




# **Updates on Higgs Combination**

Zhang Kaili, IHEP

Wang Jin, Liu Zhen

2018-03-05

### Outline



- H->Invisible
- Updated plots
- Fit result

### H->Invisible



• Xin's result:

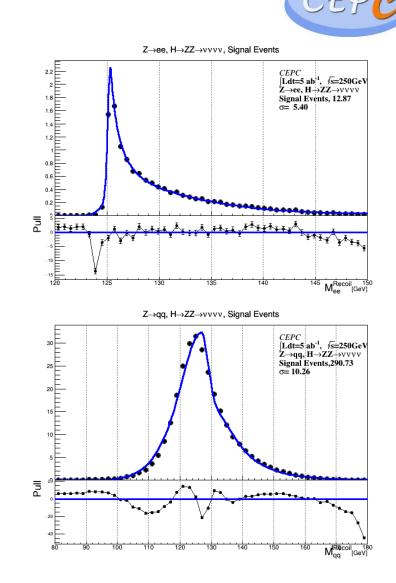
| TABLE I: Branching ratio measurements and upper limits               |                       |                       |                       |                       |  |  |  |
|----------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|--|--|
| $Z(e^+e^-)H(inv) = Z(\mu^+\mu^-)H(inv) = Z(q\bar{q})H(inv)$ Combined |                       |                       |                       |                       |  |  |  |
| BR                                                                   | $(0.350 \pm 0.510)\%$ | $(0.350 \pm 0.290)\%$ | $(0.094 \pm 0.150)\%$ | $(0.103 \pm 0.075)\%$ |  |  |  |
| 95% CL upper limit                                                   | 1.30%                 | 0.90%                 | 0.37%                 | 0.24%                 |  |  |  |

- assume Br in SM value 0.106%
- Comment from Qian:
  - Central value not equal to 1; ->Migrating?
  - Combined result too good

### Repeat Xin's result

CEPC

- Using his data and code
  - In combination using real data S+B model to fit
  - Huge bkg-> large fluctuations
  - All with fit range 120-150
  - Using his code can repeat all his result.
- My attempt using Mo's ntuples
  - on Asimov Data
  - Based on  $Br^*\sigma$
  - same range 120-150
  - Usually Asimov Data performs better?


| In mH 120~150<br>(L=5ab <sup>-1</sup> ) | signal | bkg    | s/b    |
|-----------------------------------------|--------|--------|--------|
| Z->ee                                   | 12.86  | 4205   | 0.003  |
| Z->mm                                   | 23.69  | 36540  | 0.0006 |
| Z->qq                                   | 224.41 | 426540 | 0.0005 |

|          | Mine             | Mo's             |
|----------|------------------|------------------|
| Z->ee    | 0.97 ± 350%      | $3.30\pm481\%$   |
| Z->mm    | $1.00 \pm 242\%$ | $3.30\pm273\%$   |
| Z->qq    | $1.03 \pm 226\%$ | $0.88 \pm 141\%$ |
| Combined | $1.01 \pm 148\%$ | $0.97\pm71\%$    |

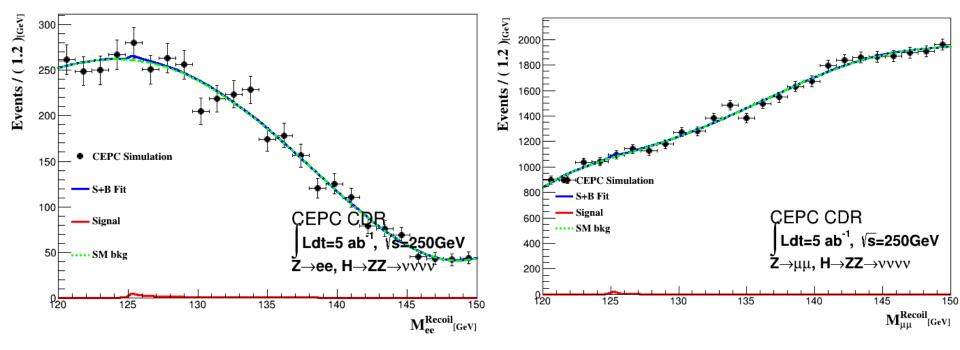
## Discussion

- Central value deviation from 1
  - due to fluctuations
  - narrow the fit range will help
  - or use other fit model
  - toy MC; binned fit.....

