Presentation based on J. High Energ. Phys. (2018) 2018: 90

- Collaborated with Qiang Li
- With special thanks to Kaoru Hagiwara

Daneng Yang

School of Physics, Peking University

Department of Physics, Tsinghua University

The 24th International Summer Institute on Phenomenology of Elementary Particle Physics and Cosmology August 16th, 2018 Panshan, Tianjin

Motivation

Measuring angular coefficients of high pT Z boson leptonic decays Z boson pT balanced by **jets** Z boson pT balanced by **missing energy**

Angular coefficients of Z boson leptonic decays

Angular coefficients of Z boson leptonic decays

Parametrization of the lepton angular distribution

Measuring angular coefficients of high pT Z boson leptonic decays

Z boson pT balanced by jets Z boson pT balanced by missing energy

Parametrization of the lepton angular distribution

We parametrize the phase space as visible part

 $\mathbf{x} = (y_Z, q_T, \cos \theta_{CS}, \phi_{CS})$

and invisible part

 $(y_{\rm Y}, s_{\rm Y}, \cos\theta_{\chi}, \phi_{\chi})$

 x_1, x_2 fixed through delta functions

The z-axis is defined as the bisector of the angle θ_{12} between p_1 and $-p_2$.

•
$$\tan \frac{\theta_{12}}{2} = \frac{q_T}{\sqrt{s_Z}}$$
, $q_T \equiv |\mathbf{q_T}|$:

- θ_{12} independent of longitudinal boost
- Minimize the impact of incoming quark transverse momentum
- Rotate around the x-axis by π for events with $v_7 < 0$:
 - Avoid possible dilutions by the initial state • swapped processes
 - Angular coefficients have symmetric y₇ distributions

$$\int d\Phi_4(k_l, k_{\bar{l}}, k_{\chi}, k_{\bar{\chi}}) = \int \frac{ds_Z}{2\pi} \frac{ds_\chi}{2\pi} \int d\Phi'_2(p_Y, p_Z) d\Phi_2(k_l, k_l) d\Phi_2(k_{\chi}, k_{\bar{\chi}}),$$

$$\int d\Phi'_2(p_Y, p_Z) = \int \frac{d^3 p_Z}{(2\pi)^3 2 p_Z^0} \frac{d^3 p_Y}{(2\pi)^3 2 p_Y^0} (2\pi)^4 \delta^4(p_1 + p_2 - p_Z - p_Y),$$

$$= \frac{1}{4\pi s} \int dy_Z dy_Y dq_{\Gamma} \cdot q_{\Gamma}$$

$$\delta(x_1 - \frac{x_{T,Z}}{2} e^{y_Z} - \frac{x_{T,Y}}{2} e^{y_Y}) \delta(x_2 - \frac{x_{T,Z}}{2} e^{-y_Z} - \frac{x_{T,Y}}{2} e^{-y_Y})$$

$$\int d\Phi_2(k_1, k_2) = \frac{1}{8\pi} \bar{\beta}(\frac{m_1^2}{s_{12}}, \frac{m_2^2}{s_{12}}) \frac{d\cos\theta}{2} \frac{d\phi}{2\pi},$$

$$\bar{\beta}(a, b) = \sqrt{\lambda(1, a, b)} = \sqrt{1 + a^2 + b^2 - 2a - 2b - 2ab}.$$

Parametrization of the lepton angular distribution

We consider the Z boson decay as a probe of the underlying production structure with a narrow width approximation.

