
Tutorial for the

SNiPER Framework

Zou Jiaheng, Lin Tao, Huang Xingtao, Li Weidong

2018-05-13

Content

2

 General introduction

 Key concepts

 Running the HelloWorld

Offline Software Environments
 Programming language: hybrid programming of C++ and Python

 Very popular in HEP field

 Most frequently used software is implemented in C++ (ROOT, Geant4 …)

 Job configuration interface: Python

 Very flexible

 Easy to glue different tools together (Job scheduling, Monitoring …)

 Packages management tool: CMT(Configuration Management Tool)

 Help developers to compile packages easily

 Help users to setup the environment for running the application easily

 Supported Operation System: Linux

 Official recommendation: Scientific Linux 6 / CentOS 7

 Some colleagues compile successfully on Ubuntu, Debian …

 Codes Management: SVN

 Keep the history of code evolution

 Synchronization and sharing between developers

 Tag and release

3

Overview of JUNO Offline Software

4

SNiPER (Software for Non-

collider Physics ExpeRiment)

Generator Analysis

Simulation

Calibration

Reconstruction

offline
External Libraries (EI)

Root CLHEP Boost

Geant4 Python

……

SNiPER: the underlying Framework

Offline: extension of SNiPER and applications for JUNO

External Libraries(EI): very frequently used software and tools

Software Framework

 What’s an offline software framework?

 A framework helps users to write as less code as possible to

achieve their goals

 What does a framework provide?

 Management of Event Data

 Interfaces to define, read, access and write event data

 Management of data processing

 Sequence and/or filtering of algorithms

 Common services and tools for data processing

 HistogramSvc, RandomSvc, DatabaseSvc …

 Friendly user interface

 Simple interfaces for coding: abstract base classes for algorithms and services

 Simple interfaces for running: configure jobs via text, python …

5

Software Framework for JUNO

 SNiPER: Software for Non-collider Physics ExpeRiment

 Main goals

 Lightweight, less dependences on third-party software/libs

 Fast and flexible execution

 Easy to learn and convenient to use

 Design and development

 Learn a lot from other software frameworks, such as Gaudi

 Based on the valuable experiences of Daya Bay Experiment

 Coding from scratch

 Current Status

 Performs well for JUNO (and LHAASO, a cosmic ray exp. in China)

 Several other projects and potential users (CSNS, nEXO …)

6

Key Functionalities of Framework

 Dynamically loading packages and elements

 User’s packages can be executed as plugins

 It is easy to customize a job

 Flexible execution

 Task, TopTask, Incident

 Very useful for event splitting and mixing

 Event management in memory

 Multiple events within time windows accessible

 Very convenient for events correlation analysis

 Parallel computing (will come soon)

7

Working with SNiPER

8

SNiPER

In an User Algorithm:
1. get data from memory
2. execute calculation
3. put results back to

memory

I/O: disk, DB, network, grid…

Collect algorithm
results

Prepare data to
be processed

features such as
geometry …

No need to care
where the data
comes from

No need to care
where the data
will go

User’s Application Layer

Core Software Layer

Python UI Layer run a batch job or interactively debug a module

Key Concepts

 DLElement: Dynamically Loadable Element

 Algorithm

 Service

 Task

 Tool

 Data Buffer

 Incident

 Property

 Log (message output)

9

Each DLElement object has a unique string name

Algorithm

 An unit of codes for Data Processing

 the calculation during event loop

 Most frequently used by users

 AlgBase, the abstract base class in SNiPER

 User’s algorithm must be inherited from AlgBase

 Its constructor takes one std::string parameter

 3 abstract interfaces must be implemented, they are called by

SNiPER automatically

 bool initialize() : called once per Task (at the beginning of a Task)

 bool execute() : called once per Event

 bool finalize() : called once per Task (at the end of Task)

 We will show how to create an algorithm later

10

Service

 Similar with Algorithm

 An Dynamically Loadable Element

 One Task probably composes of one or more services

 But different from Algorithm

 A piece of code for common use (RootIOSvc, GeometrySvc …)

