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Motivation



Beyond a minimal WIMP

e Spin dependent interactions only

Velocity suppression at low v

Non-SM annihilation modes

Non-minimal stabilization symmetry

Multi-component DM sector

High(er) velocity flux (i.e. boosted)



Thermal relic dark matter is slow

Nucleus Kinetic Energy O(10 KeV)




Boosted DM: “Elastic” scattering

Nucleon Kinetic Energy O (100 MeV)




Boosted DM: Inelastic scattering

Multihadron production




Benchmark Models



Simple BDM models exist

/3 Dark Matter with Two component
semi-annihilation Dark Matter

XB




First benchmark: Axial Z’

e |n addition to annihilation, there is a scattering
process that allows for detection

L > —QVA gZ’Z xv“(ﬂx
_ZQ;‘ gz Z;, Gy (7°) ar

e As a first benchmark, take
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10



Note on two component case

e Two component: annihilation with Z’ with

o < Qp
XA XB XB —m——{VWWW\~ 7/
XA X8 XB —<——wWwvww\ 7/

e Abundance of B much less than A

e Charge of A floats the thermal relic abundance
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Simple parametrization for elastic case

v—1073

Direct detection cross-section: opp = Iy p

e Semi-annihilation has just 2 dominant parameters:
my, opp, (Mz')
e [wo component more complex, flexible:

ma, mg/ma,oa,08/0a, (Mz/ma)

0 2

e Fermionic DM: o, , o< v Scalar DM: 0, , ox v
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Dark Matter Flux
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Solar capture & detection
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Solar capture & detection

Capture

Hadron scattering
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Solar capture & detection

Annihilation
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Solar capture & detection

Rescattering

Hadron scattering

b N

Earth
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Solar capture & detection

Detection

Hadron scattering

[

*

Earth
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DM capture: Framework

w2

C = /dV duoy (W = V)|y<y., — nyny f(u)
u

® Ox,p ~ ODD

e w/u: Velocity enhancement

e n,: Halo DM density

e ny: Solor hydrogen density (from model AGSS-09)

e f(u): DM (Boltzmann) velocity distribution at
r=o00

ii5)



DM capture: Results

e Fermionic DM:

2
C = 8.7 x 10% sec? ( 21Dy ) (10 GeV>

104 cm? m,

e Scalar DM:

2
C =20 x 10* sec? ( 210D ) (10 GeV>

104 cm? m,

e Enhanced scalar capture: larger v in the Sun
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DM annihilation

e DM annihilation determined by equilibrium
AN>=C—EN

e Assuming annilation o ~ pb, to > 7

e DM evaporation: DM upscattering by tail of H
thermal distribution

e Evaporation negligible for m, > 5 Gev
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DM rescattering

e DM can lose energy escaping the Sun
1

Ox,p NH

0 —

e Higher v during escape — enhanced rescattering for
scalar DM

e Calculate detection rate using (E,)

e Conservative estimate: fluctuations are important
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DM detection rate

e Flux at Earth is given by
C
d = 5
41 AU
e Combining to determine the detection rate

R = <l>U)GP(:Dp,f > pthresh) Np

e Detection rates accessible to kton detectors

2
—1 -1 0DD
R ~ 0.5 yr~kton (1 <104 Cm2>
Pthresh = 1.07 GeV, m, = 10 GeV, scalar DM
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Other sources

e Earth capture when Sl interactions have coherent
enhancement

e Galactic center is generally subdominant

2
doc ~ 1077 cm Zsec! <M)

my

< Do~ 1072 em 2sec!

e DM produced in beam: possible with lighter DM
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Detetion Phenomenology and Results
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Looking with water Cerenkov

Physical energy threshold: TN
Ex recol = 480 MeV < )

Hard to reconstruct inelastic

Experiments: [ >
Super-Kamiokande ( ;
Hyper-Kamiokande Super-Kamiokande: PRD79 (2009) 112010
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Backround reduction

e Protons recoil within 6 ~ 40° of the sun

e Background dominated by near-isotropic
atmospheric v

e large sideband to control systematics

2.0
x 60
U!g1.5 640
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Water Cerenkov results

1075

PICO-60 (SD, 2017)

m?)

g 107

10~4

red (rodd
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DM-proton cross-section (c
N

(= 10! 10? 10°
DM Mass (GeV / ¢?)
JB, Cui, Zhao: JCAP 1502 (2015) 005
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A future in liquid argon TPCs

Threshold:
E[{.l‘(‘('()il g 50 }I(,‘\r

Inelastic reconstruction
possible

Experiments
LArIAT
ICARUS
MicroBooNE
DUNE

BNB trigger, Run 3469 Event 53223, Oct. 21%t, 2015
Y3

Track Multiplicity = 3

Yellow captions from talk by Luo
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Checklist for DUNE

v" Develop a Monte Carlo
Based on GENIE neutrino MC
Includes DIS and nuclear effects
Merged into GENIE v3

v Simulate dark matter flux from sun
V" Integrate into LArSoft detector simulation

