
Tutorial for the

SNiPER Framework

Zou Jiaheng, Lin Tao, Huang Xingtao, Li Weidong

2018-05-13

Content

2

 General introduction

 Key concepts

 Running the HelloWorld

Offline Software Environments
 Programming language: hybrid programming of C++ and Python

 Very popular in HEP field

 Most frequently used software is implemented in C++ (ROOT, Geant4 …)

 Job configuration interface: Python

 Very flexible

 Easy to glue different tools together (Job scheduling, Monitoring …)

 Packages management tool: CMT(Configuration Management Tool)

 Help developers to compile packages easily

 Help users to setup the environment for running the application easily

 Supported Operation System: Linux

 Official recommendation: Scientific Linux 6 / CentOS 7

 Some colleagues compile successfully on Ubuntu, Debian …

 Codes Management: SVN

 Keep the history of code evolution

 Synchronization and sharing between developers

 Tag and release

3

Overview of JUNO Offline Software

4

SNiPER (Software for Non-

collider Physics ExpeRiment)

Generator Analysis

Simulation

Calibration

Reconstruction

offline
External Libraries (EI)

Root CLHEP Boost

Geant4 Python

……

SNiPER: the underlying Framework

Offline: extension of SNiPER and applications for JUNO

External Libraries(EI): very frequently used software and tools

Software Framework

 What’s an offline software framework?

 A framework helps users to write as less code as possible to

achieve their goals

 What does a framework provide?

 Management of Event Data

 Interfaces to define, read, access and write event data

 Management of data processing

 Sequence and/or filtering of algorithms

 Common services and tools for data processing

 HistogramSvc, RandomSvc, DatabaseSvc …

 Friendly user interface

 Simple interfaces for coding: abstract base classes for algorithms and services

 Simple interfaces for running: configure jobs via text, python …

5

Software Framework for JUNO

 SNiPER: Software for Non-collider Physics ExpeRiment

 Main goals

 Lightweight, less dependences on third-party software/libs

 Fast and flexible execution

 Easy to learn and convenient to use

 Design and development

 Learn a lot from other software frameworks, such as Gaudi

 Based on the valuable experiences of Daya Bay Experiment

 Coding from scratch

 Current Status

 Performs well for JUNO (and LHAASO, a cosmic ray exp. in China)

 Several other projects and potential users (CSNS, nEXO …)

6

Key Functionalities of Framework

 Dynamically loading packages and elements

 User’s packages can be executed as plugins

 It is easy to customize a job

 Flexible execution

 Task, TopTask, Incident

 Very useful for event splitting and mixing

 Event management in memory

 Multiple events within time windows accessible

 Very convenient for events correlation analysis

 Parallel computing (will come soon)

7

Working with SNiPER

8

SNiPER

In an User Algorithm:
1. get data from memory
2. execute calculation
3. put results back to

memory

I/O: disk, DB, network, grid…

Collect algorithm
results

Prepare data to
be processed

features such as
geometry …

No need to care
where the data
comes from

No need to care
where the data
will go

User’s Application Layer

Core Software Layer

Python UI Layer run a batch job or interactively debug a module

Key Concepts

 DLElement: Dynamically Loadable Element

 Algorithm

 Service

 Task

 Tool

 Data Buffer

 Incident

 Property

 Log (message output)

9

Each DLElement object has a unique string name

Algorithm

 An unit of codes for Data Processing

 the calculation during event loop

 Most frequently used by users

 AlgBase, the abstract base class in SNiPER

 User’s algorithm must be inherited from AlgBase

 Its constructor takes one std::string parameter

 3 abstract interfaces must be implemented, they are called by

SNiPER automatically

 bool initialize() : called once per Task (at the beginning of a Task)

 bool execute() : called once per Event

 bool finalize() : called once per Task (at the end of Task)

 We will show how to create an algorithm later

10

Service

 Similar with Algorithm

 An Dynamically Loadable Element

 One Task probably composes of one or more services

 But different from Algorithm

 A piece of code for common use (RootIOSvc, GeometrySvc …)