 $\frac{\mathrm{d}\sigma}{\mathrm{d}y_{\mathrm{Z}}\mathrm{d}q_{\mathrm{T}}\mathrm{d}s_{\mathrm{Y}}\mathrm{d}\Phi_{2}(k_{\chi},k_{\bar{\chi}})\mathrm{d}\cos\theta\mathrm{d}\phi} = \frac{\mathrm{d}\sigma_{P}}{\mathrm{d}y_{\mathrm{Z}}\mathrm{d}q_{\mathrm{T}}\mathrm{d}s_{\mathrm{Y}}\mathrm{d}\Phi_{2}(k_{\chi},k_{\bar{\chi}})} \cdot \mathrm{Br}(\mathrm{Z} \to l^{+}l^{-}) \cdot 3\sum_{s,s'} \rho_{ss'}^{\mathrm{P}} \rho_{ss'}^{\mathrm{D}}$ $\mathrm{Tr}\rho^{\mathrm{P}} = \int_{\mathcal{R}} \mathrm{d}\Phi_{2}'(p_{\mathrm{Y}},p_{\mathrm{Z}})\mathrm{d}\Phi_{2}(k_{\chi},k_{\bar{\chi}}) \sum_{a,b} f_{a}(x_{1},\mu_{\mathrm{F}})f_{b}(x_{2},\mu_{\mathrm{F}}) \frac{1}{2\hat{s}} \sum_{\mathrm{ext}} \sum_{s} |\mathcal{M}_{s}|^{2},$ $\rho_{ss'}^{\mathrm{P}} = \frac{1}{\mathrm{Tr}\rho^{\mathrm{P}}} \int_{\mathcal{R}} \mathrm{d}\Phi_{2}'(p_{\mathrm{Y}},p_{\mathrm{Z}})\mathrm{d}\Phi_{2}(k_{\chi},k_{\bar{\chi}}) \sum_{a,b} f_{a}(x_{1},\mu_{\mathrm{F}})f_{b}(x_{2},\mu_{\mathrm{F}}) \frac{1}{2\hat{s}} \sum_{\mathrm{ext}} \mathcal{M}_{s} \mathcal{M}_{s'}^{*} \longrightarrow \operatorname{Angular}_{\mathrm{coefficients}}$ $\rho_{ss'}^{\mathrm{P},CS} = \sum_{\alpha,\beta} d_{\alpha s}^{J=1}(-\omega) d_{\beta s'}^{J=1}(-\omega) \rho_{\alpha\beta}^{\mathrm{P},HEL}$

$$\cos \omega = \frac{2\sqrt{\tau_{\rm Z}} \sinh y_{\rm Z}}{\sqrt{x_{\rm T,Z}^2 \cosh^2 y_{\rm Z} - 4\tau_{\rm Z}}},$$

Parameter	Value
$\sin^2 \theta_W$	0.23129
$1/\alpha$	127.95
mz	91.1876 GeV
$\Gamma_{\mathbf{Z}}$	2.4952 GeV
m _W	$m_Z \cos \theta_W$
$Br(Z \rightarrow ll), l=e, \mu$	6.73%
μ_F	$E_T = \sqrt{s_Z + q_T^2}$

- Analytic implementation (ALOHA generated HELAS subroutines): allows application of matrix element method (MEM).
- All evaluated angular coefficients checked with toy measurements based on MadGraph5 generated events.

We will show $y_Z - q_T$ distributions of A_{0-4} in different scenarios

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_{\mathrm{T}}\mathrm{d}y_{\mathrm{Z}}\mathrm{d}s_{\mathrm{Z}}\mathrm{d}\cos\theta\mathrm{d}\phi} = \left(\int\mathrm{d}\cos\theta\mathrm{d}\phi\frac{\mathrm{d}\sigma}{\mathrm{d}q_{\mathrm{T}}\mathrm{d}y_{\mathrm{Z}}\mathrm{d}s_{\mathrm{Z}}\mathrm{d}\cos\theta\mathrm{d}\phi}\right)\frac{3}{16\pi}$$
$$\left\{(1+\cos^{2}\theta) + \frac{1}{2}A_{0}(1-3\cos^{2}\theta) + A_{1}\sin2\theta\cos\phi\right.$$
$$\left. + \frac{1}{2}A_{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta\right\}$$

Angular coefficients in simplified models

- □ SM ZZ→21 2v background
- Spin-0 mediator
- Spin-1 mediator
- Spin-2 mediator

Spin-0 mediator

$$\begin{split} \mathcal{L}_{SMEW}^{Y_{0}} &= \frac{1}{\Lambda} g_{h3}^{S} (D^{\mu} \phi)^{\dagger} (D_{\mu} \phi) Y_{0} \\ &+ \frac{1}{\Lambda} B_{\mu\nu} \left(g_{B}^{S} B^{\mu\nu} + g_{B}^{P} \tilde{B}^{\mu\nu} \right) Y_{0} + \frac{1}{\Lambda} W_{\mu\nu}^{i} \left(g_{W}^{S} W^{i,\mu\nu} + g_{W}^{P} \tilde{W}^{i,\mu\nu} \right) Y_{0}, \\ \mathcal{L}_{X}^{Y_{0}} &= m_{\chi_{C}} g_{X_{C}}^{S} \chi_{C}^{*} \chi_{C} Y_{0} + \bar{\chi}_{D} (g_{X_{D}}^{S} + i g_{X_{D}}^{P} \gamma_{5}) \chi_{D} Y_{0}, \end{split}$$

