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LHC Rocks!
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Snowmass QCD Working Group: arXv:1310.5189;
N. Arkani-Hamed, TH, M. Mangano, L.-T. Wang, 1511.06495;
CERN Yellow books, + many others …

Future High Energy Frontier: FCChh/SPPC 
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Figure 3: Production rates of SM processes versus the pp CM energy [4].

a low production rate and large SM backgrounds. Moreover, one needs to
disentangle di↵erent contributions from di↵erent contributing diagrams. At
100 TeV, this process will however probe a SM Higgs self-coupling at the ten
percent level [5, 6, 7, 8]. The 100 TeV pp collder could also directly probe
the top Yukawa coupling, via tt̄H production, at the 1% level [9].

Experiments at 100 TeV probe the SM in a regime where the electroweak
symmetry is e↵ectively restored. A couple of new features are worth noting
(more details will be given in Section 6.2.2). First of all, in processes at the
very high energies

p
ŝ� MW , EW gauge bosons are copiously produced by

radiation. For pT ’s approaching ⇠ 10 TeV, the electroweak Sudakov factor
4↵2 log2(p2

T
/m2

W
) ⇠ 0.1, and we have “electroweak radiation” in complete

analogy with electromagnetic and gluon radiation. For instance, a W or Z
gauge boson would be radiated o↵ a light quark with 10 TeV of energy with
a probability of 10% and o↵ a gauge boson with a probability of 20%. These
production rates are one-to-two orders of magnitude higher than what we typ-

9
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EW at Higher Energies
Some numerology:

GFE
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• power counting à Higher twist effects.

(1).
E

v
:

à need a proper treatment.

(2).
v

E
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pµ
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⇠

⇤QCD

100 GeV

v/E

v/E, mt/E, MW /E ! 0!

massless theory; EW symmetry restored！
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Some numerology:
mt

100 TeV
⇠ mb

2 TeV
(3).

At scale Q:

The top quark at the FCC/SppC would be as 
“massless” as b-quark was at the Tevatron.

à Top quark PDF? 6-flavors?
Daswon, Ismail, I. Low (2014);
TH, Sayre, Westhoff (2015).

For � = 20%� 30%, ↵s ⇠ 0.08,

Q = (25� 110)mt ) (4� 20) TeV.

↵s

⇡
CF ln

Q2

m2
t

⇠ �

Q ⇡ mt · exp(
⇡�

2↵sCF
)



7

Some numerology:
(4). EW logarithms

At scale Q :

“Color factors” :
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For � = 50%, ↵2 ⇠ 0.035,

Q ⇡ 30MW ) 2.5 TeV.

J. Chiu, A. Manohar et al., 2005; 
Manohar, Bauer et al. (SCET);
M. Chiesa et al., PRL (2013); 
T. Becher et al., 1305.4202;
Bauer, Ferland, 1601.07190;

• Virtual Sudakov suppression; 
• Real emission enhancement.

Bryan Webber, EW Corrections at HE 2nd FCC Workshop, Jan 2018

Electroweak logarithms

• Electroweak logs get large at high energy

• Virtual corrections exponentiate as Sudakov factor

14

The	numerical	effect	of	EW	Sudakov	logarithms	becomes	
large	at	high	energies
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Today:

1. EW Splitting Functions

2. EW Showering

3. EW PDF:  Factorization, 
Resummation (on going efforts)
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Formalism:

X

q

p

k

Figure 1. Schematic process involving a collinear splitting A ! B + C.

the cross section can be expressed in a factorized form

d�X,BC ' d�X,A ⇥ dPA!B+C , (2.1)

where P is the splitting function for A ! B+C. A given splitting can also act as the “hard”

process for later splittings, building up jets. The factorization of collinear splittings applies

similarly for initial-state particles, leading to the picture of parton distribution functions

(PDFs) for an initial state parton B (or C)

d�AB0!CX ' dPA!B+C ⇥ d�BB0!X , (2.2)

We will discuss this situation in the next section.

Integrating out the azimuthal orientation of the B +C system, the splitting kinemat-

ics are usually parametrized with two variables: a dimensionful scale and a dimensionless

energy-sharing variable z. The parton shower or DGLAP equations are constructed by

using the dimensionful scale as an evolution variable, though the choice is not unique.

Common choices include the transverse momentum kT of B or C relative to A’s three-

momentum vector, the virtuality of the o↵-shell leg (A for final-state showering, B or C for

initial-state showering), the energy-weighted opening angle of the split, or the renormal-

ization scale within dimensional regularization. We will mainly use kT -ordering in what

follows, though we will also discuss some results with virtuality-ordering. The energy-

sharing variable z (z̄ ⌘ 1 � z) is commonly taken to be the energy fraction of A taken

up by B (C). Alternately, z is sometimes defined as the lightcone momentum fraction,

z ⌘ (EB +~pB · p̂A)/(EA + |~pA|). Here, in practice we will use the three-momentum fraction

z ⌘
|~pB|

|~pB| + |~pC |
, (2.3)

which generally spans from zero to one, even in a massive shower. In the relativistic regime,

where the collinear factorization is strictly valid, all of these definitions are equivalent.1

1There is unavoidably some frame-dependence to this setup, as there is in all parton showers that are

defined strictly using collinear approximations. A more complete treatment would exhibit manifest Lorentz-
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The splitting kinematics then become

EB ⇡ zEA, EC ⇡ z̄EA, kT ⇡ zz̄EA✓BC , (2.4)

where ✓BC is the (small) angle between B and C.

In the simplest cases, generalizing the splitting function calculations to account for

masses is straightforward:

dPA!B+C(z, k
2
T ) '

1

16⇡2

zz̄|M(split)
|
2

(k2
T
+ zm̄2 + z̄m2 � zz̄m2

A
)2

F(z, k2T ;EA) dz dk
2
T . (2.5)

Here, M
(split) is the A ! B + C splitting matrix-element, which can be computed from

the corresponding amputated 1 ! 2 Feynman diagrams with on-shell polarization vectors

(modulo gauge ambiguities, which we discuss later). This may or may not be spin-averaged,

depending on how much information is to be kept in the shower. We have also employed the

shorthandm ⌘ mB for the mass of the first daughter particle (with energy/momentum frac-

tion z), and m̄ ⌘ mC for the mass of the second daughter particle (with energy/momentum

fraction z̄). The additional function F collects phase space factors that become relevant

in the nonrelativistic limit:

COMPUTE ME! (2.6)

In some cases where interference can be important, discussed below, the final identity of

a daughter might not be immediately known. In those cases, we default to choosing the

smallest possible mass value, namely zero in the case of a mixed �/Z state, or mZ in the

case of a mixed h/Zlong state. This allows the broadest possible splitting phase space.

On dimensional grounds, |M
(split)

|
2 goes like either k2

T
or some combination of the

various m2’s. The splitting functions thus typically scale like dk2
T
/k2

T
. There are also

mass-dependent terms like m2dk2
T
/k4

T
, that leads to the so-called ultra collinear behavior.

However, the integrated splitting rate at a given z becomes asymptotically finite at high

energies, proportional to dimensionless combinations of couplings and masses, with the

vast majority of the rate concentrated near the kT cuto↵. This e↵ectively acts as a kind of

threshold correction at the end of the shower. In either case, the remaining z dependence

after integrating over kT can be either dz/z or dz⇥(regular). The former yields additional

soft logarithms (again, formally regulated by the particle masses), and appears only in

splittings where B or C is a gauge boson.

2.2 Evolution equations

The splitting functions defined in the previous section are related to the perturbative

prediction for the initial state radiation (ISR) and thus the parton distribution functions

invariance and control of the low-momentum region, at the expense of more complicated book-keeping of

the global event structure, by using superpositions of di↵erent 2 ! 3 dipole splittings. Extending our

treatment in this manner is in principle straightforward, but beyond the scope of the present work.
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Figure 1: Schematic processes involving a collinear splitting A → B + C in either the

final state (left) or initial state (right).

broken phase, where we introduce the Goldstone Equivalence Gauge. Section 5 explores

some of the consequences of electroweak showering in final-state and initial-state splitting

processes, including interleaving into QCD showers. We summarize and conclude in Sec-

tion 6. Appendices give supplementary details of Goldstone Equivalence Gauge and the

corresponding Feynman rules in practical calculations.

2 Showering Preliminaries and Novel Features with EWSB

We first summarize the general formalism for the splitting functions and evolution equations

with massive particles that forms the basis for the rest of the presentation. We then lay

out some other novel features due to EWSB.

2.1 Splitting formalism

Let us consider a generic “hard” process nominally containing a particle A in the final

state, slightly off-shell and subsequently splitting to B and C, as depicted in Fig. 1. In the

limit where the daughters B and C are both approximately collinear to the parent particle

A, the cross section can be expressed in a factorized form [2]

dσX,BC ≃ dσX,A × dPA→B+C , (2.1)

where P is the splitting function for A→ B+C. A given splitting can also act as the “hard”

process for later splittings, building up jets. The factorization of collinear splittings applies

similarly for initial-state particles, leading to the picture of parton distribution functions

(PDFs) for an initial state parton B (or C)

dσAB′→CX ≃ dPA→B+C × dσBB′→X . (2.2)

We will discuss this situation in the next subsection.

Integrating out the azimuthal orientation of the B+C system, the splitting kinematics

are parametrized with two variables: a dimensionful scale (usually chosen to be approxi-

mately collinear boost-invariant) and a dimensionless energy-sharing variable z. Common

choices for the dimensionful variable are the daughter transverse momentum kT relative to

– 5 –

the splitting axis, the virtuality Q of the off-shell particle in the process, and variations pro-

portional to the daughters’ energy-weighted opening angle θEA. Our descriptions here will

mainly use kT , as this makes more obvious the collinear phase space effects in the presence

of masses. For our numerical results in Section 5, we switch to virtuality, which allows for

a simpler matching onto resonances. Mapping between between any of these different scale

choices is however straightforward. The energy-sharing variable z (z̄ ≡ 1− z) is commonly

taken to be the energy fraction of A taken up by B (C). The splitting kinematics takes

the form

EB ≈ zEA, EC ≈ z̄EA, kT ≈ zz̄EAθ . (2.3)

When considering splittings involving massive or highly off-shell particles, various possible

definitions of z exist which exhibit different non-relativistic limits. Besides strict energy

fraction, a common choice is the light-cone momentum fraction, z ≡ (EB + k⃗B · k̂A)/(EA+

|⃗kA|). Our specific implementation in Section 5 uses the three-momentum fraction z ≡
|⃗kB |/(|⃗kB | + |⃗kC |), (Tao) (p⃗ to k⃗ all changed, to be consistent throughout the

paper, including Appendix D, below Eq.D2...) which makes phase space suppression

in the non-relativistic limit somewhat more obvious. However, in the relativistic regime,

where the collinear factorization is strictly valid, all of these definitions are equivalent, and

we do not presently make a further distinction.1

In the simplest cases, generalizing the collinear splitting function calculations to ac-

count for masses is straightforward. Up to the non-universal and convention-dependent

factors that come into play in the non-relativistic limit, the splitting functions can be

expressed as
dPA→B+C

dz dk2T
≃

1

16π2

zz̄ |M(split)|2

(k2T + z̄m2
B + zm2

C − zz̄m2
A)

2
. (2.4)

Here, M(split) is the A → B + C splitting matrix-element, which can be computed from

the corresponding amputated 1→ 2 Feynman diagrams with on-shell polarization vectors

(modulo gauge ambiguities, which we discuss later). This may or may not be spin-averaged,

depending on how much information is to be kept in the shower. Depending upon the

kinematics, the mass-dependent factors in the denominator act to either effectively cut

off collinear divergences at small kT or, in final-state showers, to possibly transition the

system into a resonance region. In cases where interference between different mass eigen-

states can be important, this basic framework must be further generalized. Resonance and

interference effects are introduced in Section 2.3.

On dimensional grounds, |M(split)|2 goes like either k2T or some combination of the

various m2’s. Conventional splitting functions typically scale like dk2T /k
2
T , which is exhib-

ited by all of the gauge and Yukawa splittings of the massless unbroken electroweak theory,

as to be shown in Section 3. There can also be mass-dependent splitting matrix elements

1There is unavoidably some frame-dependence to this setup, as there is in all parton showers that are

defined strictly using collinear approximations. A more complete treatment would exhibit manifest Lorentz-

invariance and control of the low-momentum region, at the expense of more complicated book-keeping of

the global event structure, by using superpositions of different 2 → 3 dipole splittings. Extending our

treatment in this manner is in principle straightforward, but beyond the scope of the present work.