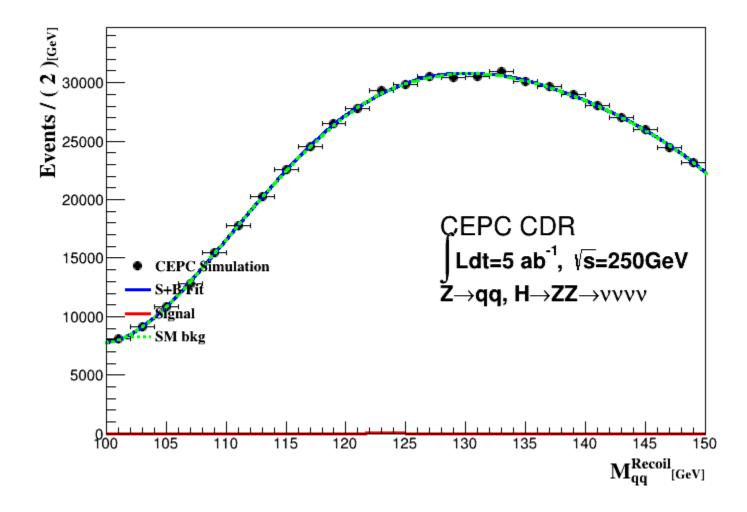
- building Asimov data
- Using more npoints
- 200->5000 helps.



## Conclusion




- Combined result too good
- Central value not equal to 1
  - Huge bkg fluctuation
  - I suggest to use my fit result using Asimov data

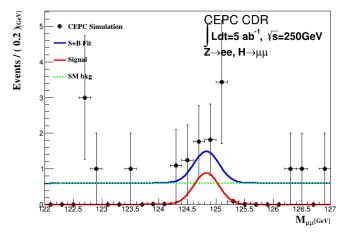

|          | Mine             | significance | Upper limit | Br Upper limit |
|----------|------------------|--------------|-------------|----------------|
| Z->ee    | 0.97 ± 350%      |              | 7.97        | 0.84%          |
| Z->mm    | $1.00 \pm 242\%$ |              | 5.84        | 0.62%          |
| Z->qq    | $1.03 \pm 226\%$ |              | 5.55        | 0.59%          |
| Combined | $1.01 \pm 148\%$ | 0.68         | 3.97        | 0.42%          |

• So  $Br_{BSM}(H \to inv) < 0.31\%$  at 95% CL.

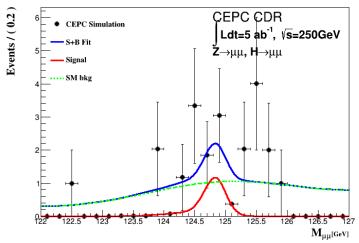




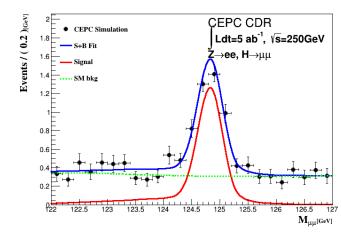




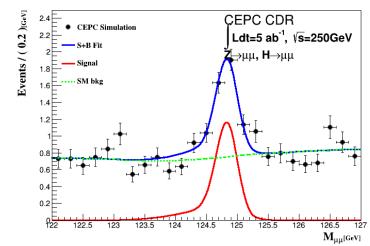

# $H \rightarrow \mu \mu$ : bkg rescaling


CEPC

Using the bkg distribution before cut, then rescale to the current number to avoid fluctuations.