Benchmark	$S0_a$	$S0_b$	$S0_c$
$g_{X_D}^S$	1	0	0
$g_{X_D}^{P}$	0	1	0
$g_{X_C}^{S^{D}}$	0	0	1
g_W^S	0.25	0	0
g_W^P	0	0.25	0
g^S_{h3}	0	0	1
$\Lambda ~({ m GeV})$	3000	3000	3000
Interaction	CP-even	CP-odd	CP-even
${ m m}_{\chi}~({ m GeV})$	10	10	10
$m_{Y_0} (GeV)$	1000	1000	1000
$\Gamma_{Y_0} (\text{GeV})$	41.4	41.4	1.05
Cross section (fb)	0.0103	0.00977	2.98e-08

Spin-1 mediator

$$\begin{split} \mathcal{L}_{X_D}^{Y_1} &= \bar{\chi}_D \gamma_\mu \left(g_{X_D}^V + g_{X_D}^A \gamma_5 \right) \chi_D Y_1^\mu \\ \mathcal{L}_{SM}^{Y_1} &= \bar{d}_i \gamma_\mu \left(g_{d_{ij}}^V + g_{d_{ij}}^A \gamma_5 \right) d_j Y_1^\mu + \bar{u}_i \gamma_\mu \left(g_{u_{ij}}^V + g_{u_{ij}}^A \gamma_5 \right) u_j Y_1^\mu \end{split}$$

Benchmark	$S1_a$	$S1_b$	$S1_c$	$S1_0$
	Spin independent	Right handed	Left handed	SM $(ZZ \rightarrow 2l2\nu)$
$g_{X_D}^V$	1	$1/\sqrt{2}$	$1/\sqrt{2}$	-
$g^A_{X_D}$	0	$1/\sqrt{2}$	$-1/\sqrt{2}$	-
$g_{X_C}^V$	0	0	0	-
g_u^V	0.25	$\sqrt{2}/8$	$\sqrt{2}/8$	-
g_u^A	0	$\sqrt{2}/8$	$-\sqrt{2}/8$	-
g_d^V	0.25	$\sqrt{2}/8$	$\sqrt{2}/8$	-
g_d^A	0	$\sqrt{2}/8$	$-\sqrt{2}/8$	-
$m_{\chi} (GeV)$	10	10	10	-
$m_{Y_1} (GeV)$	1000	1000	1000	-
Γ_{Y_1} (GeV)	56.3	55.9	55.9	-
Cross section (fb)	2.50	0.533	4.50	239

Spin-2 mediator

$$\mathcal{L}_X^{Y_2} = -\frac{1}{\Lambda} g_X^T \, T_{\mu\nu}^X Y_2^{\mu\nu}$$

$$\mathcal{L}_{\rm SM}^{Y_2} = -\frac{1}{\Lambda} \sum_i g_i^T T^i_{\mu\nu} Y_2^{\mu\nu}$$

Benchmark	$S2_a$	$S2_b$	$S2_c$
$g_{X_D}^T$	1	0	0
$g_{X_R}^T$	0	1	0
$g_{X_V}^T$	0	0	1
g_{SM}^T	1	1	1
$m_{\chi} ~({ m GeV})$	10	10	10
$m_{Y_2} ~(GeV)$	1000	1000	1000
Λ	3000	3000	3000
$\Gamma_{Y_2} (\text{GeV})$	95.3	93.7	97.7
Cross section (fb)	2.73	0.0462	0.578

- JHEP 02 (2016) 082
- Report of the ATLAS/CMS Dark Matter Forum, 1507.00966
- Eur. Phys. J. C77 (2017) 326

$y_Z - q_T$ differential cross section

Clear differences among models, but only 2-dimension

It's worth looking into the angular distribution and look for further information.