– 6 –

On the dimensional ground: |Msplit|2 ⇠ k2T or m2

In general, the splitting formalism must be 
• infra-red safe
• leading behavior 
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Splitting Functions: QED
Most familiar example in QED: f à f γ

p�/f (z) =
1 + z̄

z
, z̄ = 1� z.

P�/f (z) =
↵

2⇡

1 + z̄

z
ln

Q2

m2
f

.

Note the infrared & collinear behavior.
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Splitting Functions: QCD
Most common in hadronic collisions:  q, g 

Pgq(z) =
1 + z̄2

z
, Pgg(z) =

(1� zz̄)2

zz̄
, Pqg(z) =

z2 + z̄2

2
.

ISR, PDF (DGLAP):

FSR, parton showers:

of B and C, which are dynamically generated from a parent A. Consider a generic parton

distribution function fi(z, µ2) with a factorization scale µ, then the convolution relation is

fB(z, µ
2) =

X

A

Z 1

z

d⇠

⇠
fA(⇠)

Z
µ
2

m2
dPA!B+C(z/⇠, k

2
T ). (2.7)

Di↵erentiating with respect to µ2 leads to the celebrated Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) equation [? ].

@fB(z, µ2)

@µ2
=

X

A

Z 1

z

d⇠

⇠

dPA!B+C(z/⇠, µ2)

dk2
T

fA(⇠, µ
2). (2.8)

Gauge theories such as QED and QCD predict that at high energies the splitting functions

dP/dk2
T

go like 1/k2
T
, and thus the PDFs evolve like ln(Q2/µ2), in accordance with the

DGLAP equation and the violation of the Bjorken scaling law [? ]. In a broken gauge

theory, the mass-dependent terms yield a result like m2/k4
T
. Instead of evolving loga-

rithmically to a higher physical scale Q2, it e↵ectively cuts o↵ like 1/Q2
⇠ 1/m2and the

corresponding PDFs preserves the Bjorken scaling at the leading logarithms. ((JM) The

PDF of splitting functions with m2dk2
T
/k4

T
evolves like 1 � m2/Q2, approaching

to a constant very rapidly. E↵ectively it turns on itself at Q2 = m2, could be

approximated by a theta function ✓(Q2
� m2). The PDF with m2/k4

T
doesn’t

break Bjorken scaling, but will change the distribution of PDF around m2 and

possible as a function of z. The results could be obtained by solving DGLAP

equations.)

The splitting functions also serve as the evolution kernel for the final state radiation

(FSR). This is the well-known Sudakov form factor �A(t) characterizing the time-like

branching of parent A at a scale t

�A(t) = exp[�
X

B

Z
t

t0

Z
dzPA!BC(z)], (2.9)

fA(x, t) = �A(t)fA(x, t0) +

Z
t

t0

dt0

t0
�(t)

�(t0)

Z
dz

z
PA!BC(z) fA(x/z, t

0), (2.10)

where PA!BC is the splitting function of ...

2.3 Interference e↵ects

(BAT) Do we need to make any modifications to this formalism for ISR?

An important issue missed by the above formalism is the possibility of interference

e↵ects between di↵erent o↵-shell particle states. Traditionally in QED and QCD showers

these are treated as subleading e↵ects associated with the unmeasured spin and color of

intermediate particles [33]. However, the full electroweak theory presents us with cases

where di↵erent mass and gauge eigenstates can also interfere at O(1) level, namely the

neutral boson admixtures �/Z and h/Zlong. Other particles that can appear in the shower

carry (approximately) conserved charge or flavor quantum numbers that can flow out into

the asymptotic state, and therefore they cannot interfere in this manner. (Interferences
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An important issue missed by the above formalism is the possibility of interference

e↵ects between di↵erent o↵-shell particle states. Traditionally in QED and QCD showers

these are treated as subleading e↵ects associated with the unmeasured spin and color of
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that lead to m2dk2T /k
4
T type scaling. These splittings are highly suppressed for kT ∼> m.

However, they are much more strongly power-enhanced at low kT , a behavior which we

call ultra-collinear (borrowing a phrase from [57]). Upon integration over kT , the total

rate for an ultra-collinear splitting comes out proportional to dimensionless combinations

of couplings and masses, with the vast majority of the rate concentrated near kT ∼ m.

Such processes exist in familiar contexts like QED and QCD with massive fermions, for

example the chirality-flipping splittings eL → γeR and g → bLb̄L. They are usually not

treated as distinct collinear physics with their own universal splitting functions, though

they are crucial for systematically modeling shower thresholds. We choose to treat them

on independent footing, since the threshold behaviors of the electroweak shower are highly

nontrivial.

In both the conventional collinear and ultra-collinear cases, the remaining z dependence

after integrating over kT can be either dz/z or dz×(regular). The former yields additional

soft logarithms (again, formally regulated by the particle masses), and appears only in

splittings where B or C is a gauge boson.

2.2 Evolution equations

When applied to the initial state, the splitting functions outlined in the previous section

lead to both initial state radiation (ISR) as well as the dynamical generation of B and C

parton distribution functions from a parent A. Considering a generic parton distribution

function fi(z, µ2) with a factorization scale µ in kT -space, the leading-order convolution

relation is

fB(z, µ
2) = fB(z, µ

2
0) +

∑

A

∫ 1

z

dξ

ξ
fA(ξ, µ

2
0)

∫ µ2

µ2
0

dk2T
dPA→B+C(z/ξ, k2T )

dz dk2T
, (2.5)

where µ0 is an input factorization scale. Differentiating with respect to µ2 and incorpo-

rating as well the evolution of the fA leads to the celebrated Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) equation [58–60].

∂fB(z, µ2)

∂µ2
=
∑

A

∫ 1

z

dξ

ξ

dPA→B+C(z/ξ, µ2)

dz dk2T
fA(ξ, µ

2) . (2.6)

Gauge theories such as QED and QCD predict that at high energies the splitting functions

dP/dk2T go like 1/k2T , and thus that the PDFs evolve like ln(Q2/µ2). This is the classic

violation of the Bjorken scaling law [61]. In the broken electroweak theory, there are also the

qualitatively different ultra-collinear splitting functions, which instead go as m2/k4T . The

PDFs arising from these splittings “live” only at the scale kT ∼ m. Instead of evolving

logarithmically, they are cut off by a strong power-law suppression at kT ∼> m. The

corresponding PDFs preserve Bjorken scaling, up to contributions beyond leading order.

In particular, longitudinal weak boson PDFs are practically entirely determined at splitting

scales of O(mW ), even when used as inputs into processes at energies E ≫ mW .2

2This observation persists even in the presence of QCD corrections. We can imagine that a quark is

first evolved to large kT (and hence large spacelike virtuality Q) from multiple gluon emissions, and then

– 7 –

Very important formulation for LHC physics!

Hard QCD: Jets

�

New 13 TeV results!
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Splitting Functions: EW

Fermion splitting:

Start from the unbroken phase – all massless.

Infrared & collinear 
singularities (Pgq)

Collinear singularity,
Chirality-flip, Yukawa (new)

⇐ ⇐ ⇐ ⇒

1

8π2

1

k2T

(

1 + z̄2

z

)

1

8π2

1

k2T

(z

2

)

→ VT f (′)
s [BW ]0T fs H0(∗) f-s or φ± f ′

-s

fs=L,R g2V (Q
V
fs)

2 g1g2YfsT
3
fs y2

f
(′)
R

Table 1: Chiral fermion splitting functions dP/dz dk2T in the massless limit, with z (z̄ ≡
1 − z) labeling the energy fraction of the first (second) produced particle. The fermion

helicity is labelled by s. Double-arrows in Feynman diagrams indicate example fermion

helicity flows. Prime indicates isospin partner (u′s = ds, etc, independent of s). Yukawa

couplings are labelled by the participating RH-helicity fermion. The state H0∗ is the “anti-

H0”, produced when the RH fermion is down-type and in the initial-state, or up-type in

the final-state. Processes with B0 and W 0 implicitly represent the respective diagonal

terms in the neutral gauge boson’s density matrix, whereas [BW ]0 indicates either of the

off-diagonal terms (see text). Anti-fermion splittings are obtained by CP conjugation. The

conventions for the couplings are given in C.1.

⇐

⇒

1

8π2

1

k2T

(

(1− zz̄)2

zz̄

)

1

8π2

1

k2T

(

z2 + z̄2

2

)

1

8π2

1

k2T
(zz̄)

→ WT WT fs f̄
(′)
-s φ+ φ− or H0 H0∗ φ+ H0∗ or φ− H0

VT 2g22 (V=W 0,±) Nfg2V (Q
V
fs
)2 1

4g
2
V

1
2g

2
2

[BW ]0T 0 Nfg1g2YfsT
3
fs

1
2g1g2T

3
φ+,H0 0

Table 2: Transverse vector boson splitting functions dP/dz dk2T in the massless limit,

where allowed by electric charge flow. Nf is a color multiplicity factor (Nf = 1 for leptons,

Nf = 3 for quarks). Other conventions as in Table 1.

⇐

⇐

1

8π2

1

k2T

(

2z̄

z

)

1

8π2

1

k2T

(

1

2

)

→ V 0
T H [BW ]0T H W±

T H ′ uR ū(′)R d̄L d(′)L or ēL e(′)L

H = φ+,H0 1
4g

2
V

1
2g1g2T

3
φ+,H0

1
2g

2
2 3y2u Nd,ey2d,e

Table 3: Scalar splitting functions dP/dz dk2T in the massless limit via gauge couplings

and Yukawa couplings. The symbol H in the column headings represents the appropriate

state φ+,H0 for the given splitting, and H ′ represents the SU(2)L isospin partner (e.g.,

H0′ = φ+). Anti-particle splittings are obtained by CP conjugation. Other conventions as

in Tables 1 and 2.
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Chiral fermions: fs, gauge bosons: B,W0,W±;  

In particular, only one specific linear combination of γ/ZT states participates in the high-

rate nonabelian splittings to W±
T W∓

T . While collapse onto mass eigenstates is required

to obtain well-defined hard event kinematics, a simple remedy here would be to supply

for these particles their production density matrices, using some appropriately-mapped

massless kinematics.

3 Splitting Functions in Unbroken SU(2)L × U(1)Y

Before working out the complete set of electroweak splitting functions in the broken phase,

it is important to first consider a conceptual limit with an unbroken SU(2)L × U(1)Y
gauge symmetry with massless gauge bosons and fermions, supplemented by a massless

complex scalar doublet field H without a VEV. This last ingredient is the would-be Higgs

doublet. This simplified treatment in the unbroken phase is not only useful to develop some

intuition, but also captures the leading high-kT collinear splitting behavior of the broken

SM electroweak sector. Some aspects of electroweak collinear splitting and evolution at

this level have been discussed, e.g., in [38].

Anticipating electroweak symmetry breaking, we adopt the electric charge basis in weak

isospin space. The corresponding SU(2)L bosons are W± and W 0, and the hypercharge

gauge boson we denote as B0. Gauge boson helicities are purely transverse (T ), and are

averaged.8 For the scalar doublet, we decompose as

H =

(

H+

H0

)

=

(

φ+

1√
2
(h− iφ0)

)

, (3.1)

where φ±,φ0 will later become the electroweak Goldstone bosons and h the Higgs boson.

However, at this stage, we will keep the neutral bosons h and φ0 bundled into the complex

scalar H0, as they are produced and showered together coherently.9 We denote a generic

fermion of a given helicity by fs with s = L,R (or equivalently s = ∓). We do not always

specify the explicit isospin components of f at this stage, but implicitly work in the usual

(u, d)/(ν, e) basis. Isospin-flips (including RH-chiral isospin where appropriate) will be

indicated by a prime, e.g. u′ = d. Effects of flavor mixing are ignored.