#### Z->ee, before

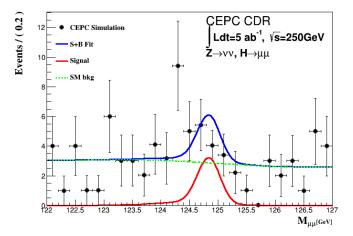



#### $Z \rightarrow \mu\mu$ , before

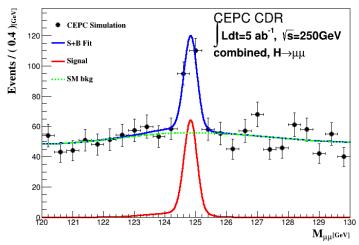


#### after: 61%

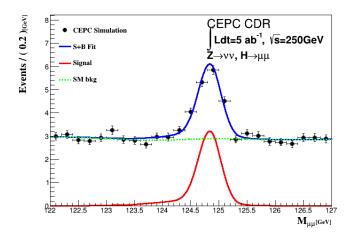



#### after: 85%

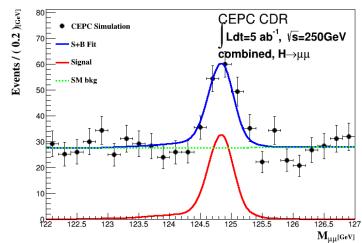





### qqmm: 17.5% After 3 channels bkg rescaling, precision 16.4%->15.9% Total significance: 7.8sigma


#### Z->vv, before




#### combined, before



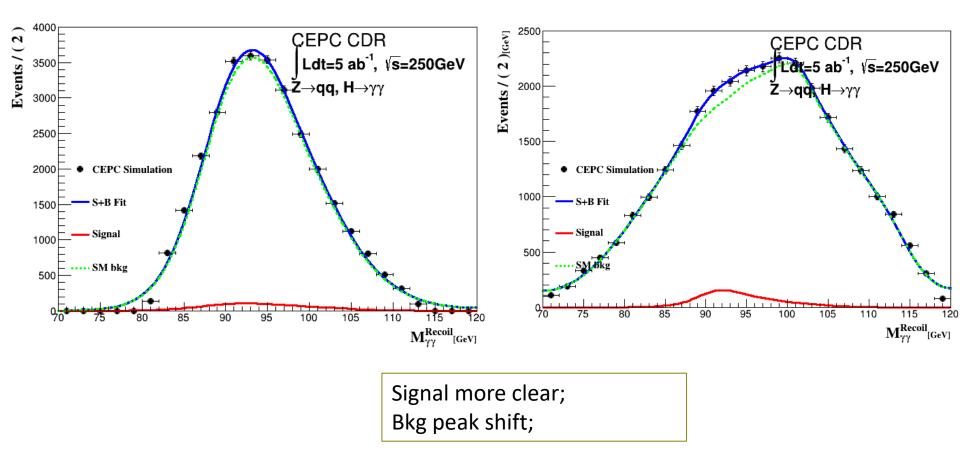
#### after: 53%



#### combined, after



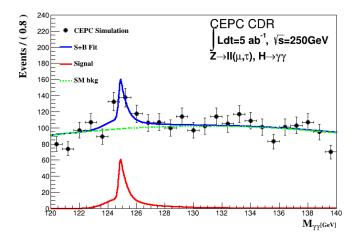
## Restriction for recoil mass



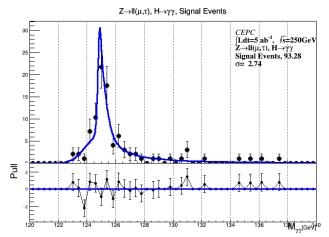

Let  $m_{yy} = 125.09$  when calculating recoil mass;

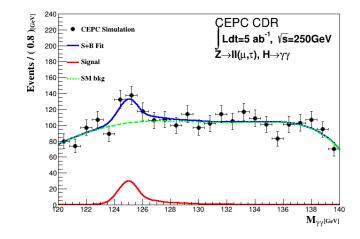
For other channels, 4 momentum may not available;