SM ZZ \rightarrow 212 ν

Spin-0 mediator (a-c)

Spin-2 mediator

Spin-1 mediator (a-c)

A0 in the $y_Z - q_T$ plane

Spin-0 mediator (a-c)

Al in the $y_Z - q_T$ plane

SM $ZZ \rightarrow 212\nu$

Spin-0 mediator (a-c)

Spin-2 mediator

Spin-1 mediator (a-c)

Distributions look similar Exception: A1 in S0c = 0

A2 in the $y_Z - q_T$ plane

Spin-2 mediator

Spin-1 mediator (a-c)

Spin-0 mediator (a-c)

Sensitive to spin-0 models Spin-2 signature similar but different from the one of the spin-1 model

A3 in the $y_Z - q_T$ plane

Spin-0 mediator (a-c)

A4 in the $y_Z - q_T$ plane

SM ZZ \rightarrow 212 ν

Spin-0 mediator (a-c)

Visible part: $\mathbf{x} = (y_Z, q_T, \cos \theta_{CS}, \phi_{CS})$ Invisible part (integrated): $(y_Y, s_Y, \cos \theta_\chi, \phi_\chi)$

Limits on the coupling strength parameters and multivariate discriminator

Benchmark scenarios S0a, S0b, S0c

Benchmark scenarios Sla, Slb, Slc

Setting limits on the coupling strength parameters

We exploit a dynamically constructed matrix element based likelihood function to set limits on the coupling strength parameters:

$$\rho(\mathbf{p}^{\text{vis}}|\lambda) = \frac{1}{\sigma_{\lambda}} \sum_{a,b} \int \mathrm{d}x_1 \mathrm{d}x_2 f_a(x_1,\mu_{\rm F}) f_b(x_2,\mu_{\rm F}) \int \mathrm{d}\Phi \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\Phi} \prod_{i\in\text{vis}} \delta(\mathbf{p}_i - \mathbf{p}_i^{vis})$$

Visible part:

 $\mathbf{x} = (y_{\mathrm{Z}}, q_{\mathrm{T}}, \cos \theta_{CS}, \phi_{CS})$

Invisible part (integrated): $(y_{\rm Y}, s_{\rm Y}, \cos \theta_{\chi}, \phi_{\chi})$

An unbinned likelihood fit is performed to extract limit

$$\mathcal{L}(\text{data}|\lambda, \boldsymbol{\theta}) = \text{Poisson}(N|S(\lambda, \boldsymbol{\theta}) + B(\boldsymbol{\theta}))\rho(\boldsymbol{\theta})\prod_{i} \rho(\mathbf{x}^{i}|\lambda, \boldsymbol{\theta}),$$
$$\rho(\mathbf{x}|\lambda, \boldsymbol{\theta}) = \frac{S(\lambda, \boldsymbol{\theta})\rho_{s}(\mathbf{x}^{i}, \lambda) + B(\boldsymbol{\theta})\rho_{b}(\mathbf{x}^{i})}{S(\lambda, \boldsymbol{\theta}) + B(\boldsymbol{\theta})},$$

Evaluate test statistics in the large sample limit

$$t_{\lambda} = -2\ln \frac{\mathcal{L}(\text{data}|\lambda, \hat{\theta}_{\lambda})}{\mathcal{L}(\text{data}|\hat{\lambda}, \hat{\theta})}$$

$$t_{\lambda} \xrightarrow{N \to \infty} -2\ln \frac{\operatorname{Poisson}(N|S(\lambda) + B)}{\operatorname{Poisson}(N|B)} + 2N \int d\mathbf{x} \rho(\mathbf{x}|\lambda = 0) \ln \frac{\rho(\mathbf{x}|\lambda = 0)}{\rho(\mathbf{x}|\lambda)}$$
$$= -2\ln \frac{\operatorname{Poisson}(N|S(\lambda) + B)}{\operatorname{Poisson}(N|B)} + 2N \cdot D(\rho(\mathbf{x}|\lambda = 0)||\rho(\mathbf{x}|\lambda)).$$

