in the rest frame of each level in the decay tree

Long-Lived particles in SUSY

Long-Lived particles in SUSY

Long-lived R-hadron production

Long lived chargino

3rd Generation: stop/sbottom (leptonic)

An attempt to map out the SUSY model space with all the ATLAS analyses, giving an impression of where SUSY could still hide ...

79