The U(1)Y and SU(2)L gauge couplings are respectively taken to be g1 ≈ 0.36 and

g2 ≈ 0.65 (evaluated near the weak scale), and for compactness we often represent a generic

8While the gauge helicity averaging is not strictly necessary, especially given that we will later make a

distinction between transverse and longitudinal polarizations, it does simplify our presentation. We also

do not incorporate azimuthal interference effects, though this would be straightforward in analogy with

QCD [5].
9We have expanded the neutral scalar field as H0 ∝ h − iφ0, adopting a phase convention such that h

and φ0 fields create/annihilate their respective one-particle states with trivial phases, and H0 annihilates

the one-particle state |H0⟩ ∝ |h⟩ + i|φ0⟩. Treating h and φ0 as independent showering particles would be

analogous to adopting a Majorana basis instead of a Dirac basis for the fermions in QED or QCD. An

incoherent parton shower set up in such a basis would not properly model the flow of fermion number and

electric charge. Analogously, H0 and H0∗ particles carry conserved charges that we choose to explicitly

track through the shower. This leads to correlations between spins and electric charges within asymptotic

states.

– 13 –
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The Higgs:	

The SM EW sector:	

Unitary gauge:	

Ciafaloni et al., 
Hep-ph/0505047.



SM in the unbroken phase
Gauge boson splitting:
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Splitting Functions: EW

Infrared & 
collinear (Pgg)

Collinear (Pqg) Collinear (new)

Interference (BW0) 
must be included!
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1 − z) labeling the energy fraction of the first (second) produced particle. The fermion

helicity is labelled by s. Double-arrows in Feynman diagrams indicate example fermion

helicity flows. Prime indicates isospin partner (u′s = ds, etc, independent of s). Yukawa

couplings are labelled by the participating RH-helicity fermion. The state H0∗ is the “anti-

H0”, produced when the RH fermion is down-type and in the initial-state, or up-type in

the final-state. Processes with B0 and W 0 implicitly represent the respective diagonal

terms in the neutral gauge boson’s density matrix, whereas [BW ]0 indicates either of the

off-diagonal terms (see text). Anti-fermion splittings are obtained by CP conjugation. The

conventions for the couplings are given in C.1.
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Table 2: Transverse vector boson splitting functions dP/dz dk2T in the massless limit,

where allowed by electric charge flow. Nf is a color multiplicity factor (Nf = 1 for leptons,

Nf = 3 for quarks). Other conventions as in Table 1.
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H = φ+,H0 1
4g

2
V

1
2g1g2T

3
φ+,H0

1
2g

2
2 3y2u Nd,ey2d,e

Table 3: Scalar splitting functions dP/dz dk2T in the massless limit via gauge couplings

and Yukawa couplings. The symbol H in the column headings represents the appropriate

state φ+,H0 for the given splitting, and H ′ represents the SU(2)L isospin partner (e.g.,

H0′ = φ+). Anti-particle splittings are obtained by CP conjugation. Other conventions as

in Tables 1 and 2.
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Splitting Functions: EW
SM in the unbroken phase

Scalar splitting (new):

Infrared & collinear singularities
(a charge source, similar to Pgq)

Collinear,
similar to (Pqg)
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R

Table 1: Chiral fermion splitting functions dP/dz dk2T in the massless limit, with z (z̄ ≡
1 − z) labeling the energy fraction of the first (second) produced particle. The fermion

helicity is labelled by s. Double-arrows in Feynman diagrams indicate example fermion

helicity flows. Prime indicates isospin partner (u′s = ds, etc, independent of s). Yukawa

couplings are labelled by the participating RH-helicity fermion. The state H0∗ is the “anti-

H0”, produced when the RH fermion is down-type and in the initial-state, or up-type in

the final-state. Processes with B0 and W 0 implicitly represent the respective diagonal

terms in the neutral gauge boson’s density matrix, whereas [BW ]0 indicates either of the

off-diagonal terms (see text). Anti-fermion splittings are obtained by CP conjugation. The

conventions for the couplings are given in C.1.
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Table 2: Transverse vector boson splitting functions dP/dz dk2T in the massless limit,

where allowed by electric charge flow. Nf is a color multiplicity factor (Nf = 1 for leptons,

Nf = 3 for quarks). Other conventions as in Table 1.
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Table 3: Scalar splitting functions dP/dz dk2T in the massless limit via gauge couplings

and Yukawa couplings. The symbol H in the column headings represents the appropriate

state φ+,H0 for the given splitting, and H ′ represents the SU(2)L isospin partner (e.g.,

H0′ = φ+). Anti-particle splittings are obtained by CP conjugation. Other conventions as

in Tables 1 and 2.
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“Scalarization” to implement the Goldstone-boson 
Equivalence Theorem (GET): 

EW Symmetry breaking & 
Goldstone-boson Equivalence Theorem (GET):

At high energies E>>MW, the longitudinally polarized gauge bosons 
behave like the corresponding Goldstone bosons. (They remember 
their origin!)

Lee, Quigg, Thacker (1977); Chanowitz & Gailard (1984)

✏(k)µ
L =

E

mW
(�W , k̂) ⇡ kµ

mW
+ O(MW/E)



(a). Unitarity at higher energies:
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SU(2) x U(1) @ E & The Higgs

Chanowitz, Furman, Hinchliffe

Bad high-energy
behavior cancelled

by: 

t+

t+
-

WL+

WL-

+
Z

b ∝ mtE

v2

t+

t+
-

WL+

WL-

t+

t+
-

WL+

WL-

H

gHtt gHWW

SU(2) x U(1) @ E & The Higgs

Chanowitz, Furman, Hinchliffe

Bad high-energy
behavior cancelled

by: 

t+

t+
-

WL+

WL-

+
Z

b ∝ mtE

v2

t+

t+
-

WL+

WL-

t+

t+
-

WL+

WL-

H

gHtt gHWW

✏(k)µ
L =

E

mW
(�W , k̂) ⇡ kµ

mW

/ E2

v2

/ mtmH

v2

A “light Higgs” fixes it:

bad high-energy behavior!

D. Dicus & V. Mathur (1973);
Lee, Quigg, Thacker (1977).
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VL contributions dominant at high energies:

Then, massless fermion splitting 
f à f VL

would be zero, in accordance with GET for
f à f φ (yf à 0).

✏(k)µ
L =

E

mW
(�W , k̂) ⇡ kµ

mW

(b). Puzzle of massless fermion radiation

GET ignored the EWSB effects at the order MW/E
(higher twist effects)



At colliding energies E >> MW, 
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Pq!qVT = (g2
V + g2

A)
↵2

2⇡

1 + (1� x)2

x
ln

Q2

⇤2

Pq!qVL = (g2
V + g2

A)
↵2

⇡

1� x

x

Corrections to GET
1st example: “Effective W-Approximation”

• Vector boson fusion observed at the LHC
WW, ZZàh & W+W+ scattering

S. Dawson (1985); G. Kane et al. (1984); 
Chanowitz & Gailard (1984)

• f à f WL, f ZL do not vanish; no collinear-log! 
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“Ultra collinear behavior”
New characteristics with the mass:

kT
2 > mW

2, it shuts off;
kT

2 < mW
2, flattens out!

v2

k2
T

dk2
T

k2
T

⇠ (1� v2

Q2
)
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Figure 2: Fixed-order differential emission rate for W± bosons off a massless fermion

at Ef = 10 TeV: (a) kT distribution at z = 0.2, (b) z distribution at kT = mW/2. The

different curves correspond to massless transversely-polarized W±
T (dotted curves), massive

transversely-polarizedW±
T (solid curves), and massive longitudinally-polarized W±

L (dashed

curves).

gauge bosons a mass is a common trick for regulating QCD and QED calculations. In the

electroweak theory, such regulated splitting functions become physically meaningful.

Figure 2 also shows a contribution from longitudinal gauge boson radiation off of a

massless fermion (dashed curves). This is a good example of an “ultra-collinear” pro-

cess which emerges after EWSB at leading power in v/E. In this case it has a splitting

probability of the form

dP ∼
m2

W

k2T

dk2T
k2T

. (4.1)

The rate is seen to be significant in the region kT ∼ mW , and it can be larger than

the conventional transverse emissions in the ultra-collinear region kT ∼< mW as seen in

Fig. 2(a). We further show in Fig. 2(b) the z distribution at kT = mW/2, where we

can see the dominance of the longitudinal polarization (dashed curve) over the transverse

polarization (solid curve) for all values of z at weak-scale values of kT . Here we have

defined z as three-momentum fraction, employed a strict kinematic cut-off z > kT /E, and

multiplied the splitting rate by the W velocity to account for non-relativistic phase space

suppression.

Considering emissions from light initial-state fermions, the ultra-collinear origins of

these longitudinal weak bosons leads to quite distinctive PDFs [19–21]. Due to the existence

of an explicit mass scale mW ∼ gv, the resulting PDFs exhibit Bjorken scaling [66]. In

other words, they do not run logarithmically and do not exhibit the usual scaling violations

of conventional PDFs in massless gauge theories. Consequently, the ISR jets associated

rates for splitting angles ∼< 1 when the splitting is defined in the hard scatter frame.

– 18 –

• Kinematic basis for “forward jet-tagging, central 
jet-vetoing” !

• The DPFs for WL thus don’t run at leading log: 
“Bjorken scaling” restored (higher-twist effects)!

Barger, Cheung, TH, Phillips (1989). 
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✏(k)µ
L =

E

mW
(�W , k̂) =

kµ

mW
� mW

E + |~k|
nµ, nµ = (1,�k̂).

The gauge is defined by introducing a momentum-dependent reference four-vector

n0(k) ⌘ 1 , ~n(k) ⌘ �
k0

|k0|

~k

|~k|
, (4.2)

and a gauge-fixing Lagrangian term in momentum-space

Lfix = �
1

2⇠

⇥
n(k) · W (k)

⇤⇥
n(k) · W (�k)

⇤
(⇠ ! 0), (4.3)

here taking “W” to represent any specific real gauge adjoint component. This particular

choice of gauge-fixing preserves rotational invariance and a limited form of boost invari-

ance, and isolates spurious gauge poles/discontinuities away from physical regions. Taking

the ⇠ ! 0 limit e↵ectively introduces an infinite mass term for the component of W aligned

with the complementary lightcone direction n̄ ⌘ (n0,�~n), reducing the naive number of

dynamical gauge degrees from four to three. The transverse “xy” or helicity ±1 modes

are as usual, except that they gain a mass term after spontaneous symmetry breaking.

The remaining gauge degree of freedom becomes associated with exactly the longitudi-

nal remainder polarization discussed above. Canonically normalizing such that this field

interpolates a longitudinal boson state with unit amplitude,

✏µlong(k) !

p
|k2|

n(k) · k
nµ(k)

on-shell
!

mW

E + |~k|

⇣
�1, k̂

⌘
. (4.4)

Because the timelike component has been deleted, the longitudinal gauge fields are no

longer capable of serving as proxies for the eaten Goldstones. Instead, that role is played

by the Goldstone fields themselves, which remain as dynamical degrees of freedom. Unlike

the Goldstones in R⇠ gauges, they are capable of directly interpolating external longitudinal

bosons. Somewhat counterintuitively, while the gauge and Goldstone fields participate in

di↵erent sets of interactions, they describe the same on-shell particle. (For a di↵erent but

related approach, see [32].) (JM) The wavefunction of the asymptotic state of the

longitudinal gauge boson is identified as

✏ML =

 
✏µn
i

!

✏µ
L
= ✏µn = mA

n·k is the gauge components, M = µ for space-time components,

M = 4 for the goldstone component. Notice ✏µn ⇠
mA

E+|~k|
is suppressed energy, so

in a hard sacttering process its contribution is subdominant. This observation

is consistent with the goldstone equivalence theorem.

The onshell longitudinal propagator could then be written as a 5⇥5 matrix,

< AM

L AN

L >onshell=
i✏M

L
✏⇤N
L

k2 � m2
A
+ i✏

(4.5)

With the longitudinal field AM

L
= (Aµ,�A). Notice this expression indicates

the mixing propagators < Aµ
n�A >=< �AA

µ
n >⇤,
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k0

|k0|

~k

|~k|
, (4.2)

and a gauge-fixing Lagrangian term in momentum-space

Lfix = �
1

2⇠

⇥
n(k) · W (k)

⇤⇥
n(k) · W (�k)

⇤
(⇠ ! 0), (4.3)

here taking “W” to represent any specific real gauge adjoint component. This particular

choice of gauge-fixing preserves rotational invariance and a limited form of boost invari-

ance, and isolates spurious gauge poles/discontinuities away from physical regions. Taking

the ⇠ ! 0 limit e↵ectively introduces an infinite mass term for the component of W aligned

with the complementary lightcone direction n̄ ⌘ (n0,�~n), reducing the naive number of

dynamical gauge degrees from four to three. The transverse “xy” or helicity ±1 modes

are as usual, except that they gain a mass term after spontaneous symmetry breaking.