 λ scales couplings of the dark mediator to the dark matter and the SM particles at the same time

Dual integration, 4-dim for each step (700x6 CPU hours, 2.4 GHz)

- Integrate over the invisible part
- Evaluate the KL divergence term

Setting limits on the coupling strength parameters

Background modeling and event selections

Consider the same selections as in the 13 TeV CMS measurement: JHEP 03 (2017) 061

Selections implemented in numerical integration (BL-selections):

Variable	Requirements
p_{T}^{l}	$> 20 { m ~GeV}$
s_{Z}	NWA
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 80 { m ~GeV}$
$ \eta_l $	< 2.4
ΔR_{ll}	> 0.4
$ y_{\mathrm{Z}} $	< 2.5

Distributions distorted by selections. Shown for background only hypothesis

Other selection effects are included through an ancillary $A \cdot \epsilon$ factor. Event rate corresponds to 13 TeV LHC with 150 fb^{-1} data.

	Process	Cross section with BL-selections (fb)	Ancillary $A \cdot \epsilon$	Events
Matrix Element	$ZZ \rightarrow 2l2\nu$	27.7	0.488	2028
Phase space	Non-resonant- ll	1.57×10^{3}	5.80×10^{-3}	1370
Matrix Element	$WZ(\rightarrow e\nu 2l)$	17.05	0.296	757
Matrix Element	$\mathbf{Z}/\gamma^* \to l^+ l^-$	3.61×10^{4}	$1.23{ imes}10^{-4}$	665

Setting limits on the coupling strength parameters

Upper limits on the coupling strength parameters of the SO benchmark scenarios.

Upper limits on the coupling strength parameters of the S1 benchmark scenarios.

Benchmark	$S0_a$	$\mathrm{S0}_b$	$\mathrm{S0}_c$	$S1_a$	$\mathrm{S1}_b$	$S1_c$	
Limit from the normalization term (λ_1)	4.4	4.6	103	1.1	1.7	0.97	
Signal cross section at λ_1 (fb)	1.86	1.87	1.86	1.87	1.87	1.87	Close
Limit from the KL-divergence term (λ_2)	3.5	3.6	81	1.1	1.7	0.99	
Signal cross section at λ_2 (fb)	0.75	0.70	0.72	1.9	2.0	2.0	
Combined limit (λ_0)	3.5	3.5	79	1.0	1.5	0.89	
Quantify the shape improvements						19	

Matrix Element Kinematic Discriminator (MEKD)

We have constructed an example MEKD

- A kind of multivariate analysis motivated by theory
- Applicable regardless of the source of data

$$\text{MEKD} = \ln \frac{\rho_s(\mathbf{x}, \lambda)}{\rho_b(\mathbf{x})}$$

Example application using MadGraph generated events

NLO samples for major backgrounds

Thanks for your attention!

BACKUP

Angular distribution and the production density matrix

$$\rho = \frac{1}{3}(1+\sqrt{3}\sum_{k=1}^{8}P_{k}\lambda_{k}) = \frac{1}{3} + \frac{1}{\sqrt{3}}\begin{pmatrix} P_{3} + \frac{P_{8}}{\sqrt{3}} & P_{1} - iP_{2} & P_{4} - iP_{5} \\ P_{1} + iP_{2} & -P_{3} + \frac{P_{8}}{\sqrt{3}} & P_{6} - iP_{7} \\ P_{4} + iP_{5} & P_{6} + iP_{7} & \frac{-2P_{8}}{\sqrt{3}} \end{pmatrix}^{+}$$

where $\lambda_k s$ are Gell-Mann matrices

We study the production density matrix in the parton-parton center of mass frame

- Helicity amplitudes calculated
- Analytic expression for production density matrix as a function of $\sqrt{\hat{s}}$ and $\cos\theta$

$$\mathbf{P} = \sqrt{\mathbf{tr}(\rho^2)} = \sqrt{\sum_k P_k^2} = 1$$
 for pure
state;
<1 for mixed state