### Before

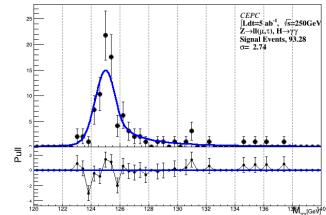

### After




## llyy signal shape



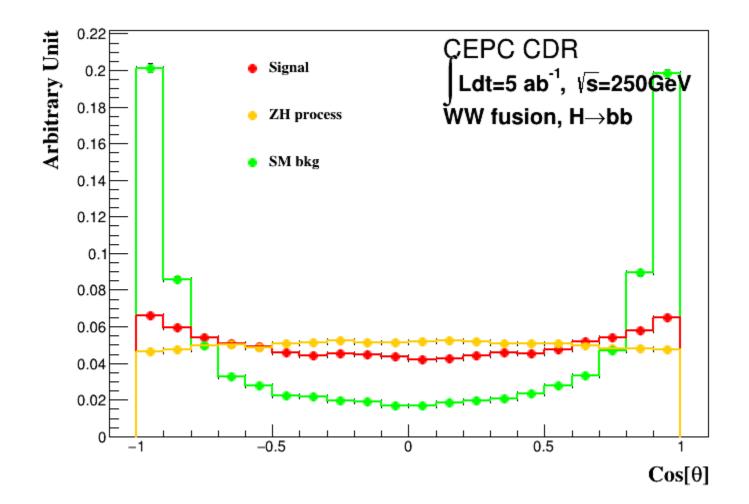

#### Due to limited stats, signal shape seems strange, change functions




#### **CB+ bifurcated Gaussian**

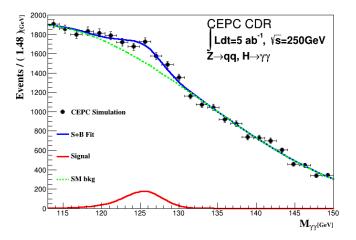




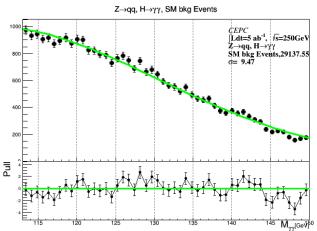

 $Z \rightarrow II(\mu,\tau), H \rightarrow \gamma\gamma$ , Signal Events

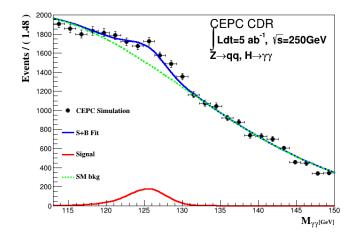


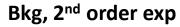
### $\nu\nu H \rightarrow bb$ : Higgs polar angle

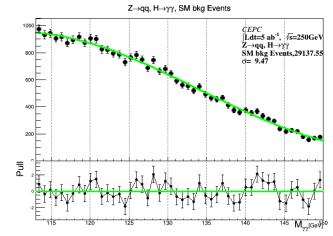



All pre cut;





