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Z7Z: a well measured channel

AMPLITUDE OF gg—2ZZ

ATLAS and CMS - ATLAS+CMS
LHC Run 1 - ATLAS H — ZZ: one of the best measured
- CMS

channels from Higgs discovery

Offer best sensitivity for Higgs off-shell signal
to indirectly bound on the total width.

Constraints on the off-shell Higgs boson signal strength in the
high-mass ZZ and WW final states with the ATLAS detector

M‘C‘E

The ATLAS Collaboration
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Parameter value Measurements of the ZZ and WW final states in the mass range above the 2m; and 2my

thresholds provide a unique opportunity to measure the off-shell coupling strength of the

Higgs boson. This paper presents constraints on the off-shell Higgs boson event yields nor-
malised to the Standard Model prediction (signal strength) in the ZZ — 4¢, ZZ — 2(2v and
WW — evuv final states. The result is based on pp collision data collected by the ATLAS
experiment at the LHC, corresponding to an integrated luminosity of 20.3 fb™' at a collision
energy of /s = 8 TeV. Using the CL,; method, the observed 95% confidence level (CL)
upper limit on the off-shell signal strcnggh is in the range 5.1-8.6, with an expected range
of 6.7-11.0. In each case the range is determined by varying the unknown gg — ZZ and
gg — WW background K-factor from higher-order QCD corrections between half and twice
the value of the known signal K-factor, Assuming the relevant Higgs boson couplings are
independent of the energy scale of the Higgg production, a combination with the on-shell
measurements yields an observed (expected) 95% CL upper limit on I'y /T3 in the range
4.5-7.5 (6.5-11.2) using the same variations of the background K-factor. Assuming that
the unknown gg — V'V background K-factor is equal to the signal K-factor, this translates

into an observed (expected) 95% CL upper limit on the Higgs boson total width of 22.7
(33.0) MeV.

ATLAS /s =8 TeV: fLdt =203 fb"
® Data
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There is large cancelation between Higgs and box
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Example Feynman' diagrams fo( gg — Z Z process.




There is large cancelation between Higgs and box
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Example Feynman diagrams fo{ g9 — Z Z process.
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There is large cancelation between Higgs and box
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Example Feynman diagrams for gg — ZZ process.

AQQ%ZLZL(bOX) =>_8034 Sq 77‘:2 10g2(8/mt)
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= logz(s/mt).




There is large cancelation between Higgs and box

AMPLITUDE OF gg—ZZ

g
t Z
t —_— -
H Z
t
g

Example Feynman' diagrams for gg — ZZ process.
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The large log-diverging term cancellation shown in distribution

AMPLITUDE OF gg—ZZ

box-1q box-tb

99>Z2Z
9g>ZZ with TT pol
—— gg>ZZ with TL pol
gg>ZZ with LL pol

99522 total The indiVidual

do/dMZZ [fb/GeV]

polarization modes
for gg>ZZ process

in the high energy
region.
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Class of NP model modify the scalar propagator -> a log-deviating term -> enhanced in LL mode

AMPLITUDE OF gg—2ZZ

| Many cases of NP in the Higgs sector generically mdify the scalar propagator: |

- = — _—————— =
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Class of NP model modify the scalar propagator -> a log-deviating term -> enhanced in LL mode

AMPLITUDE OF gg—»zz

L-i
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iThe e‘; 6)\2 y term dlctate the polarlzatlon of the flnal state Z s,

‘which is dommated by the rising LL mode from ¢; ~ Lz as the

| energy grows

Al




Class of NP model modify the scalar propagator -> a log-deviating term -> enhanced in LL mode
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L-i
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iThe ef{ 6)\2 y term dlctate the polarlzatlon of the flnal state Z s,

‘which is dommated by the rising LL mode from ¢; ~ Lz as the

| energy grows

Al

| The modification of the scalar propagator destroys the exact cancellatlo
‘v

of the log(s/mt) term between the Higgs and the box contribution
| (SM) and reveals the hlgh energy scale dlvergmg behaV|or in the LL mode ﬁ




Class of NP model modify the scalar propagator -> a log-deviating term -> enhanced in LL mode

AMPLITUDE OF gg—»zz

L-i

Agg—>h*—>ZZ P

f (—2 + (8 — 4m%)Co(s, 0,0, m%, mf, mf

iThe Ef\b 6)‘2 y term dlctate the polarlzatlon of the flnal state Z s,
‘which is dommated by the rising LL mode from ¢; ~ Lz as the
| energy grows

Al

S e — S

| The modification of the scalar propagator destroys the exact cancellatlo
‘v

of the log(s/mt) term between the Higgs and the box contribution
| (SM) and reveals the hlgh energy scale dlvergmg behaV|or in the LL mode ﬁ

Additional form factor such as dim-6 operator ®1°Z,. 2" would change the Lorentz
structure of the HZZ coupling. The general form PuPuy and €uvpoPpPo

could be independently probed by energy dependence and CPV angle distribution. So
we can leave these further complication to future discussion.




Higgs portal light scalar ms>mh/2

CASE A: LIGHT SCALAR

We take an example of a complex scalar in the Higgs sector, with mass 80 GeV:

L = Loy + 0,80*S* — p?|8|? — k|S)2|@|>.