 They are called by user’s request, not limited to event loop

 SvcBase, the abstract base class in SNiPER

 A new service must be inherited from SvcBase

 Its constructor takes one std::string parameter

 2 abstract interfaces must be implemented

 bool initialize() : called once per Task (at the beginning of a Task)

 bool finalize() : called once per Task (at the end of Task)

 We will show how to create a service later

11

Task

 A lightweight traditional Application Manager

 Management of algorithms, services and tasks

 Controlling the execution of algorithms

 Has its own data memory management

 Has its own I/O management

 One job can has more than one Tasks(e.g. event mixing)

 All DLEs are organized in a tree structure

12

TopTask

Algorithm TaskServiceServiceService AlgorithmAlgorithm TaskTask

AlgorithmServiceServiceService AlgorithmAlgorithm

Data Processing with Task

 Task means the event processing procedure (event loop)

 SubTask provides nested event loop

 It will be executed on demand

 Task and SubTask provide more flexible execution

 Meet the requirements of Event Mixing and Event Splitting

 Multi-Thread Computing (run each task in an individual thread)

 Task is a FSM (finite-state machine)

 Startup

 Ready

 Running

 Finalized

 Endup

13

Algorithm 4

Algorithm 5

Executed on Demand
Algorithm 1

Algorithm 2

Algorithm 3

Event Loop

Algorithm 6

Executed on Demand

TopTask SubTask SubTask

Task Status

14

Tool

 Tool is also a Dynamically Loadable Element

 It belongs to an algorithm and helps the

algorithm to organize code more clearly

 One algorithm can have one or more tools

 A tool can be accessed via its name

15

Data Buffer

 Data Buffer is the dynamically allocated memory place to

hold events data which are being processed

 Applications (in terms of algorithms) get events data

from the buffer and update them after processing

16

Data Buffer in Memory

17

0

1

2

3

4

5

6

7

EvtNum: 0 1 2 3 4 5 6 7Exe Num

Current event

Event buffer

Other events

Buffer: a sequence of events in a time window

correlation analysis

of events in buffer

Incident

18

 Provides an additional degree of execution freedom:

• Incident: trigger the execution of corresponding handlers

• IncidentHandler: the wrapper of any specific procedure

1. Regular execution procedure jumps to another extra procedure

2. Back to the original procedure after all corresponding Handlers

are executed

Incident

string name()

fire()

IIncidentHandler

handle(Incident&)

regist(string)

IIncidentHandler

handle(Incident&)

regist(string)

1, fire()

2, handle()

Regular Procedure Extra Procedure

 Both Algorithms and Services can fire incidents according

to their needs

Incident Management

19

Incident

string name()

fire()

IIncidentHandler

handle(Incident&)

regist(string)

handle(Incident&) Handler
Handler

Handler
Handler

name1

name2

IncidentMgr

Incident::name()

 IncidentMgr correlates incidents with their handlers

 Incidents are distinguished by its name, such as “BeginEvent”, “EndEvent”

 One IncidentHandler can be registered to several Incidents

 One Incident can be handled by several IncidentHandlers

 Currently Event I/O and SubTask execution are based on incident mechanism

Property

20

 Configurable variable at run time

 Declare a property in DLElement (C++ code)

 Configure a property in Python script

This mechanism is also used to create and load algorithms and services:

 Types can be declared as properties:

 scalar: C++ build in types and std::string

 std::vector with scalar element type

 std::map with scalar key type and scalar value type

Log Mechanism

21

 SniperLog: a simple log mechanism supports different output levels

0: LogTest

2: LogDebug

3: LogInfo

4: LogWarn

5: LogError

6: LogFatal

 Each DLElement has its own LogLevel and can be set at run time

• very helpful for debugging

 The output message includes more information

• where it happens

• the message level

• The message contents

HelloWorld (I)

22

The HelloWorld algorithm in SNiPER

 @ Examples/HelloWorld

 configuration of the Task

svn co http://juno.ihep.ac.cn/svn/sniper/trunk/Examples/HelloWorld

HelloWorld (II)