The remaining gauge degree of freedom becomes associated with exactly the longitudi-

nal remainder polarization discussed above. Canonically normalizing such that this field

interpolates a longitudinal boson state with unit amplitude,

✏µlong(k) !

p
|k2|

n(k) · k
nµ(k)

on-shell
!

mW

E + |~k|

⇣
�1, k̂

⌘
. (4.4)

Because the timelike component has been deleted, the longitudinal gauge fields are no

longer capable of serving as proxies for the eaten Goldstones. Instead, that role is played

by the Goldstone fields themselves, which remain as dynamical degrees of freedom. Unlike

the Goldstones in R⇠ gauges, they are capable of directly interpolating external longitudinal

bosons. Somewhat counterintuitively, while the gauge and Goldstone fields participate in

di↵erent sets of interactions, they describe the same on-shell particle. (For a di↵erent but

related approach, see [32].) (JM) The wavefunction of the asymptotic state of the

longitudinal gauge boson is identified as

✏ML =

 
✏µn
i

!

✏µ
L
= ✏µn = mA

n·k is the gauge components, M = µ for space-time components,

M = 4 for the goldstone component. Notice ✏µn ⇠
mA

E+|~k|
is suppressed energy, so

in a hard sacttering process its contribution is subdominant. This observation

is consistent with the goldstone equivalence theorem.

The onshell longitudinal propagator could then be written as a 5⇥5 matrix,

< AM

L AN

L >onshell=
i✏M

L
✏⇤N
L

k2 � m2
A
+ i✏

(4.5)

With the longitudinal field AM

L
= (Aµ,�A). Notice this expression indicates

the mixing propagators < Aµ
n�A >=< �AA

µ
n >⇤,
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“Goldstone Equivalence Gauge”
(GEG)

1st term leads to GET ~ φ, well behaved;
2nd term captures EWSB ~ An

µ, well behaved
Separate them out by a special gauge choice:

(hybrid of Coulomb & light-cone gauge)

A similar work by A. Wulzer, arXiv:1703.08562. 
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Splitting in the Broken Gauge
Corrections to GET

New fermion splitting:

Chirality conserving:
Non-zero for massless f

Chirality flipping: ~mf

⇐
⇐

φ/VL

⇐
⇐

h

⇐
⇒

1

16π2

v2

k̃4T

(

1

z

)

1

16π2

v2

k̃4T

1

16π2

v2

k̃4T

→ VL f (′)
s (V ≠γ) h fs VT f (′)

-s

fs=L

(

IVf (y2f z̄ − y2
f(′))z −QV

fL
g2V z̄

)2 1
4y

4
fz(1 + z̄)2 g2V z

(

QV
fR
yf z̄ −QV

fL
yf(′)

)2

fs=R

(

IVf yfyf(′)z2 −QV
fR
g2V z̄

)2 1
4y

4
fz(1 + z̄)2 g2V z

(

QV
fL
yf z̄ −QV

fR
yf(′)

)2

Table 4: Ultra-collinear fermion splitting functions dP/dz dk2T in the broken phase. Wavy

lines represent transverse gauge bosons, while the longitudinals/Goldstones and Higgs

bosons are represented by dashed lines. The k̃4T symbol is defined in Eq. (4.6). The

IVf symbol is a shorthand for the “charge” of a fermion in its Yukawa coupling to the eaten

Goldstone boson, or equivalently the fermion’s axial charge under the vector V . These

are normalized to approximately follow the weak isospin couplings, but are defined inde-

pendently of the fermion’s helicity: IZu = 1/2, IZd/e = −1/2, IW±

u = IW
±

d/e = 1/
√
2. Other

conventions are given in Appendix C

For the neutral boson states, the propagator factors become matrices. These may be

conveniently diagonalized by rotating from the interaction basis B0/W 0 and H0/H0∗ to

the mass basis γ/ZT and h/ZL. The former requires the usual rotation by θW in gauge

space. The latter is accomplished by a U(2) rotation into the standard CP-eigenstates. The

showering must still be performed coherently in order to capture nontrivial effects such as

the flow of weak isospin and Higgs-number. The full treatment is detailed in Appendix A.

One residual complication is that the off-diagonal terms in the splitting function matrices

are proportional to products of different propagator factors. E.g., for a γ/ZT state, the

appropriate modification factor for dPγZ would use instead

k̃4T → (k2T + z̄m2
B + zm2

C)(k
2
T + z̄m2

B + zm2
C − zz̄m2

Z) . (4.7)

We also note that our convention here is to align the phases of external ZL states with

those of the eaten scalar φ0. Consequently, terms like dPhZL
are pure imaginary.

4.2.2 Ultra-collinear broken-phase splitting functions

The remaining task is to compute all of the ultra-collinear splitting functions, proportional

to the EWSB scale like in Eq. (4.1). Generalizing the standard massless-fermion f → WLf ′

calculation [13–15], we include the splittings involving arbitrary particles in the SM. The

electroweak VEV (v), to which all of these splitting functions are proportionate, has been

explicitly extracted, as well as universal numerical factors, the kinematic factor k̃4T as

in Eq. (4.6) or Eq. (4.7), and the leading soft singularity structure (1/z, 1/z̄, or 1/zz̄).

These are obtained quite straightforwardly in GEG, where individual 1→ 2 ultra-collinear

matrix elements all scale manifestly as g2v, y2fv, or gyfv. See Appendix C for some explicit

examples.
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v2

k2
T

dk2
T

k2
T

⇠ (1� v2

Q2
)

VL is of IR, h no IR
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Splitting in the Broken Gauge
New gauge boson splitting to WL WT

v2

k2
T

dk2
T

k2
T

⇠ (1� v2

Q2
)

φ/VL

1

16π2

v2

k̃4T

(

1

z

)

→W±

L γT W±

L ZT ZL W±

T W+
L W−

T
or W−

L W+
T

W±

T e2g22 z̄
3 1

4c
2
W g42 z̄

(

(1 + z̄) + t2W z
)2 1

4g
4
2 z̄(1 + z̄)2 0

γT 0 0 0 e2g22 z̄

ZT 0 0 0 1
4c

2
W g42 z̄

(

(1 + z̄)− t2W z
)2

[γZ]T 0 0 0 1
2cW eg32 z̄

(

(1 + z̄)− t2W z
)

h ⇒

⇒

1

16π2

v2

k̃4T

1

16π2

v2

k̃4T

→ h VT (V ≠γ) fs f̄
(′)
s

VT
1
4zz̄g

4
V

1
2g

2
V

(

QV
fs
yf(′)z +QV

f-s
yf z̄
)2

[γZ]T 0 1
2egZy

2
fQ

γ
f

(

QZ
fs
z +QZ

f-s
z̄
)

Table 5: Ultra-collinear transverse vector splitting functions dP/dz dk2T in the broken

phase. For the off-diagonal incoming [γZ]T , the k̃4T symbol is defined in Eq. (4.7). Other

conventions are as in Table 4 and in Appendix C.

5 Shower Implementation and Examples

We are now in a position to implement the splitting formalism and to present some ini-

tial physics results. Our studies here involving PDFs have been generated using simple

numerical and monte carlo integration techniques. Our studies involving final-state radi-

ation, which provide much more exclusive event information, have been generated using

a dedicated virtuality-ordered weak showering code. Some technical aspects of this code

can be found in Appendix D. We do not presently study the more technically-involved

exclusive structure of weak ISR radiation. More detailed investigations of specific physics

applications will appear in future work [62].

(Tao) We first show some representative behaviors and their relative rates

for an illustrative set of electroweak splitting processes in Table 7 at two initial

energies E = 1, 10 TeV. They are those with logarithmic enhancements from the

tables presented in Sections 3 and 4. The symbols in the parentheses denote the

co-linear (CL), infra-red (IR) and ultra-colinear (UC) behaviors, respectively.

As expected, the VT radiation off an SU(2)L doublet (f and φ) leads to the

– 24 –

Vector boson VL is of IR.

h & f have no IR.
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Splitting in the Broken Gauge
New gauge boson splitting in 3-WL

v2

k2
T

dk2
T

k2
T

⇠ (1� v2

Q2
)

φ/VL

φ/VL

1

16π2

v2

k̃4T

(

1

zz̄

)

→W+
L W−

L ZL W±

L /ZL

W±

L 0 1
16g

4
2

(

(z̄ − z)(2 + zz̄)− t2W z̄(1 + z̄)
)2

h 1
4

(

g22(1− zz̄)− λhzz̄
)2 1

8

(

g2Z(1 − zz̄)− λhzz̄
)2

ZL
1
16g

4
2

(

(z̄ − z)(2 + zz̄ − t2W zz̄)
)2

0

[hZL]
i
8g

2
2

(

g22(1− zz̄)− λhzz̄
)

(z̄ − z)
(

2 + zz̄ − t2W zz̄
)

0

h

φ/VL

h

h

1

16π2

v2

k̃4T

(

1

z̄

)

1

16π2

v2

k̃4T

→ hW±

L /ZL h h

W±

L
1
4z
(

g22(1 − zz̄) + λhz̄
)2

0

h 0 9
8λ

2
hzz̄

ZL
1
4z
(

g2Z(1− zz̄) + λhz̄
)2

0

[hZL] 0 0

⇐

⇒

1

16π2

v2

k̃4T

1

16π2

v2

k̃4T

→ γT W±

T ZT W±

T /ZT W+
T W−

T fs f
(′)
-s

W±

L 2e2g22z
3z̄ 1

2c
2
W g42zz̄

(

(z̄ − z) + t2W
)2 0

s=L : 1
2

(

y2f z̄ + y2f ′z − g22zz̄
)2

s=R : 1
2y

2
fy

2
f ′

h 0 1
4g

4
Zzz̄

1
2g

4
2zz̄

1
4y

4
f (z̄ − z)2

ZL 0 0 1
2g

4
2zz̄ (z̄ − z)2

(

IZf y2f −QZ
fs
g2Zzz̄

)2

[hZL] 0 0 − i
2g

4
2zz̄ (z̄ − z) (−1)s i

2y
2
f (z̄ − z)

(

IZf y2f −QZ
fs
g2Zzz̄

)

Table 6: Ultra-collinear longitudinal vector boson and Higgs boson splitting functions

dP/dz dk2T . The Higgs quartic coupling λh is normalized such that m2
h = λhv2/2. For the

off-diagonal incoming [hZL], the k̃4T symbol stands for (k2T + z̄m2
B + zm2

C − zz̄m2
h) · (k2T +

z̄m2
B + zm2

C − zz̄m2
Z). Other conventions are as in Tables 4, 5 and in Appendix C.
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Vector boson VL is of IR.

h has no IR.
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Splitting Probabilities:
gauge couplings 

• Non-Abelian gauge spliting larger than fermion splitting!
• Collinear splittings larger than perturbative radiation! 

Process ≈ P(E) P(1 TeV) P(10 TeV)

q → VT q(′) (CL+IR) (3× 10−3)
[

log E
mW

]2
3% 7%

q → VLq(′) (UC+IR) (2× 10−3) log E
mW

0.8% 1.1%

tR → W+
L bL (CL) (8× 10−3) log E

mW
2% 4%

tR → W+
T bL (UC) (6× 10−3) 0.6% 0.6%

VT → VTVT (CL+IR) (0.015)
[

log E
mW

]2
8% 36%

VT → VLVT (UC+IR) (0.014) log E
mW

3% 7%

VT → f f̄ (CL) (0.02) log E
mW

5% 10%

VL → VTh (CL+IR) (2× 10−3)
[

log E
mW

]2
1% 4%

VL → VLh (UC+IR) (2× 10−3) log E
mW

0.4% 1%

Table 7: Representative electroweak splitting behaviors and integrated fixed-order split-

ting probabilities for an illustrative set of processes at two parent energies E = 1, 10 TeV.

The symbols in the parentheses denote the collinear (CL), infrared (IR), and ultra-collinear

(UC) behaviors, respectively.

but not negligible.

We next present our numerical results for various exclusive splitting phenomena, paying

special attention to the novelties that arise in the EW shower.

5.1 Electroweak effects in PDFs

We first revisit the classic calculation of weak boson PDFs within proton beams [19, 20].

