

Calibration strategy and MH sensitivity

Feiyang Zhang 2018-05-10

Outline

- ➤Calibration strategy
 - Calibration status in sniper
 - ➢ Non-linearity correction
 - ➢ Non-uniformity correction
- ➢ MH sensitivity
 - Prediction of IBD spectrum
 - Observation of IBD spectrum in sniper
 - $\succ \chi^2$ fit and MH sensitivity

Calibration device in sniper

- Calibration system:
 - 1-D: Automatic Calibration Unit (ACU)
 - 2-D: Cable Loop System (CLS)
 - 3-D: Remotely Opérated Vehicle (ROV)
 - Outer surface: Guide Tube (GT)
- Geometry in sniper:
 - GT geometry is written into sniper as default option.
 - ROV, source enclosure, quick connector and weights are written into sniper as alternative option.
 - All these geometries can be enable or disable if necessary during simulation,

Radioactive source generator in sniper

Calibration sources

- γ: ⁶⁸Ge, ¹³⁷Cs, ⁵⁴Mn, ⁶⁰Co, ⁴⁰K
- ➢ e⁺: ⁶⁸Ge, ²²Na
- ➢ n: ²⁴¹Am-Be, ²⁴¹Am-C or Pu-C

Usage

```
Use standard script "tut_detsim.py" by Lin Tao.
```

```
hepevt --exe AmC --volume pSource
```

```
# Use AmC (you can also AmBe or PuC)
```


- ≻ Calibration status in sniper
- ➢ Non−linearity correction
- ► Non-uniformity correction

► MH sensitivity

- ➢ Prediction of IBD spectrum
- ➢ Observation of IBD spectrum in sniper
- $\succ \chi^2$ fit and MH sensitivity

Energy scale

⁶⁸Ge at CD center with source enclosure

➤ Full absorption peak as measure.

 ⁶⁰Co as energy scale: ^{3275 PE}/_{2.5057 MeV} = 1307 PE/MeV

 Reconstructed energy for ⁶⁸Ge: E_{rec} = ^{1260 PE}/_{1307 PE/MeV} = 0.964 MeV

 Non-linearity: ^E/_{rec} = ^{0.964 MeV}/_{1.022 MeV} = 0.943

▶ Reconstruct energy for ⁵⁴Mn, ¹³⁷Cs, ⁴⁰K, n-H, n-C, Am-C with same energy scale.

Gamma to e-/e+ converting

- Gamma convert to e-/e+:
 - Pair production
 - Compton scattering
 - > Photoelectric
- Gamma energy non-linearity can be deduced from non-linearity of primary e-/e+
- > The electron from annihilation gamma should also be considered.

Model of gamma energy non-linearity

Empirical formula to describe electron non-linearity:

$$f_{nonl}(E) = \frac{E_{rec}}{E_{true}} = \frac{p_0 + p_1 \cdot E + \frac{p_2}{E}}{1 + p_3 \cdot e^{-p_4 \cdot E}}$$

Construct model of gamma energy non-linearity with PDF and electron non-linearity:

$$\frac{E_{rec}}{E_{true}} = \frac{\sum_{i}^{j} E_{i} f(E_{i}) \frac{p_{0} + p_{1} \cdot |E_{i}| + \frac{P_{2}}{|E_{i}|}}{1 + p_{3} \cdot e^{-p_{4} \cdot |E_{i}|}}}{\sum_{i}^{j} E_{i} f(E_{i})}$$

Ref:

- Liangjian Wen, et al., Ref: Daya Bay DocDB 8240-√2
- Fengpeng An, et al (Daya Bay Collaboration): PRL 112, 061801(2014)

Bias of energy non-linearity correction

1.08 E^{rec}/E (% 0.2 sei<u>B</u>0.15 n-C²⁴¹Am-C⁻P-Fe . 0.1 1.04 χ^2 / ndf 12.12 / 4 n-F Bias < 0.15% p0 1.071 ± 0.0002036 0.05 1.02 p1 0.001928 ± 3.542e-05 .^{≉40}K p2 ⁶⁰Co -0.001721 ± 1.545e-05 0 p3 0.09141 ± 0.0006133 -0.05 p4 1.451 ± 0.0128 -54 Mr 0.98 $\frac{E_{rec}}{E_{true}} = \frac{p_0 + p_1 \cdot E + \frac{p_2}{E}}{1 + p_2 \cdot e^{-p_4 \cdot E}}$ -0.1 0.96 1³⁷Cs $f_{nonl}(\mathbf{E}) =$ -0.15 ^{6₿}Ge 0.94 -0.2 0 2 3 4 5 6 7 O 1 2 3 6 7 5 8 E_{gamma} [MeV] Evis (MeV)

Bias of e+ after correction

➤ Fit non-linearity of gamma to extract parameters.