$$\begin{split} &4\pi tr\left(\rho_{Prod}\rho_{Decay}^{T}\right) = 4\pi\sum_{\lambda,\lambda'}\rho_{Prod}^{\lambda\lambda'}(\cos\hat{\theta},\hat{s})\rho_{Decay}^{\lambda\lambda'}(\theta,\phi) = 1 - \frac{P_{8}}{2}(1-3\cos^{2}\theta) + \\ &\frac{\sqrt{3}}{2\sqrt{2}}(P_{4}-P_{6})\sin 2\theta\cos\phi + \frac{\sqrt{3}}{2}P_{1}\sin^{2}\theta\cos 2\phi \\ &-\sqrt{3}\frac{c_{L,l}^{2}-c_{R,l}^{2}}{c_{L,l}^{2}+c_{R,l}^{2}}P_{3}\cos\theta - \sqrt{\frac{3}{2}}\frac{c_{L,l}^{2}-c_{R,l}^{2}}{c_{L,l}^{2}+c_{R,l}^{2}}(P_{4}+P_{6})\sin\theta\cos\phi \\ &-\sqrt{\frac{3}{2}}\frac{c_{L,l}^{2}-c_{R,l}^{2}}{c_{L,l}^{2}+c_{R,l}^{2}}(P_{5}-P_{7})\sin\theta\sin\phi + \frac{\sqrt{3}}{2\sqrt{2}}(P_{5}+P_{7})\sin 2\theta\sin\phi + \frac{\sqrt{3}}{2}P_{2}\sin^{2}\theta\sin 2\phi. \end{split}$$

• $P = \sqrt{\sum_k P_k^2}$ invariant in qt - (yz-yj) plane

There are two ways to go to the Z boson rest frame But, parton-parton c.m. frame can not be obtained in experiment

Left flying parton momentum k2	Frame-I (boost from Lab. frame)	Frame-II (boost from parton- parton c.m. frame)
Helicity frame	$x_2 \frac{\sqrt{s}}{2} \frac{1}{\sqrt{\bar{x}_{\mathrm{T}}^2 \cosh(y_Z) 4\tau}} \begin{pmatrix} \sqrt{\bar{x}_{\mathrm{T}}^2 \cosh(y_Z) 4\tau} \frac{\bar{x}_{\mathrm{T}} e^{y_Z}}{2\sqrt{\tau}} \\ x_{\mathrm{T}} \\ 0 \\ -\frac{\bar{x}_{\mathrm{T}}^2 e^{2y_Z} + x_{\mathrm{T}}^2 - 4\tau}{4\sqrt{\tau}} \end{pmatrix}$	$\frac{\sqrt{\hat{s}}}{4\sqrt{\hat{\tau}}} \begin{pmatrix} (1+\cos\hat{\theta})+(1-\cos\hat{\theta})\hat{\tau}\\ \sin\hat{\theta}\\ 0\\ -(1+\cos\hat{\theta})+(1-\cos\hat{\theta})\hat{\tau} \end{pmatrix}$
Beam-direction frame	$\frac{x_2 s}{4 \mathrm{m}_{\mathrm{Z}}} \bar{x} e^{y_{\mathrm{Z}}} \left(\begin{array}{c} \frac{4 \sqrt{\tau}}{\bar{x}_{\mathrm{T}}^2} \\ 0 \\ \frac{\bar{x}_{\mathrm{T}}^2 - 4 \tau}{\bar{x}_{\mathrm{T}}^2} \end{array} \right)$	$\frac{\hat{s}}{4m_{\rm Z}}((1+\cos\hat{\theta})+(1-\cos\hat{\theta})\hat{\tau})\begin{pmatrix}1\\-\frac{4\sqrt{\tau}}{\bar{x}_{\rm T}^2}\\0\\\frac{\bar{x}_{\rm T}^2-4\tau}{\bar{x}_{\rm T}^2}\end{pmatrix}$
Collins-Soper frame	$\frac{x_2s}{4\mathrm{m_Z}} e^{y_2} \bar{x} \cdot (1, -\sqrt{1-c}, 0, -\sqrt{c})$	$\frac{\mathbf{n}}{2} \frac{\mathbf{z}}{a} (1, -\sqrt{1-c}, 0, \sqrt{c})$

a,b,c are parton-parton center of mass frame scaling variables Collins-Soper frame has advantage also for high pT Z boson study