The basic physical picture has been dramatically confirmed with the observation of the

Higgs boson signal via vector boson fusion at the LHC [22]. It is anticipated that at energies

in the multi-TeV regime, the total production cross section for a vector boson fusion process

V1V2 → X can be evaluated by convoluting the partonic production cross sections over the

gauge boson PDFs, originated from the quark parton splittings q → W±q′, q → γ/Zq.16

A useful intermediate object in this calculation is the parton-parton luminosity, consisting

of the convolutions of the PDFs from each proton. We write the cross section in terms of

the parton luminosity of gauge boson collisions as

σPP (V1V2 → X) =

∫ τhigh

τlow

dτ
dLV1V2

dτ
σ̂(V1V2 → X̂τ ) , (5.1)

16It should be noted that a formal factorization proof for electroweak processes in hadronic collisions is

thus far lacking. For instance, it is not presently demonstrated whether contributions from gauge boson

exchanges between the two incoming partons are factorizable. Nonetheless, we expect that the factorized

PDF approach should furnish a reliable and useful calculation tool at very high energies at leading order,

as indicated by simple scaling arguments [78, 79].
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Now some results at 100 TeV à
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Multi Gauge-boson Production

W W                       σ=770 pb

W W W                   σ=2 pb

W W Z                    σ=1.6 pb

W W W W               σ=15 fb

W W W Z                σ=20 fb

....

A t  100 TeV:

Each W costs you a factor 
of ~ 1/100 (EW coupling)

M. Mangano’s talk

Diagramatic calculations
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Figure 5: The rates for multiple final-state W/Z emissions at 10 TeV, clustering all

particles into R = π/2 anti-kT jets, initiated by (a) dL and (b) W+
T . For the dL-initiated

showers, comparisons are made with a simpler shower that includes only q → V q splittings

(neglecting the V → V V splittings), with and without back-reaction corrections, as well as

with the PYTHIA q → V q weak shower. For the WT -initiated showers (true “weak jets”),

comparisons are made with/without back-reaction corrections and with/without angular

vetoing. Secondary splittings V → f f̄ are neglected in all cases for simplicity. (QCD

showering is not incorporated.)

indicated in Table XXXXXXXXX, these rates are even higher, about 20% for the first

emission. We also highlight here some of the ambiguities in modeling weak FSR given

nontrivial phase space and coherence effects. As pointed out in Section 2.3.1, secondary

emissions can experience large suppression effects due to back-reactions on their parent

splittings, which are particularly obvious in showers that involve massive particles. From

experience with QCD showers, it is also known that coherence effects in emission amplitudes

lead to effective color-screening and approximate angular-ordering of nested emissions. To

test this, we have also implemented a strict angular-ordering veto in our shower simulation,

similar to PYTHIA. The result, visible in Fig. 5(b), is that both the back-reaction correction

and the angular ordering can have an O(1) effect at high multiplicity rates compared

to unrestricted emission, but that the two effects come with sizable overlap. Splittings

with large opening angles tend to exhibit large back-reaction effects, and vice-versa. This

observation provides some evidence that modeling of the high-multiplicity region might be

made to quickly converge, though more study is required.

One immediate application of pure nonabelian “weak jets” would be studies of the

phenomenology of multi-TeV spin-2 resonances, which can decay to a pair of transverse

W -bosons. For a 20 TeV resonance, the probability of at least one weak FSR emission is

more than 40%.
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Figure 5: Normalized rates versus the number of multiple final-state W/Z emissions with

a 10 TeV initial state particle, (a) dL-initiated showers for q → V q and V → V V splittings

with full EW FSR (solid histogram), q → V q splitting only (long-dashed), and q → V q

without back-reaction correction (short-dashed). Output from PYTHIA q → V q weak shower

is also included for comparison (dotted histogram). (b) WT -initiated showers for fully

constrained FSR (solid histogram), compared with various stages of approximations as

labeled.

evolution Fig. 4(d), including as well important contributions such as V → f f̄ . Exclusive

W±Z(q/g) events are selected as including exactly one each of “on-shell” W and Z, defined

as lying within 10Γ of their pole mass, and we allow for multiple photon emissions. While

the distribution looks similar to that at fixed-order, the overall rates in the collinear regions

are reduced by several tens of percent due to the Sudakov corrections.

While formally any secondary parton splittings involve rate penalties of O(αW ), they

become progressively more log-enhanced at high energies. This is again in close analogy to

QCD. However, unlike in QCD, individual weak splittings in arbitrarily soft/collinear limits

are in principle both observable and subject to perturbative modeling. Figure 5 shows the

predicted number of W/Z generated from showering off a highly energetic particle with

E = 10 TeV. In this calculation, we keep the weak bosons stable and include only the

splittings f → V f and V → V V . QCD showering is also turned off. We construct “weak

jets” by clustering particles with the anti-kT algorithm [87] with R = π/2, and count the

contained W/Z bosons. In Fig. 5(a), we show the results for a left-handed chiral fermion

(dL). Roughly speaking, we see that the emission of each additional gauge boson comes

with an O(10%) suppression factor, which can be compared to the naive (not log-enhanced)

O(1%) suppression typical of adding gauge bosons to lower-energy processes. The solid

histogram shows the total rate and the long-dashed histogram indicates the rate with non-

Abelian gauge splittings turned off. The difference indicates the large contribution from

the gauge boson self-interaction beyond the first emission. As a cross-check, we include as

– 32 –

W radiation costs ~ 1/10 
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An Example: WZ+j @ 100 TeV

WZj at FCC, 10 ab−1, pT(j) > 3 TeV
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Figure 4: Event population for exclusive WZ + j production with pT (j) ≥ 3 TeV at

a 100 TeV proton collider, with 10 ab−1 integrated luminosity. Events are represented

in the plane of 2pT (W )/HT versus ∆R(W,Z). (a) 2 → 3 fixed-order WZj production

generated with MadGraph; (b) 2→ 2 Wj and Zj production dressed with fixed-order weak

FSR splitting functions; (c) 2 → 2 dressed with the PYTHIA weak shower, including only

q → V q splittings; (d) 2→ 2 dressed with the full weak FSR shower, including all collinear

final-state Sudakov effects. See text for more details on generation. (QCD showering is

not incorporated.)

is concentrated along a curved band at low ∆R(W,Z) and with enhancements at low/high

relative HT . A second clear concentration of events occurs at ∆R(W,Z) ≃ π and near-

maximal relative HT . A third, more subtle concentration is visible at ∆R(W,Z) ≃ π and

low relative HT . These three populations respectively represent W (q/g) production with a
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Example: WZ+Jet @ 100 TeV
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Figure 4: Event population for exclusive WZ + j production with pT (j) ≥ 3 TeV at

a 100 TeV proton collider, with 10 ab−1 integrated luminosity. Events are represented

in the plane of 2pT (W )/HT versus ∆R(W,Z). (a) 2 → 3 fixed-order WZj production

generated with MadGraph; (b) 2→ 2 Wj and Zj production dressed with fixed-order weak

FSR splitting functions; (c) 2 → 2 dressed with the PYTHIA weak shower, including only

q → V q splittings; (d) 2→ 2 dressed with the full weak FSR shower, including all collinear

final-state Sudakov effects. See text for more details on generation. (QCD showering is

not incorporated.)

is concentrated along a curved band at low ∆R(W,Z) and with enhancements at low/high

relative HT . A second clear concentration of events occurs at ∆R(W,Z) ≃ π and near-

maximal relative HT . A third, more subtle concentration is visible at ∆R(W,Z) ≃ π and

low relative HT . These three populations respectively represent W (q/g) production with a
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Figure 4: Event population for exclusive WZ + j production with pT (j) ≥ 3 TeV at

a 100 TeV proton collider, with 10 ab−1 integrated luminosity. Events are represented

in the plane of 2pT (W )/HT versus ∆R(W,Z). (a) 2 → 3 fixed-order WZj production

generated with MadGraph; (b) 2→ 2 Wj and Zj production dressed with fixed-order weak

FSR splitting functions; (c) 2 → 2 dressed with the PYTHIA weak shower, including only

q → V q splittings; (d) 2→ 2 dressed with the full weak FSR shower, including all collinear

final-state Sudakov effects. See text for more details on generation. (QCD showering is

not incorporated.)

is concentrated along a curved band at low ∆R(W,Z) and with enhancements at low/high

relative HT . A second clear concentration of events occurs at ∆R(W,Z) ≃ π and near-

maximal relative HT . A third, more subtle concentration is visible at ∆R(W,Z) ≃ π and

low relative HT . These three populations respectively represent W (q/g) production with a
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Figure 9: (a) W+W− invariant mass distributions from the splitting of a 10 TeV

h/ZL (H0∗) → W+W−, labeled by the helicities and charges as T+L−, L+T−, T+T−,

and L+L−. The “incoherent T+L− or L+T−” curve shows the corresponding result from

showering h and ZL states independently. (b) Kinematic ∆R separation between the final

state Higgs boson pair for the ultra-collinear showering process h→ hh from a 1 TeV Higgs

boson.

particular, the ultra-collinear splitting H0∗ → W+
L W−

L inherits the soft divergence from

the regular gauge splitting H0∗ → W+
T W−

L , but only in the limit as the W+
L becomes soft.

Similarly for the CP-conjugate process. The individual h and ZL incoherent showers, on

the other hand, exhibit parts of the soft-singular behaviors of each of their H0 and H0∗

components. See Table 6.

As a final novel example of neutral boson showering, we consider the purely ultra-

collinear splitting h → hh. This proceeds through the Higgs cubic interaction that arises

after EWSB, and it is the unique 1→ 2 splitting process in the SM that is strictly propor-

tional to Higgs boson self-interaction λh. Isolating the h component of a general energetic

h/ZL state, the total splitting rate comes out to about 0.14% for E ≫ mh. We illustrate in

Fig. 9(b) the kinematic distribution ∆R(h, h), for an example initial Higgs energy of 1 TeV.

The distribution peaks at roughly 2mh/E, which in this example is close to 0.25. Gener-

ally, the majority of the phase space for high-energy production hhX for any X becomes

dominated by such collinear configuration. While this ultra-collinear splitting process lacks

any log-enhancements, integrating the splitting phase space yields a total rate relative to

hX that scales like λh/16π2, whereas the non-collinear regions contribute a relative rate of

order λ2h/16π
2×v2/E2. Therefore the “collinear enhancement” here is E2/λhv2 ∼ E2/m2

h,

rather than a conventional logarithm. Though the splitting rate is still quite small, for a

100 TeV pp collider with 10’s of ab−1 integrated luminosity, we expect thousands of such

events arising from the (also novel) high-energy production process qVL → q(′)(h/ZL) at

pT ∼ 1 TeV. In marching to the precision Higgs physics [98], accurate description for the
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Figure 7: Normalized W+W− invariant mass distribution from the splitting and shower

of a 2.5 TeV γ/Z neutral boson, initiated from (a) eL current with full coherent EW FSR

(solid curve), fixed-order FSR (dashed curve), and the hypothetical incoherent γ or Z

splittings (lower curves); (b) eR current with full coherent EW FSR (solid curve) and the

hypothetical incoherent γ or Z splittings (upper curve).

5.4 EW Showers initiated by neutral bosons

The neutral bosons γ, ZT , h, and ZL contain rich physics at high energies, but their

showering requires special treatment due to the presence of sizable interference effects.

5.4.1 γ/ZT coherence

For the γ/ZT system, these interference effects have two aspects: the mass basis is mis-

aligned with the gauge interaction basis, and even when viewed within the B0/W 0 interac-

tion basis, the existence of a preferred physical isospin basis for asymptotic states leads to

observable coherence between B0 and W 0 exchanges. A rigorous final-state shower must

address both of these aspects simultaneously by using Sudakov evolution based on density

matrices, as outlined in Section 2.3.2. More specific details can be found in Appendix C.

As a simple example of the basis alignment issue, consider high energy showering

of neutral bosons γ/Z → W+W−. A naive treatment would shower the photon and Z

including the triple-vector processes γ →W+W− and Z →W+W−.20 However, depending

on the gauge charges of the initial sources, the interference between these two mass-basis

splitting channels can be O(1). In particular, for an energetic γ/Z emitted from a right-

handed chiral electron line, the SU(2)L content of the produced neutral gauge bosons is

practically zero, suggesting a near absence of collinear W+W− splittings in the final state.

We explicitly compute these splittings assuming either an e−L or e−R source, which radiate

off 2.5 TeV γ/Z bosons (e.g., via neutral boson pair-production at a 5 TeV e−e+ collider).