Calculate bias between true and reconstructed energy of e+ from 1 to 8 MeV based on fit result.

- ≻ Calibration status in sniper
- ► Non-linearity correction
- Non-uniformity correction
- ► MH sensitivity
 - ► Prediction of IBD spectrum
 - ➢ Observation of IBD spectrum in sniper
 - $\succ \chi^2$ fit and MH sensitivity

Calibration sources

➤ Used as points in inner CD.

Calibration points

Correction mapping

- Spline function to describe the correction mapping
- > The resolution is sigma/mean = 2.98%
- ➢ Mean PE of 1 MeV e+ at CD center is 1262
- Mean bias is 0.05 % with visible energy 1 MeV of e+.

Bias and energy resolution

- ➤ Mono energy e+ (1-8 MeV) uniformly distribution in CD.
- Corrected it with non-uniformity correction mapping.
- Use true position of event in MC simulation.
- ➤ The overall bias is less than 0.1% from 1 to 8 MeV for e+.
- Energy resolution: $\sqrt{a^2 + (1.6b)^2} = 3.04\%$ (requirement in Yellow book: < 3%)</p>

Combined with Vertex reconstruction

Assumption of vertex reconstruction

Energy resolution	Resolution (cm)	a (%)	b(%)	$\sqrt{a^2 + (1.6b)^2}$
₹ ^{3.5} _ 5cm	5	2.89	0.65	3.07
— — — — — 10cm — — 12cm	10	2.94	0.74	3.17
- 15cm - 20cm	12	2.95	0.78	3.20
20 - 25cm - 25cm	15	2.95	0.84	3.24
2.5	20	3.07	0.83	3.34
- 40cm - 45cm	25	3.16	0.82	3.43
2	30	3.18	0.86	3.46
	35	3.27	0.83	3.53
15	40	3.32	0.84	3.58
	45	3.36	0.87	3.64
1 2 3 4 5 6 7 8 E [MeV]	50	3.35	0.94	3.67

- Assume resolution of vertex reconstruction: 5,10,12,15,20,25,30,35,40,45,50 cm
- Non-uniformity correction with the assumption, and calculate corresponding resolution.
- Fit with $\sqrt{a^2/E + b^2}$ to get parameter a and b.
- \succ Energy resolution is sensitive to vertex reconstruction.

- ≻ Calibration status in sniper
- ► Non-linearity correction
- ► Non-uniformity correction

➢ MH sensitivity

- ► Prediction of IBD spectrum
- ➢ Observation of IBD spectrum in sniper
- $\succ \chi^2$ fit and MH sensitivity

Procedure of study

- ≻ Calibration status in sniper
- ► Non-linearity correction
- ► Non-uniformity correction
- ➢ MH sensitivity
 - Prediction of IBD spectrum
 - ► Observation of IBD spectrum in sniper
 - $\succ \chi^2$ fit and MH sensitivity

Probability of neutrino

Oscillation probability

酒菜酒

Parameter	best-fit	3σ		
$\Delta m_{21}^2 \ [10^{-5} \text{ eV}^2]$	7.37	6.93 - 7.97	$P_{osc}(E,\Delta m^2) = 1 - \sin^2 2\theta_{13} c$	$\cos^2 \theta_{12} \sin$
$ \Delta m^2 \ [10^{-3} \text{ eV}^2]$	2.50(2.46)	$2.37 - 2.63 \ (2.33 - 2.60)$		
$\sin^2 \theta_{12}$	0.297	0.250 - 0.354	$-\sin^2 2\theta \sin^2 \theta \sin^2 \theta \sin^2 \frac{1.2}{2}$	$267\Delta m_{32}^2 L$
$\sin^2\theta_{23},\Delta m^2 > 0$	0.437	0.379 - 0.616	$5111 20_{13} 5111 0_{12} 5111$	E
$\sin^2\theta_{23},\Delta m^2 < 0$	0.569	0.383 - 0.637	1 2	$267\Delta m_{21}^2 L$
$\sin^2\theta_{13},\Delta m^2 > 0$	0.0214	0.0185 - 0.0246	$-\cos^2\theta_{13}\sin^22\theta_{12}\sin^2-$	21
$\sin^2\theta_{13},\Delta m^2 < 0$	0.0218	0.0186 - 0.0248		L

 $P(E_{v}) = Flux(E_{v}) \cdot \sigma(E_{v}) \cdot P_{osc}(E_{v})$ Cross section

Neutrino energy to deposit Energy

- Neutrino events uniformly distribute in CD.
- Get the corresponding deposit energy for every event.
- Construct response matrix between neutrino energy and deposit energy.
- ➢ Bins of matrix are 4000×4000.

$$P(E_{dep}^{i}) = \sum_{j=0}^{4000} M_{ij} \cdot P(E_{v}^{j})$$

Deposit energy to visible energy

Energy non-linearity obtained from calibration.