 They are called by user’s request, not limited to event loop

 SvcBase, the abstract base class in SNiPER

 A new service must be inherited from SvcBase

 Its constructor takes one std::string parameter

 2 abstract interfaces must be implemented

 bool initialize() : called once per Task (at the beginning of a Task)

 bool finalize() : called once per Task (at the end of Task)

 We will show how to create a service later

11

Task

 A lightweight traditional Application Manager

 Management of algorithms, services and tasks

 Controlling the execution of algorithms

 Has its own data memory management

 Has its own I/O management

 One job can has more than one Tasks(e.g. event mixing)

 All DLEs are organized in a tree structure

12

TopTask

Algorithm TaskServiceServiceService AlgorithmAlgorithm TaskTask

AlgorithmServiceServiceService AlgorithmAlgorithm

Data Processing with Task

 Task means the event processing procedure (event loop)

 SubTask provides nested event loop

 It will be executed on demand

 Task and SubTask provide more flexible execution

 Meet the requirements of Event Mixing and Event Splitting

 Multi-Thread Computing (run each task in an individual thread)

 Task is a FSM (finite-state machine)

 Startup

 Ready

 Running

 Finalized

 Endup

13

Algorithm 4

Algorithm 5

Executed on Demand
Algorithm 1

Algorithm 2

Algorithm 3

Event Loop

Algorithm 6

Executed on Demand

TopTask SubTask SubTask

Task Status

14

Tool

 Tool is also a Dynamically Loadable Element

 It belongs to an algorithm and helps the

algorithm to organize code more clearly

 One algorithm can have one or more tools

 A tool can be accessed via its name

15

Data Buffer

 Data Buffer is the dynamically allocated memory place to

hold events data which are being processed

 Applications (in terms of algorithms) get events data

from the buffer and update them after processing

16

Data Buffer in Memory

17

0

1

2

3

4

5

6

7

EvtNum: 0 1 2 3 4 5 6 7Exe Num

Current event

Event buffer

Other events

Buffer: a sequence of events in a time window

correlation analysis

of events in buffer

Incident

18

 Provides an additional degree of execution freedom:

• Incident: trigger the execution of corresponding handlers

• IncidentHandler: the wrapper of any specific procedure

1. Regular execution procedure jumps to another extra procedure

2. Back to the original procedure after all corresponding Handlers

are executed

Incident

string name()

fire()

IIncidentHandler

handle(Incident&)

regist(string)

IIncidentHandler

handle(Incident&)

regist(string)

1, fire()

2, handle()

Regular Procedure Extra Procedure

 Both Algorithms and Services can fire incidents according

to their needs

Incident Management

19

Incident

string name()

fire()

IIncidentHandler

handle(Incident&)

regist(string)

handle(Incident&) Handler
Handler

Handler
Handler

name1

name2

IncidentMgr

Incident::name()

 IncidentMgr correlates incidents with their handlers

 Incidents are distinguished by its name, such as “BeginEvent”, “EndEvent”

 One IncidentHandler can be registered to several Incidents

 One Incident can be handled by several IncidentHandlers

 Currently Event I/O and SubTask execution are based on incident mechanism

Property

20

 Configurable variable at run time

 Declare a property in DLElement (C++ code)

 Configure a property in Python script

This mechanism is also used to create and load algorithms and services:

 Types can be declared as properties:

 scalar: C++ build in types and std::string

 std::vector with scalar element type

 std::map with scalar key type and scalar value type

Log Mechanism

21

 SniperLog: a simple log mechanism supports different output levels

0: LogTest

2: LogDebug

3: LogInfo

4: LogWarn

5: LogError

6: LogFatal

 Each DLElement has its own LogLevel and can be set at run time

• very helpful for debugging

 The output message includes more information

• where it happens

• the message level

• The message contents

HelloWorld (I)

22

The HelloWorld algorithm in SNiPER

 @ Examples/HelloWorld

 configuration of the Task

svn co http://juno.ihep.ac.cn/svn/sniper/trunk/Examples/HelloWorld

HelloWorld (II)