23

Configuration of the algorithm properties

HelloWorld (III)

24

Run the Task

25

Create an Algorithm and a Service

 Package management

 C++ and Python coding

 CMT configuration

 Compile and run

Advanced topic: a job with multiple-tasks

svn co http://juno.ihep.ac.cn/svn/juno/people/zoujh/example/FirstToy

Preparation

1. Setup the official release environment

1. $ source ~/juno-dev/setup.sh

2. Create your own project

1. $ cmt create_project Tutorial

2. $ cd Tutorial

3. $ vi cmt/project.cmt (use offline)

4. $ vi cmt/version.cmt (v0)

3. Create your own package

1. $ cmt create MyPackage v0

2. $ source MyPackage/cmt/setup.sh

26

ExternalLibs sniper offline
User’s own

project

Official Software Release Users’ own code (workspace)

Package Management

1. Create a new package with CMT

 $ cmt create TestAlg v0

2. Orgnization of subdirectory and files

1. Subdirectory cmt/
 File requirements: tell CMT how to setup and compile this package

2. Subdirectory src/: the directory for source code (C++)

3. Subdirectory FirstAlg: an optional directory for header files to share

4. Subdirectory python/: an optional directory for python code

5. Subdirectory share/: an optional directory for scripts of tutorial

6. Subdirectory Linux-x86_64 or anything like this: the compiling results

that automatically generated by CMT

27

Coding and Running

 FirstToy C++

 FirstAlg, our first algorithm

 Show different level of logs

 FirstSvc, our first service

 A string message as property (can be modified in python)

 An interface to print the string message (answer())

 SecondAlg

 Call the service in an algorithm

 FirstToy Python

 Comple and run the example
 $ cmt make ## in any subdirectory of the package (cmt/ recommended)

 $ python run.py ## details in run.py

28

vs.

CMT Configuration

 The package name and author
package SecondAlg

Author Zou Jiaheng <zoujh@ihep.ac.cn> ## optional

 Dependencies while compiling
use SniperKernel v*

use FirstSvc v* FirstToy

 How to generate the .so library file
library SecondAlg *.cc

apply_pattern linker_library library=SecondAlg ##Whether load all dependencies

automatically while loading this library. Some times it is not necessary

 Copy C++ headers and Python into CMT InstallArea
apply_pattern install_more_includes more=FirstSvc ## unnecessary if no shared

headers

apply_pattern install_python_modules

29

Advanced Topic: multiple-tasks job

The DLElement Map of

ThirdAlg + SecondAlg + FirstSvc + Task

30

[ThirdAlg]

TomCat

Event Loop [SecondAlg]

Tomcat

Odd execution of toy::TomCat

[SecondAlg]

Tomcat

Even execution of toy::TomCat

[Task] toy

[Task] GoTask

[Task] ChessTask

SubTask(s) are executed on demand

Details can be found in ThirdAlg of FirstToy

31

Thanks !

Any questions?

Accounts

 AFS (IHEP computer cluster) account
 http://afsapply.ihep.ac.cn:86/ccapply/userapplyaction.action

 JUNO SVN account

 We use subversion as the version control system

 A public read only account: juno/jiangmen

 A personal account is necessary for updating

purpose

 Register an account in juno trac first: http://juno.ihep.ac.cn/trac/

 Send email to lintao@ihep.ac.cn or maqm@ihep.ac.cn

 Your user name in trac

 Your affiliation (institute or university)

32

http://juno.ihep.ac.cn/trac/
mailto:lintao@ihep.ac.cn
mailto:maqm@ihep.ac.cn

Possible Use Cases of Multi-Task Job

33

1, Multi I/O streams, such as background mixing

• create a Task for each I/O stream

• each Task holds its own data memory

• each Task handles only one Input (and Output) stream

• I/O service can be much simplified

3, Multi-Thread Computing (run each task in an individual thread)

2, Event amount changed, such as IBD simulation

(Gen)Task(Sim)Task

GenAlg

SimAlg
TriggerGenAlg

SimAlg

…

Incident

update

ne+ + N