Develop an analysis strategy & make projections

Theory: JB, Cui, Necib, Zhao
Experiment: Petrillo, Tsai, MicroBooNE BSM group
GENIE: Andreopoulos, Hatcher
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Fixed target kinematics primer
!/
k K X
X
p/n / X

p
p = (My,0,0,0)

X: p/n for elastic, mess of hadrons for inelastic
¢ =-Q=(p-p’ & W=k
0<Q*<4pioy & My<W<\s—M,
Inelastic can begin at v 2 1+ M, /My
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Three different processes

Elastic

Relatively easy

Needs form factor

Resonant

Dominated by A, N*
W e [1,2] GeV

Needs a model

Rein & Sehgal:
Ann.Phys.133, 79 (1981)

N{I—=—} x

Deep Inelastic

Use standard parton

model

DM beam?
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All processes could be important

g 090 Ve +°Ar @ 2 GeV
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Elastic scattering

e Three form factors required to describe elastic

M = F(q*) " + Fo(q%) o ig, + Fa(q?) "~

2 My

e Assume the standard dipole form
1
(1+ @2/ M 4)°

e F1(0) constrained by charge conservation

F

e F,(0) given by anomalous magnetic moments
e F4(0) fit from data or lattice (spin form factors)
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Deep inelastic scattering

e Low W: semi-empirical Koba-Nielsen-Olesen model

e |mported from v/ data, so inaccurate

e High W: simplified Pythia model
e Treats beam remnant as a diquark
e Fragments and hadronizes final state quark-diquark pair

e Radiation not be handled correctly—relevant at high W
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Resonant scattering, briefly

e Several models based on

25
. 5 [- POT Normalized - Data
Feynman_Klsllnger— [ —— GENIE 2.6.2 hAFSI
o 000 GENIE 2.6.2 No FSI
[ —— NEUT 5.3.3 (CH)
Ravndal e Nutro
15» ACS (CH)

105
e Baryons as a harmonic Y

oscillator

do/dT, (10*? cm?/MeV/nucleon)

1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Pion Kinetic Energy (MeV)

e Amplitudes calculated for MINERvA:PRD92 (2015) 092008

each baryon resonance
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Nuclear effects are important

Model large nucleus as Fermi gas with pr ~ 250 MeV

Fermi motion 3.0
2.5
2.0
%&é 15
Pauli blocking R
0.5
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2
pPIpF
Final state interactions do do

dp — d—p,e(Pl — PF)
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Current Status of BDM in GENIE

v 2 models: fermion or scalar DM, axial Z’ coupling
v Elastic and Deep Inelastic scattering implemented
v Framework mostly set for further models

V" Integrated into GENIE v3
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Sample DIS event

GENIE GHEP Event Record [print level:

Idx | Name | Ist PDG Mother | Daughter

| | 2000010000 -1
[ 1 1000180400 =1 |
l | 2112 -1
1 1 1000180390 1] -1
| | 2000010000 |
1 1 2000000001 |
| neutron | 2112 |
| pi+ | 211 | 0.
1 pi- | -211 | . -o0.
| | |
l | [
| | |
| | |
| | |
| | |
| | |
| | |

N
°

Ar40

w
o3

Ar39
chi_dm
HadrSyst

B w
N ® o

HadrClus 2000000300 -0.
2212 -0.

2212 -0.

2112 [

-0.

0.

booorrrROOR

HadrBlob 2000000002 0.

w

Fin-Init: .000 -0.000 . 0.000

Vertex: chi dm @ (x = 0.00000 m, y = 0.00000 m, z = 0.00000 m, 0.000000e+00 s)

flag [bits:15->0] : 0000000000000000 | 1st set: none
mask [bits:15->0] : 1111111111111111 | Is unphysical: NO | Accepted: YES

sig(Ev) = 5.68527e-35 cm*2 | d2sig(x,y;E)/dxdy = 1.66546e-33 cm*2 | Weight = 1.00000




Next steps: Detector simulation

Liquid Argon, MC Truth Preliminary

- TPC Boundary

Courtesy of

Yun-Tse Tsai




Conclusions
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Next steps in theory

e Include additional interaction models: more general
quark charges and interaction structures

e Include resonant production of excited baryons

e Improve modeling of nuclear and hadronic physics
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Conclusions

e Traditional direct detection continues to put
pressure on minimal WIMP scenarios

e Boosted dark matter models are an alternative with
signals at large volume neutrino detectors

e New Monte Carlo tools required to determine
sensitivity to BSM at fixed target experiments
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