# qqyy: bkg shape














### **Channels Table**

#### **Done/Almost Done:**



| Signal   |         | Dresision | Signal    |                | Dracicion | Signal                                    |                    | Dracision |
|----------|---------|-----------|-----------|----------------|-----------|-------------------------------------------|--------------------|-----------|
| Z        | Н       | Precision | Z H       |                | Precision | Z                                         | Н                  | Precision |
| H->qq    |         | H->WW     |           | vvH(WW fusion) |           |                                           |                    |           |
| bb       | bb      | 1.6%      |           | μνμν           |           | vv                                        | bb                 | 3.1%      |
| ee cc    |         | 23.6%     |           | evev           | 7.3%      | Rare Decays                               |                    |           |
|          | gg      | 13.3%     | μμ        | evμv           |           |                                           | Н→µµ               |           |
|          | bb      | 1.1%      |           | evqq           | 4.0%      | qq                                        |                    | 15.8%     |
| μμ       | сс      | 14.8%     |           | μνqq           | 4.0%      | ee                                        |                    |           |
|          | gg      | 8.0%      |           | μνμν           |           | μμ                                        | μμ                 |           |
|          | bb      | 0.5%      |           | evev           | 9.2%      | vv                                        |                    |           |
| qq       | СС      | 11.9%     | ee        | evμv           |           | H->In                                     | visible            | Br, Upper |
|          | gg      | 3.9%      |           | evqq           | 4.6%      | qq                                        |                    | 0.3%      |
|          | bb      | 0.4%      |           | μνqq           | 3.9%      | ee                                        | ZZ(vvvv)           | 1.1%      |
| VV       | СС      | 3.9%      |           | qqqq           | 2.0%      | μμ                                        |                    | 0.7%      |
|          | gg      | 1.5%      | vv        | evqq           | 4.7%      |                                           |                    |           |
|          | Η→ττ    | 1         |           | μνqq           | 4.2%      |                                           |                    |           |
| ee       |         | 3.0%      | qq        | lvqq           | 2.2%(ILC) |                                           |                    |           |
| μμ       |         | 2.8%      | ZH bkg co | ntribution     | 3.0%      |                                           |                    |           |
| qq       | ττ      | 0.9%      |           | H->ZZ          |           | 7 > 0                                     | ~    \             |           |
| vv       |         | 3.7%      | vv        | μμqq           | 8.2%      | Z->qq, H→ττ:<br>Now Dan use qq informatic |                    |           |
| Η→γγ, Ζγ |         | vv        | eeqq      | 35.2%          |           |                                           | • •                |           |
| μμ+ττ    |         | 24.8%     | μμ        | vvqq           | 7.3%      | separate signal and bkg.                  |                    |           |
| vv       | γγ      | 11.7%     | ee        | eeqq           | 35.1%     | Data                                      | Data updated soon. |           |
| qq       |         | 12.8%     | ee        | μμqq           | 23.0%     |                                           |                    |           |
| VV       | Ζγ(qqγ) | 21.2%     | ZH bkg co | ntribution     | 19.4%     |                                           |                    |           |

### Fit results

Standalone: Regardless any ZH bkg contribution; Different impact on w/z and  $b/c/g/\tau$ .



| (5ab⁻¹)                                        | Pre_CDR | Combined | Standalone |            |
|------------------------------------------------|---------|----------|------------|------------|
| $\sigma(ZH)$                                   | 0.51%   | 0.50%    |            |            |
| $\sigma(ZH) * Br(H \rightarrow bb)$            | 0.28%   | 0.3%     | 0.3%       |            |
| $\sigma(ZH) * Br(H \rightarrow cc)$            | 2.20%   | 3.5%     | 3.5%       |            |
| $\sigma(ZH) * Br(H \rightarrow gg)$            | 1.60%   | 1.4%     | 1.4%       |            |
| $\sigma(ZH) * Br(H \rightarrow WW)$            | 1.50%   | 1.0%     | 1.2%       |            |
| $\sigma(ZH) * Br(H \rightarrow ZZ)$            | 4.30%   | 5.0%     | 5.2%       |            |
| $\sigma(ZH) * Br(H \rightarrow \tau \tau)$     | 1.20%   | 0.8%     | 0.8%       | 1.3%->0.8% |
| $\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$ | 9.00%   | 8.1%     | 8.2%       |            |
| $\sigma(ZH) * Br(H \rightarrow \mu\mu)$        | 17%     | 15.4%    | 15.4%      |            |
| $\sigma(vvH) * Br(H \rightarrow bb)$           | 2.80%   | 3.1%     | 3.1%       |            |
| $Br_{upper}(H \rightarrow inv.)$               | 0.28%   | 0.24%    | 0.24%      |            |
| $\sigma(ZH) * Br(H \rightarrow Z\gamma)$       | ١       | 4σ       | 4σ         |            |