Non-linearity exists between deposit energy and Visible energy.

$$E_{vis} = f_{NL}(E_{dep})E_{dep}$$
$$P(E_{vis}) = \frac{\partial E_{dep}}{\partial E_{vis}}P(E_{dep})$$

Visible energy to detected energy

- Construction of energy resolution model:
 - e+ uniformly distribute in CD, with continuous energy from 1 to 8 MeV.
 - Non-uniformity correction.
 - Energy resolution as function of deposit energy.
 - Fit it with $\sqrt{a^2 / E + b^2}$ to get "a" and "b"
- "a" and "b" will be used to construct energy resolution model.

$$\sigma / E = \sqrt{a^2 / E + b^2}$$

$$P(E_{det}) = \int_0^{60MeV} P(E_{vis}) dE_{vis} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(E_{vis} - E_{det})^2}{2\sigma^2}\right)$$

This method can only be used simulation. Should try to obtain model of energy resolution from calibration in real experiment.

- ≻ Calibration status in sniper
- ► Non-linearity correction
- ► Non-uniformity correction

► MH sensitivity

- ➢ Prediction of IBD spectrum
- Observation of IBD spectrum in sniper
- $\succ \chi^2$ fit and MH sensitivity

Observation of IBD spectrum

- Simulation: IBD events uniformly distribute in CD.
- 100,000 events (~6 years data)for one experiment.
- Correct them with correction mapping
- ► Energy scale: 1307 PE/MeV (⁶⁰Co)

- ≻ Calibration status in sniper
- ► Non-linearity correction
- ► Non-uniformity correction

► MH sensitivity

- ➢ Prediction of IBD spectrum
- ➢ Observation of IBD spectrum in sniper
- $\succ \chi^2$ fit and MH sensitivity

► Summary

Definition of χ^2 and $\Delta \chi^2$

 χ^2 is constructed to qualify the consistent of data and prediction:

$$\chi^{2} = \chi^{2}_{stat} + \chi^{2}_{penalty} = \sum \frac{(M_{i} - T_{i})^{2}}{M_{i}} + \frac{(\Delta m^{2} - \Delta m^{2}_{pdg})^{2}}{\sigma_{pdg}^{2}}$$

Fit the IBD detected energy spectrum with normal hierarchy(NH) or inverted hierarchy(IH) predicted.

MH discriminator is defined as:

 $\Delta\chi^2 = \chi^2(NH) - \chi^2(IH)$

Fit the IBD detected energy spectrum

Page. 27

- \succ Fit the IBD spectrum with prediction.
- ➤ Number of bins is 200. So NDF = 200 -1 = 199.
- $\succ \chi^2$ for NH expected: 195 and χ^2 for IH expected: 208.
- $\succ \Delta \chi^2$ is 13.
- ➤ There is only one experiment (100,000 events for ~6 years data)
- > Simulate multiple times of experiment, and get the distribution of χ^2 and $\Delta \chi^2$.

χ^2 and $\Delta \chi^2$ distribution

γ^2 for NH expected

γ² for IH expected

- Simulate times of experiment: 170.
- $\succ \chi^2$ is 199.4 with right MH predicted, which seems good since the NDF is 199. \blacktriangleright And $\Delta \chi^2 = 14.63$

> MH sensitivity is $\sqrt{\Delta \chi^2} \sigma = 3.82 \sigma$ refer to standard sensitivity definition in Yellow book.

Summary

- With Daya bay's model of energy non-linearity, it's promising to make the bias less than 0.2%.
- Combining ACU, CLS and GT, we can construct a correction mapping of non-uniformity. But this correction rely on vertex reconstruction, and we need better vertex reconstruction.
- > Considering non-linearity and non-uniformity correction, the MH sensitivity can reach to $3 \sim 4 \sigma$.
- But We need energy resolution model from calibration for prediction of IBD energy spectrum. That's what we will consider for next step.

Thank you