The results are displayed in Fig. 7. Our full EW FSR treatment is labeled as “coherent

20Such a simplification has been made in [51] for neutral bosons produced in dark matter annihilation.
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W+’ Shower examples:
W+0

L ! tb̄, tt̄(W�), bb̄(W+), bt̄(W+W+).

With W/Z showers, ALL t/b iso-spin components exist.
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Figure 10: Showered events from 20 TeV W ′+ decays. (a) W ′+ → νLℓ
+
R cluster transverse

mass distributions, running the full EW shower and breaking down the signal by inclusive

lepton multiplicity (solid curves), as well as the uncorrected two-body decay result (dotted

curve). (b) W ′+ → tLb̄R quark-pair invariant mass distributions, running the full EW

shower, and (c) combining EW and QCD showering.

is double-log enhanced at fixed order, is automatically resummed in the parton shower.

Consider again, as a simplified example, a narrow 20 TeV W ′+ resonance, this time decay-

ing to tLb̄R of 10 TeV each in energy. The final flavor content of two heavy quarks should

gradually average out. We show in Fig. 10 the mass spectrum of the two-quark system

resulting from the decay plus EW parton shower, individually in tb̄, bb̄, tt̄, and bt̄ channels.

(For this purpose, the threshold between the “shower” and “decay” of a top quark is set

to mt + 10Γt.) Respectively, these are dominated by unshowered events, events with a

– 40 –
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Figure 10: Showered events from 20 TeV W ′+ decays. (a) W ′+ → νLℓ
+
R cluster transverse

mass distributions, running the full EW shower and breaking down the signal by inclusive

lepton multiplicity (solid curves), as well as the uncorrected two-body decay result (dotted

curve). (b) W ′+ → tLb̄R quark-pair invariant mass distributions, running the full EW

shower, and (c) combining EW and QCD showering.

is double-log enhanced at fixed order, is automatically resummed in the parton shower.

Consider again, as a simplified example, a narrow 20 TeV W ′+ resonance, this time decay-

ing to tLb̄R of 10 TeV each in energy. The final flavor content of two heavy quarks should

gradually average out. We show in Fig. 10 the mass spectrum of the two-quark system

resulting from the decay plus EW parton shower, individually in tb̄, bb̄, tt̄, and bt̄ channels.

(For this purpose, the threshold between the “shower” and “decay” of a top quark is set

to mt + 10Γt.) Respectively, these are dominated by unshowered events, events with a
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With W/Z showers, all leptons/neutrino components exist.
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Figure 6: Normalized invariant mass distribution initiated by a 10 TeV polarized top

quark with EW shower (a) for tL → Wb (top curve), tR → Wb (middle curve) and a

fixed-width Breit-Wigner for unpolarized top decay without shower (lower curve); (b) for

tR → htL/ZLtL, ZT tR (upper curves) and to htR, ZLtR (lower curves), respectively.

M(Wb) ≃ mt. It is very important to appreciate the difference, for example since one must

properly model the properties of off-shell top quarks in searching for new physics [90–95]

associated with the top quark as well as the Higgs sector.

Top quarks may also radiate Higgs bosons and, analogously, longitudinal Z bosons.

Both of these Yukawa-showering processes occur with similar rates off of left-handed and

right-handed tops, and grow single-logarithmically with energy. In Fig. 6(b), we present a

10 TeV right-handed top quark splitting via the EW shower. The rates for tR → htL and

to ZLtL are governed by the Yukawa coupling and essentially the same, due to the GET.

The channel tR → ZT tR, shown for reference, is via the gauge coupling of nearly pure B0,

which is rather small. The other two channels tR → htR, ZLtR are helicity-conserving

scalar emissions and are of the ultra-collinear nature. The integrated splitting rates for

all the above channels are of similar size: P(tR → htL) ≃ P(tR → ZLtL) ≈ 7.2 × 10−3,

P(tR → htR) and P(tR → ZT tR) ≈ 4.5× 10−3, and P(tR → ZLtR) ≈ 2.3× 10−3. Notably,

the rates for the ultra-collinear processes are concentrated toward smaller virtualities (and

correspondingly smaller kT s). Though the total splitting rate represented in Fig. 6(b) is

only a few percent, the fact that top quarks are produced through strong interactions can

lead to significant numbers of showered events at a hadron collider. On the other hand,

the splitting rates to a Higgs boson are in sharp contrast to the much smaller rate for an

on-shell top quark decay to a Higgs boson in the Standard Model [96], of the order 10−9.

In considering to determine the top-quark Yukawa coupling in the processes tt̄h/tt̄Z

at higher energies [97], those qualitative features shown here should be informative in such

analyses.
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Figure 6: Normalized invariant mass distribution initiated by a 10 TeV polarized top

quark with EW shower (a) for tL → Wb (top curve), tR → Wb (middle curve) and a

fixed-width Breit-Wigner for unpolarized top decay without shower (lower curve); (b) for

tR → htL/ZLtL, ZT tR (upper curves) and to htR, ZLtR (lower curves), respectively.

M(Wb) ≃ mt. It is very important to appreciate the difference, for example since one must

properly model the properties of off-shell top quarks in searching for new physics [90–95]

associated with the top quark as well as the Higgs sector.

Top quarks may also radiate Higgs bosons and, analogously, longitudinal Z bosons.

Both of these Yukawa-showering processes occur with similar rates off of left-handed and

right-handed tops, and grow single-logarithmically with energy. In Fig. 6(b), we present a

10 TeV right-handed top quark splitting via the EW shower. The rates for tR → htL and

to ZLtL are governed by the Yukawa coupling and essentially the same, due to the GET.

The channel tR → ZT tR, shown for reference, is via the gauge coupling of nearly pure B0,

which is rather small. The other two channels tR → htR, ZLtR are helicity-conserving

scalar emissions and are of the ultra-collinear nature. The integrated splitting rates for

all the above channels are of similar size: P(tR → htL) ≃ P(tR → ZLtL) ≈ 7.2 × 10−3,

P(tR → htR) and P(tR → ZT tR) ≈ 4.5× 10−3, and P(tR → ZLtR) ≈ 2.3× 10−3. Notably,

the rates for the ultra-collinear processes are concentrated toward smaller virtualities (and

correspondingly smaller kT s). Though the total splitting rate represented in Fig. 6(b) is

only a few percent, the fact that top quarks are produced through strong interactions can

lead to significant numbers of showered events at a hadron collider. On the other hand,

the splitting rates to a Higgs boson are in sharp contrast to the much smaller rate for an

on-shell top quark decay to a Higgs boson in the Standard Model [96], of the order 10−9.

In considering to determine the top-quark Yukawa coupling in the processes tt̄h/tt̄Z

at higher energies [97], those qualitative features shown here should be informative in such

analyses.
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Figure 6: Normalized invariant mass distribution initiated by a 10 TeV polarized top

quark with EW shower (a) for tL → Wb (top curve), tR → Wb (middle curve) and a

fixed-width Breit-Wigner for unpolarized top decay without shower (lower curve); (b) for

tR → htL/ZLtL, ZT tR (upper curves) and to htR, ZLtR (lower curves), respectively.

M(Wb) ≃ mt. It is very important to appreciate the difference, for example since one must

properly model the properties of off-shell top quarks in searching for new physics [90–95]

associated with the top quark as well as the Higgs sector.

Top quarks may also radiate Higgs bosons and, analogously, longitudinal Z bosons.

Both of these Yukawa-showering processes occur with similar rates off of left-handed and

right-handed tops, and grow single-logarithmically with energy. In Fig. 6(b), we present a

10 TeV right-handed top quark splitting via the EW shower. The rates for tR → htL and

to ZLtL are governed by the Yukawa coupling and essentially the same, due to the GET.

The channel tR → ZT tR, shown for reference, is via the gauge coupling of nearly pure B0,

which is rather small. The other two channels tR → htR, ZLtR are helicity-conserving

scalar emissions and are of the ultra-collinear nature. The integrated splitting rates for

all the above channels are of similar size: P(tR → htL) ≃ P(tR → ZLtL) ≈ 7.2 × 10−3,

P(tR → htR) and P(tR → ZT tR) ≈ 4.5× 10−3, and P(tR → ZLtR) ≈ 2.3× 10−3. Notably,

the rates for the ultra-collinear processes are concentrated toward smaller virtualities (and

correspondingly smaller kT s). Though the total splitting rate represented in Fig. 6(b) is

only a few percent, the fact that top quarks are produced through strong interactions can

lead to significant numbers of showered events at a hadron collider. On the other hand,

the splitting rates to a Higgs boson are in sharp contrast to the much smaller rate for an

on-shell top quark decay to a Higgs boson in the Standard Model [96], of the order 10−9.

In considering to determine the top-quark Yukawa coupling in the processes tt̄h/tt̄Z

at higher energies [97], those qualitative features shown here should be informative in such

analyses.
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Figure 6: Normalized invariant mass distribution initiated by a 10 TeV polarized top

quark with EW shower (a) for tL → Wb (top curve), tR → Wb (middle curve) and a

fixed-width Breit-Wigner for unpolarized top decay without shower (lower curve); (b) for

tR → htL/ZLtL, ZT tR (upper curves) and to htR, ZLtR (lower curves), respectively.

M(Wb) ≃ mt. It is very important to appreciate the difference, for example since one must

properly model the properties of off-shell top quarks in searching for new physics [90–95]

associated with the top quark as well as the Higgs sector.

Top quarks may also radiate Higgs bosons and, analogously, longitudinal Z bosons.

Both of these Yukawa-showering processes occur with similar rates off of left-handed and

right-handed tops, and grow single-logarithmically with energy. In Fig. 6(b), we present a

10 TeV right-handed top quark splitting via the EW shower. The rates for tR → htL and

to ZLtL are governed by the Yukawa coupling and essentially the same, due to the GET.

The channel tR → ZT tR, shown for reference, is via the gauge coupling of nearly pure B0,

which is rather small. The other two channels tR → htR, ZLtR are helicity-conserving

scalar emissions and are of the ultra-collinear nature. The integrated splitting rates for

all the above channels are of similar size: P(tR → htL) ≃ P(tR → ZLtL) ≈ 7.2 × 10−3,

P(tR → htR) and P(tR → ZT tR) ≈ 4.5× 10−3, and P(tR → ZLtR) ≈ 2.3× 10−3. Notably,

the rates for the ultra-collinear processes are concentrated toward smaller virtualities (and

correspondingly smaller kT s). Though the total splitting rate represented in Fig. 6(b) is

only a few percent, the fact that top quarks are produced through strong interactions can

lead to significant numbers of showered events at a hadron collider. On the other hand,

the splitting rates to a Higgs boson are in sharp contrast to the much smaller rate for an

on-shell top quark decay to a Higgs boson in the Standard Model [96], of the order 10−9.

In considering to determine the top-quark Yukawa coupling in the processes tt̄h/tt̄Z

at higher energies [97], those qualitative features shown here should be informative in such

analyses.
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• The existence of a light, weakly coupled
Higgs boson unitarize the WW amplitude:

• Consistent perturbative theory up to Λ (?)

SM: VBS Amplitude unitarized by Higgs
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~ (g2/16π2) s/v2
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Unitarity in the SM
● Famous SM example: longitudinal WW  WW scattering→

– Longitudinal polarization:

– For each diagram:

– Adding photon, Z and 4W vertex: 

– Summing all diagrams:

● In SM unitarity is preserved by gauge cancellations.