23

Configuration of the algorithm properties

HelloWorld (III)

24

Run the Task

25

Create an Algorithm and a Service

 Package management

 C++ and Python coding

 CMT configuration

 Compile and run

Advanced topic: a job with multiple-tasks

svn co http://juno.ihep.ac.cn/svn/juno/people/zoujh/example/FirstToy

Preparation

1. Setup the official release environment

1. $ source ~/juno-dev/setup.sh

2. Create your own project

1. $ cmt create_project Tutorial

2. $ cd Tutorial

3. $ vi cmt/project.cmt ( use offline)

4. $ vi cmt/version.cmt ( v0)

3. Create your own package

1. $ cmt create MyPackage v0

2. $ source MyPackage/cmt/setup.sh

26

ExternalLibs sniper offline
User’s own

project

Official Software Release Users’ own code (workspace)

Package Management

1. Create a new package with CMT

 $ cmt create TestAlg v0

2. Orgnization of subdirectory and files

1. Subdirectory cmt/
 File requirements: tell CMT how to setup and compile this package

2. Subdirectory src/: the directory for source code (C++)

3. Subdirectory FirstAlg: an optional directory for header files to share

4. Subdirectory python/: an optional directory for python code

5. Subdirectory share/: an optional directory for scripts of tutorial

6. Subdirectory Linux-x86_64 or anything like this: the compiling results

that automatically generated by CMT

27

Coding and Running

 FirstToy C++

 FirstAlg, our first algorithm

 Show different level of logs

 FirstSvc, our first service

 A string message as property (can be modified in python)

 An interface to print the string message (answer())

 SecondAlg

 Call the service in an algorithm

 FirstToy Python

 Comple and run the example
 $ cmt make ## in any subdirectory of the package (cmt/ recommended)

 $ python run.py ## details in run.py

28

vs.

CMT Configuration

 The package name and author
package SecondAlg

Author Zou Jiaheng <zoujh@ihep.ac.cn> ## optional

 Dependencies while compiling
use SniperKernel v*

use FirstSvc v* FirstToy

 How to generate the .so library file
library SecondAlg *.cc

apply_pattern linker_library library=SecondAlg ##Whether load all dependencies

automatically while loading this library. Some times it is not necessary

 Copy C++ headers and Python into CMT InstallArea
apply_pattern install_more_includes more=FirstSvc ## unnecessary if no shared

headers

apply_pattern install_python_modules

29

Advanced Topic: multiple-tasks job

The DLElement Map of

ThirdAlg + SecondAlg + FirstSvc + Task

30

[ThirdAlg]

TomCat

Event Loop [SecondAlg]

Tomcat

Odd execution of toy::TomCat

[SecondAlg]

Tomcat

Even execution of toy::TomCat

[Task] toy

[Task] GoTask

[Task] ChessTask

SubTask(s) are executed on demand

Details can be found in ThirdAlg of FirstToy

31

Thanks !

Any questions?

Accounts

 AFS (IHEP computer cluster) account
 http://afsapply.ihep.ac.cn:86/ccapply/userapplyaction.action

 JUNO SVN account

 We use subversion as the version control system

 A public read only account: juno/jiangmen

 A personal account is necessary for updating

purpose

 Register an account in juno trac first: http://juno.ihep.ac.cn/trac/

 Send email to lintao@ihep.ac.cn or maqm@ihep.ac.cn

 Your user name in trac

 Your affiliation (institute or university)

32

http://juno.ihep.ac.cn/trac/
mailto:lintao@ihep.ac.cn
mailto:maqm@ihep.ac.cn

Possible Use Cases of Multi-Task Job

33

1, Multi I/O streams, such as background mixing

• create a Task for each I/O stream

• each Task holds its own data memory

• each Task handles only one Input (and Output) stream

• I/O service can be much simplified

3, Multi-Thread Computing (run each task in an individual thread)

2, Event amount changed, such as IBD simulation

(Gen)Task(Sim)Task

GenAlg

SimAlg
TriggerGenAlg

SimAlg

…

Incident

update

ne+ + N