● Adding additional terms (dim 6 operators) spoils cancellations 

WLWL Scattering:

~ s/v2

~ mH
2/v2

• New strong dynamics effects may still exist, 
but “delayed” to v2/Λ2.
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resulting in the following qV luminosity formula

ΦqV (τ) =

∫

1

τ

dξ

ξ

∫

1

τ/ξ

dz

z

∑

q′

[

fq/p(ξ)fV/q′(z)f

(

τ

ξz

)

+ fq/p

(

τ

ξz

)

fV/q′(z)fq′/p(ξ)

]

(5)

We can study initial-state V V ′ scattering by making a substitution of initial-state parton j:

fj/p(ξ, Q
2
f ) → fV/p(ξ, Q

2
V , Q

2
f ). (6)

The resulting luminosity expression is

ΦV V ′(τ) =
1

(δV V ′ + 1)

∫

1

τ

dξ

ξ

∫

1

τ/ξ

dz1
z1

∫

1

τ/ξ/z1

dz2
z2

∑

q,q′

(7)

×
[

fV/q(z2)fV ′/q′(z1) fq/p(ξ)fq′/p

(

τ

ξz1z2

)

+ fV/q(z2)fV ′/q′(z1) fq/p

(

τ

ξz1z2

)

fq′/p(ξ)

]

2.0 Vector Boson Distribution Functions

The transversely and longitudinally polarized W± distributions from a quark with momentum
fraction z and evolved to a scale QV ≫ MW is given by

fWT /q(z,Q
2
V ) =

C2
V +C2

A

8π2

[

z2 + 2(1− z)
]

z
log

(

Q2
V

M2
W

)

, CV = −CA =
g

2
√
2
, (8)

fW0/q(z) =
C2
V +C2

A

4π2

(1− z)

z
. (9)

For a photon from a quark with electric charge eq evolved to a scale Qγ

fγ/q(z,Q
2
γ) =

αEM e2q
2π2

[1 + (1− z)]

z
log

(

Q2
V

Λ2
γ

)

, αEM ≈ 1/137, (10)

where Λγ =
√
1.5 GeV2 ≈ 1.22 GeV is a cutoff scale separating partonic and hadronic physics. The

quark, gluon, and EW vector boson factorization scales are evolved up to

Q2
V = Q2

f =
s

4
. (11)

3.0 Check with “Majorana Neutrinos from Wγ Fusion”

The qq′ (Φqq′), and qγ (Φqγ) luminosities have been checked at 100 TeV against results of “Majorana
Neutrinos from Wγ Fusion”. In this case, Qγ is evolved up to 25 GeV. Good agreement is found:

qq′ : |
∆Φ

Φ
| = 0.69% (12)

qγ : |
∆Φ

Φ
| = 0.05% (13)

2

EW PDF’s

Chen, TH, Tweedie, arXiv:1611.00788;
Bauer, Ferland, Webber, arXiv:1703.08562, 1712.07147.

physics analog of BCS theory. But it was the Higgs model that ended up
being the right answer in particle physics!

So while an oft-heard desire of particle physicists for many years has
been to find “new physics” beyond the Higgs, this is missing the essential
point: the Higgs itself represents “new physics” in a much more profound way
than any more complex discoveries would have done. Its discovery closes the
20th century chapter of fundamental physics while simultaneously kicking the
door open to entirely new questions that properly belong to the 21st century.
These questions on the table now are not about details, but are deeper and
more structural ones, leading back to the very foundations of quantum field
theory. It is striking that very similar questions are forced on us in trying to
reckon with the smallness of the cosmological constant and the discovery of
the accelerating expansion of the universe.

Obviously, the experimental future of the field will importantly depend
on results from the next run of the LHC. However, given what we have
already seen � a light Higgs, but no evidence yet for physics beyond the SM
� no matter what new physics the LHC does or does not discover, building a
complete picture of the relevant physics will require new machines beyond the
LHC: not just for cleaning up details, but in order to answer the big-picture
questions that will set the direction of fundamental physics for decades to
come.

Let us begin by giving a lightning tour of the raw physics capabilities of
the 100 TeV pp collider. Thanks to the asymptotic freedom and factorization
theorem of QCD, hadronic collisions at high energies can be calculable in
perturbation theory, and we write the production cross section of a final
state X as

�(pp ! X + anything) =

Z 1

⌧0

d⌧
X

ij

dLij

d⌧
�̂(ij ! X), (1)

dLij

d⌧
=

1

1 + �ij

Z 1

⌧

d⇠

⇠


fi/p(⇠, Q

2
f
)fj/p

✓
⌧

⇠
, Q2

f

◆
+ (i $ j)

�
, (2)

where the parton luminosities dLij are given in terms of the parton distribu-
tion functions (PDFs) fi,j/p, whose arguments are the fractions of momenta
(⇠, ⌧/⇠) carried by the initial partons (i, j) and the parton factorization scale
Qf , and ⌧ = ŝ/s, where

p
s (

p
ŝ) is the proton-proton beam (parton-parton)

center of mass (CM) energy. �̂ is the partonic cross section for ij ! X.
Due to the rapid fall-o↵ of parton luminosities at large ⌧ , the rate for

8

QCD factorization: Colins, Soper, Sterman (1985 ).

EW partons:



34

e.g., iso-spin state evolution @ leading log:

Either summing over final isospins or averaging over initial isospins (using equal weights

in each case), we would again find an exact cancellation in soft regions. However, if we

look at any individual splitting channel, we would find the soft gauge divergence in the

real emissions of Eq. (3.1) either uncancelled or only partially cancelled by the virtu-

als of Eq. (3.2). For example, consider eL → νLW−. In the formal limit of massless

evolution, we would predict an infinite rate for electrons to transform into neutrinos of

approximately the same energy, with a corresponding “negative-infinite” loss of full-energy

electrons. Within PDF evolution, while collinear divergences are regulated and resummed

in µ, this remaining soft divergence leaves DGLAP equations ill-defined in x. This sickness

cannot be cured by plugging these ill-defined PDFs into partonic cross sections, even with

summations over all final-state isospins. For fixed-order calculations, where both the soft

and collinear divergences appear without resummation, we can find isospin-inclusive cross

sections proportional to divergent double-logs [fixed-order refs]. This is the now-classic

setup of Bloch-Nordsieck violation [early Ciafalone, et al]. A careful analysis of exclu-

sive final-state rates would reveal similar problems such as uncancelled double-logarithms

in jet functions, even with isospin-averaged initial states.

Of course, emissions such as eL → νLW− must be physically regulated by the W

boson’s mass, naively around 1 − z ∼ mW /Ee = mw/(xEbeam) in the case of an initial-

state splitting. More carefully, the regulation will generally involve some combination of

x, µ, and Ebeam, in a manner that depends on the precise definition of µ.6 Seemingly,

then, the detailed form of the PDF evolution depends on both the choice of resolution

variable and the absolute beam energy. This situation represents a qualitative change from

standard PDF evolution.

Encouragingly, if we are only interested in resumming the leading double-logarithms in

a well-defined manner, i.e. at formal LL, the exact method of soft regulation turns out to be

irrelevant, since it is a single-log (NLL) issue [Ciafalones, us, Bauer]. (We will develop

a more comprehensive understanding of this point below.) Starting from an arbitrary,

generally isospin non-invariant set of lepton PDFs fe and fν at µ = 0, and neglecting the

partonic x re-arrangements since we are only concerned with the far IR effects, we would

find Ciafalone

fe(x, µ) ≃ fe(x, 0)
1 + e−(α2/π) log2(µ/mW )

2
+ fν(x, 0)

1− e−(α2/π) log2(µ/mW )

2
, (3.3)

and similarly for e ↔ ν. At asymptotically large µ, such that the exponential (Sudakov)

factor scales away, we are always left with an equal admixture of e and ν beams. Though

there is usually an imbalance in isospin in the low-scale experimental setup of the beams,

6For example, if µ ≡ kT , this “soft” divergence is actually cut off around 1 − z ∼ kT /(xEbeam), due to

the emissions falling out of the collinear-enhanced region (as long as kT ∼> mW ). With kT specified, the

W cannot be emitted with arbitrarily small energy. Technically, this type of physical “soft” cutoff applies

even in QED and color-averaged QCD evolution. However, again, the precise form of soft regulation in

those cases has little effect on actual evolution for the hard-collinear components of the beam, and there is

a well-defined universal limit that is independent of µ and Ebeam. The incurred “mistake” from including

unrestricted soft-collinear emissions in the PDF evolution can be rectified using standard methods of soft

gluon resummation [REFS].
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EW Evolution @ Leading Double Log

) Sudakov factor : �i ⇠ exp[�Ci
↵2

⇡
ln2(

Q2

M2
W

)]

Following SU(2)xU(1) DGLAP equations.

with W/Z showers, leptons/neutrinos redistributed.

Bauer, Ferland, Webber, arXiv:1703.08562, 1712.07147;
Chen, TH, Tweedie, arXiv:18xx.
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à non-cancelled sub-leading log(Q2/Mw
2) 

Incomplete cancellation for non-inclusive process in SU(2)
à Bloch-Nordsieck theorem violation

should decouple from the collinear evolution. In practice, the residual soft divergence in

the splitting function can be arbitrarily regulated and the regulator taken to zero, with

no additional information required about the other beam/target particle nor the detailed

form of the scattering process. The resulting DGLAP evolution also remains well-defined,

with the balancing real and virtual soft divergences integrated over without accumulating

additional bare logarithms. The standard method of “hiding” the irrelevant soft structure

of the splitting functions while maintaining unitarity is to define them using the plus-

prescription.

As noted above, this standard approach to initial-state factorization extends to color-

averaged evolution in general non-abelian theories, such as QCD, at least up to next-to-

leading order (two-loop) in the evolution equations. However, if we do not average-out

the non-abelian charges, the approach fails already at leading order because some of the

“balancing” soft-collinear real and virtual corrections are distributed between different

color channels, and we apparently find ourselves in trouble.

3 Soft Evolution with “Bare Color”

3.1 Implications of Bloch-Norsieck violation

3.1.1 Problems in DGLAP evolution at NLL

Suppose now that we wanted to formulate evolution rules that are exclusive in non-abelian

charges, as we are forced to do in EW theory. What specifically goes wrong?

In the color-averaged case, well-behaved unitary evolution is simple to establish because

the real gauge splitting processes and their corresponding virtual corrections effectively do

not change the particle identity in the soft limit. Color-averaged quarks transition into

color-averaged quarks, and so on. An arbitrary soft regulator prescription such as the

plus-prescription is adequate to match up the reals and virtuals, and to give well-defined

splitting rates when integrated over the soft emission region. But consider instead a left-

handed electron in pure SU(2)L theory, which may undergo splittings eL → νLW− and

eL → eLW 0, or a neutrino which may undergo νL → eLW+ and νL → νLW 0.5 In the

region z ≃ 1, we would find the real corrections organized as

dPν←e = dPe←ν ∼
(T±)2

1− z
=

(

1/
√
2
)2

1− z

dPe←e = dPν←ν ∼
(

T 3
)2

1− z
=

(1/2)2

1− z
(3.1)

and the virtual corrections are organized as

dVν←e = dVe←ν = 0

dVe←e = dVν←ν ∼ −
∫

dz
C2(2)

1− z
= −

∫

dz
3/4

1− z
. (3.2)

5The restricted chirality does not affect the argument, nor does the presence or absence of the hypercharge

gauge group U(1)Y .
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EW Evolution beyond Leading Log

+
e−(p) e−(zp) e−(p) e−(p)

γ((1− z)p)
γ

Figure 1: The real/virtual duality at the space of momentum fraction z.

utilizing the unitarity condition. (Often, the δ-function virtual piece is absorbed into

the definition of P (z).) This is one of the most basic forms of a DGLAP evolution equation

[XXX refs]. In this toy example (which does not include γ → e−e+ splittings), unitarity

guarantees that
∫

dx fe(x, µ) = 1 for any value of µ. Notably, unlike in the fixed-order

calculation, we no longer encounter any bare collinear logarithms associated with the initial

state. They have successfully been resummed into the nonperturbative object fe. We may

think of this as representing an effective ensemble of incoming beam particles resolved at

scale µ, sourced by the collinear showering of the original electron. Having established the

entire running history of fe up to the hard process scale, we may then input the uncorrected

hard partonic cross sections, and explicitly unfold the exclusive initial-state and final-state

radiative corrections via parton showering, running the scale back down to µ = 0. (See,

e.g., [XXXXX PYTHIA manual, etc].)

The generalizations of this formalism to multiple colliding beams/targets and multiple

particle species within the PDFs are straightforward. In particular, for an e−e+ collider

(denoting the latter as ē in subscripts) we could write the portion of the cross section

initiated by electrons/positrons from within “beams 1 and 2” as

σ ⊃
∫

dx1 dx2 f
(1)
e (x1, µ) f

(2)
ē (x2, µ) σ̂eē(x1, x2, µ) , (2.12)

and the total cross section as

σ =
∑

i1,i2

∫

dx1 dx2 f
(1)
i1

(x1, µ) f
(2)
i2

(x2, µ) σ̂i1i2(x1, x2, µ) , (2.13)

with i1, i2 running over e, ē, γ (now allowing as well for γ → e−e+ splittings). DGLAP

evolution is formulated independently for each beam, with multi-species form

dfi
d logµ

(x, µ) =
α

π

∑

j

∫ 1

x

dz

z

⎡

⎣Pi←j(z) − δijδ(1− z)
∑

j′

∫

dz′ Pj′←i(z
′)

⎤

⎦ fj
(x

z
, µ
)

.

(2.14)

We may also generalize to incoming hadron beams as usual, where the truly asymptotic

form of the PDFs at µ = 0 cannot be defined by analytic means in terms of partons, but it

can be parametrized via measurement at nonzero µ and subsequently evolved in the same

manner, up to power-suppressed corrections of O(ΛQCD/µ).

The soft divergence within gauge splittings like e→ eγ, visible in Pe←e(z) as z → 1 in

this example, is worth some additional comment. As noted above, soft photon exchanges

– 10 –
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àState ensembles:
Parton-Luminosity Ensembles (PLE).

Consider e+e- à X

out, with fixed identities, whereas final-state particles are fed into the cut, which indicates

that their isospins are traced-over. However, their kinematics may be held fixed (not

integrated-out) since we are neglecting recoil effects. For example, we might consider

annihilation into a pair of highly energetic SU(2)L gauge bosons in some specific range

of angles, summed over isospin channels and including up to one additional, inclusive soft

gauge boson.

The first diagram in Fig. 2 is the squared hard process at tree-level. The second

diagram is the squared real emission e → W−ν, integrated over soft W kinematics. The

third is a virtual exchange between the two beam particles, interfered with the Born cross

section. Such a diagram was not considered in the naive DGLAP calculation above, since

in physical gauges it does not contain collinear divergences. There are a number of other

diagrams, not shown, which are needed for gauge-invariance in the soft limit, but they are

not needed at the present level of qualitative discussion and do not change the conclusions.

Working in the formal eikonal limit, the individual exchanges factorize. Setting the

hard process scale to Q, physically regulating the soft logarithmic divergences with the W

mass (up to presently irrelevant non-logarithmic ambiguities), and working in a convenient

physical gauge, we would find that the first diagram integrates schematically at fixed-order

to

∆σeē→X ≃

[

α2

π
log

(

Q

mW

)

A(e, e)

(

1√
2

)2
]

× σνē→X , (3.4)

where the symbolic factor A(e, e) represents the integration over soft W emission angles in

“self-exchanges.” This last factor is itself collinear log-divergent, contributing the leading

double-log part of the fixed-order correction when combined with the soft logarithm in

front. This double-logarithm is formally the same one that would be inferred from the soft

region in the collinear approximation, leading to an overlap that we address later.

The various logarithms and coupling factors in Eq. (3.4) multiply a hard νē annihilation

cross section rather than the original eē cross section. But the situation nonetheless looks

quite analogous to what we have already seen for the hard-collinear radiative corrections in

QED, discussed in detail in 2.2, where again the factorizing log-divergent piece multiplies a

different hard cross section than what we had at LO. In the present case, one of the beams

has had its isospin altered rather than its momentum fraction x. But if we think of the

isospin index as a discrete analogy of x, an analogous DGLAP-type evolution approach

suggests itself. The original unique e beam could be generalized to an ensemble of e/ν

beams, and similarly for the other beam via real W+ emissions. Otherwise, the only major

new element introduced beyond the collinear PDF resummation would be the fact that the

finite-mass eikonal phase space integration would implicitly require kinematic information

about the other beam, necessary in order to define “soft” W energies and to implement

the nonrelativistic cutoff in a Lorentz-invariant manner.

However, let us now consider the virtual exchange diagram in Fig. 2. This factorizes in

an analogous way, but the underlying hard process does not represent a squared amplitude

within a given isospin channel in the naive physical basis. Instead it is a cross-term of the
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W±e

ν

ē

ē

ν̄

e

W±

e

ν

ē

ν̄

ē

e

Figure 2: Cut-diagram illustration of an isospin-inclusive cross section and some of its

eikonal radiative corrections at an electron-positron collider. Diagrams are structured as

M|M∗, with isospins summed-over for hard particles (black) that are fed into the cut. For

soft W± bosons (red), either real or virtual, we fix the isospin but integrate over emission

kinematics. Left: Born-level cross section. Middle: “Squared” real W emission from the

electron. Right: Virtual W exchange between the initial-state particles. (JM) The real

contribution for soft radiation is somewhat different from what I got. It looks

like σe+νe = Se+νe→e+e,ν̄eνe × σe+e−,ν̄eνe, this one cancels with virtual corrections.

Another thing is σe+e−,ν̄eνe = σe+e− = σν̄eνe in high energy limit, so at least for

e+e− → X inclusive cross section, it seems that we don’t need to calculate the

“interference amplitudes.”

at high scales nature dynamically erases it and restores the conditions necessary for Bloch-

Nordsieck. In a sense, nature abhors bare non-abelian charge.

However, such a calculation still leaves over a single-logarithmic ambiguity in the

isospin content of hard scatterings, tied to the above kinematic ambiguities, and apparently

remains formally unpredictive in the massless limit of leading-order evolution. In that sense,

conventional collinear factorization and resummation has still failed.

3.1.2 Lessons from the eikonal limit

To properly understand what is going on, we must take a step back, and reconsider the

structure of global soft radiative corrections in “bare” non-abelian gauge theory. For il-

lustrative purposes, we will continue to default to SU(2)L language, as this is our main

interest, and re-introduce U(1)Y later. Therefore W 3 and Z are treated as the same par-

ticle, and also assumed mass-degenerate with W± (custodial limit). We will also set aside

the effects of hard-collinear radiation, and hence reshufflings in partonic x, and can work

in the zero-recoil eikonal approximation. We return to full evolution, combining all soft

and collinear effects to obtain a complete NLL picture, in Section 4.

If we also temporarily suspend any questions about soft exchanges involving the final

state, the issue becomes specifically one of soft exchanges between the two incoming beam

particles. For definiteness and simplicity, we may again consider an e−e+ (“eē”) collider,

specializing to left-handed chirality beams (assumed from now on without explicit helicity

notation). In Fig. 2, we show some examples of soft W± exchanges and emissions involving

the initial-state particles. These are presented as amplitude/conjugate-amplitude pairs

using “cut diagrams.” In this representation, the real and virtual corrections also appear

on a similar footing. The initial-state and conjugate-initial-state particles are kept sticking

– 13 –

form Mνν̄→XM∗
ēe→X̄

. Interpreting that as an off-diagonal cross section, that gives

∆σeē→X ≃

[

α2

π
log

(

Q

mW

)

A(e, ē)

(

1√
2

)2
]

× σνν̄→X, ēe→X̄ . (3.5)

Here, the angular factor A(e, ē) is free of collinear logarithms in appropriate physical

gauges, but the soft logarithm factor remains. If we would like to also resum this log-

arithm, and to interpret this off-diagonal contribution as in conventional PDF language,

then we are forced to develop a DGLAP formalism that can handle interference terms

between different initial states. In addition to the kinematic correlations necessary to cor-

rectly describe the soft evolution, apparently we must also account for quantum correlations

between the isospin states of the two beams. The beam particles appear to have become

quantum-entangled.

The natural way to handle this situation is to generalize the objects describing the

initial state from a simple product of distribution functions to quantum ensembles of pairs

of beam particles. In other words, parton distribution functions would need to be replaced

with matrix-valued parton luminosity ensembles (“PLEs”), which we label here with a

capital F . The PLEs carry an isospin and conjugate-isospin index for both beams, and

depend on the specific asymptotic beam isospin contents and kinematics. A leading-order

isospin-inclusive cross section with an arbitrary incoming beam ensemble would decompose

as a product of PLE F and “partonic” cross sections σ̂ as

σ = Feē,ēe σ̂eē→X,ēe→X̄ + Fνν̄,ν̄ν σ̂νν̄→X,ν̄ν→X̄ + (3.6)
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Given a gauge-singlet partonic cross section, many components of σ̂ would be related and

only a few combinations of components of F would actually contribute. But keeping in

this generalized form will prove useful.

Considering arbitrary orders of nested soft exchange corrections (for example, ordered

in emittedW energy), we would expect to promote F and σ̂ into running objects, analogous

to Eq. (2.1). The only major change, besides the switch from a continuous kinematic

parameter (x) to discrete isospin index, is the doubling-up into index/anti-index pairs

required to keep track of quantum coherence effects. The result would be

σ = F (µ)i1i2, ī1 ī2 σ̂(µ)i1i2→X, ī1 ī2→X̄ . (3.7)

The isospin indices i1, i2 are associated with each of the two beams (“1” and “2”), and

respectively run over e/ν and ē/ν̄. Their conjugate-isospin indices ī1, ī2 respectively run

over ē/ν̄ and e/ν. Both are implicitly summed when repeated. And again we include an

arbitrary factorization scale µ, anticipating a unitary evolution setup where soft W (and Z)

exchanges can be added in a nested sequence. If such a scheme can be successfully realized,

it would resum both the leading soft-collinear double-logs and the subleading soft single-

logs, the latter arising in part from soft exchanges between the beams and in part from the
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form Mνν̄→XM∗
ēe→X̄
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A(e, ē)
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2
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Ciafaloni et al., hep=ph/0007096. 
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• At which level would it break down?

• Decompose an incoming state into 
gauge multi-plets: SU(2)  fL à 1 + 3.

• Gauge eigenstates properly evolve with Q2; 
and the off-diagonal terms never develop: 
1in or 3in would not fix.

1 : (e⌫ � ⌫e)/
p
2

3 : ee, ⌫⌫, (e⌫ + ⌫e)/
p
2

Our Approach

More to come …



Conclusions

38

• With the discovery of the Higgs boson, we 
have a consistent QM, relativistic, unitary 
theory up to (possibly exponentially) high 
scales, but where is it? We wish Λ ~ 4 π v (?)

• EW sector @ high scale holds the hope for the 
probe!

• First, bread & butter 
rich physics:

Novelties wrt QCD/QED 
Parton Showering

• Perturbative cutoff via SSB
• Longitudinals/scalars
• Chirality
• Yukawa showers
• Neutral boson interference
• Weak isospin self-averaging
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• EW splitting/showering will become an 
increasingly important part at higher energies.

• It still has technical & conceptual challenges 
at higher energies.

• Be prepared:
Very high-energy W, Z, h, t may serve as  
tools for the next discovery !



Reality in Hadronic Collisions
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(C). Hadron Colliders
LHC: the new high-energy frontier

“Hard” Scattering

proton

underlying event underlying event

outgoing parton

outgoing parton

initial-state
radiation

final-state
radiation

proton

Advantages

• Higher c.m. energy, thus higher energy threshold:√
S = 14 TeV: M2

new ∼ s = x1x2S ⇒ Mnew ∼ 0.3
√

S ∼ 4 TeV.

Collinear splitting, ISR & FSR,
is one of the dominant phenomena.
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Motivations:
• We have marched into the territory where E >> MW 

where EW symmetry can be restored.

• Conceptually different from QCD: ΛQCD vs vev:
EW sector remains perturbative.

• New degrees of freedom: 
the Higgs sector / Longitudinal vector bosons

• Clear understanding of the “Equivalence theorem”.

• Most sensitive to new physics above the EW scale.

EW Splitting Functions



At colliding energies E >> MW, 
EW gauge bosons are new “gluons”!

44

Gauge-boson Initiated Processes

In the EW theory:

Pq!qVT = (g2
V + g2

A)
↵2

2⇡

1 + (1� x)2

x
ln

Q2

⇤2

Pq!qVL = (g2
V + g2

A)
↵2

⇡

1� x

x

• VT radiation the same as g, γ : |M|2 ~ pT
2 : 

- “dead cone” at kTà 0: ~ kT dkT/mW
2 

- log-enhancement at high pT & soft x 
• VL radiation no collinear enhancement/suppression, 

no log-running at leading order.
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Snowmass NP report, 1311.0299
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New Physics with energetic 
Multi tops/Gauge-bosons

SUSY examples:

Heavy quark examples: TT’, BB’, … 

Heavy DM annihilation in indirect searches
… … 

b̃b̃⇤ ! t�� t̄�+, t̃W� t̃⇤W+ ! 4W± bb̄.

Ciafaloni, Riotto, Strumia, et al., 1009.0224;
Hook, Katz, 1407.2607;
M. Bauer, T. Cohen, et al., 1409.7492;
Baumgart, Rothstein, Vaidya (2014 - 2015)
… … 

à Energetic W±, Z, H, t from new radiation 
sources and decays.

Heavy W’, Z’ decays.