With the additional scalar with zero vev, larger than mh/2, the scenario difficult to
probe except for at a lepton collider, but as shown in 1710.02149, deviation
would shown through high energy tail of gg>ZZ7:

i

Propagator =

p? —m? + ilpmy — ii]h(p2)

A

Y1(s) is the one-loop renormalized two point function of the Higgs propagator




Large energy, self energy correction term modification pattern of Higgs amp

CASE A: LIGHT SCALAR

0.6
0.4

L = Lsy + 0,850*S* — p?|S|* — k|S|?|®|°.

k =4, u? — large enough, mg = 80 GeV 02

 -0.4f

gets on shell, which does not vanish as energy rises. P S
200 400

0.0/
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| ANGULAR SHIFT IN THE COMPLEX AMPLITUDE |
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| NON-CANCELLATION OF THE LOG-TERM |




Null-concellation shows up is mostly from LL mode

CASE A: LIGHT SCALAR

L = Loy + 8,80*S* — 1i2|S)? — K|S)2|®[>. -
k =4, u? — large enough, mg = 80 GeV 02
0.0}
0.2
S 04

The real part corresponds to when S in the loop

gets on shell, which does not vanish as energy rises.
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Heavy neutral scalar that mix with SM Higgs shows interfering pattern

CASE B: BROAD-WIDTH HEAVY SCALAR

LD Lsu — usS|@ H =sinf SP"Y + cos HPY

tanf = —e—ltm—as (Mg > miy) ~ psv/mj

i cos 6% i sin 62

2
p? —mj  p? —mj

Mg = 800 GeV and cosa = 0.4 I's = 400

Propagator =

BSM(TT) .
BSM(TL) q
BSM(LL) | ' orr/oror
—— SM(TT)
—— SM(TL)
~—— SM(LL) _ oLL/oror

i GFT /oror

""""" Lr/oTor

1060 1200 . 1000




QCH case shows a sudden enhance in LL mode above continuum scale

CASE C: QUANTUM CRITICAL HIGGS

Quantum Critical Higgs predict a higher scale continuum in the scalar

sector. The scalar evolves with a different anomalous dimension above
some continuum scale. We consider here a minimal scenario where:




QCH case shows a sudden enhance in LL mode above continuum scale

CASE C: QUANTUM CRITICAL HIGGS

Quantum Critical Higgs predict a higher scale continuum in the scalar

sector. The scalar evolves with a different anomalous dimension above
some continuum scale. We consider here a minimal scenario where:

14n
(WP — p? —ic)?~8 — (uf —mf )22

Gr(p) = —

_ (m)P A — (- o
9hzz = . 9hzz

uw =400 GeV, A=1.6




QCH case shows a sudden enhance in LL mode above continuum scale

CASE C: QUANTUM CRITICAL HIGGS

Quantum Critical Higgs predict a higher scale continuum in the scalar

sector. The scalar evolves with a different anomalous dimension above
some continuum scale. We consider here a minimal scenario where:




QCH case shows a sudden enhance in LL mode above continuum scale

CASE C: QUANTUM CRITICAL HIGGS

Quantum Critical Higgs predict a higher scale continuum in the scalar

sector. The scalar evolves with a different anomalous dimension above

some continuum scale. We consider

here a minimal scenario where:

.~ BSM(TT)
BSM(TL)
BSM(LL)

— SM(TT)
— SM(TL)
— SM(LL)

- — BSM/SM

1000




Z polarization corresponds to decay angle cos6, > distribution, basic cuts

DISCRIMINANT AND ANALYSIS

Z Polarization <= Angle cosf dist. from decay

1 do

o dcosf
1 do

o dcosd

Transverse :

Longitudinal :

©
(o2

O
o

To optimize the longitudinal over

)
®
Q
804
[S
)
S

0.2

transverse mode significance:
* qq=ZZ-e ey Ut
* gg=h=aZ2Z=e ey '

0.0k

—068 < COSg < 0.68 1 0: : ol-otos--o-f-;;-
cos B = 0.68 0.8

8
06
{er, er} =86%, 59% & 04"

Sout 119 02

a5 S5 0.0 0.2 0.4 0.6 0.8 1.0

Significance :




Angle cosf” is useful removing qq background

DISCRIMINANT AND ANALYSIS

Z

1 do cos® 0* + 1 m2
s oz
crdcos@*occosze*—1+ ( s )

1 do

qq — £ 74

99 > h — 27 : = constant, “s—channel scalar”

> o dcos 0*

— F | * qq=ZZ-e e’ it
“center of mass rest frame” | 4 + ggoh-aZZe e i it

To optimize over the qq background:

1/0 do/dcosf”

cos 0™ < 0.7

Significance :




Cut based Analysis results show minor improvement e.g. QCH

DISCRIMINANT AND ANALYSIS

Delphes_Detector_Effects

pp>e-e+mu-mu+ (bcut: pt_I>10,eta_I<2.5, miI>50,
scut: m_41>600)

no_cut
bcut

LO_xsec
(bcut,scut,
fb)

k-factor
weighted

NEvents
(3ab-1)
2e2mu-jets
80<mli<100

costh*<0.7

costh1<0.68

qo>Z2Z
[SM]

24.45

10.8

2.55E-01

3.06E-01

9.18E+02

4.95E+02

3.76E+02

1.85E+02

1.20E+02

*MEM, BDT in progress

gg>h>Z7

2.03E-02

4.06E-02

1.22E+02

1.06E+02

8.46E+01

7.29E+01

g9>ZZ [SM] gg>ZZ[case gg>ZZ[case gg>ZZ[case gg>ZZ[case gg>ZZ[cas h/sqrt(qq)

3.7

1.754

1.82E-02

3.64E-02

1.09E+02

6.36E+01

5.19E+01

3.42E+01

2.40E+01

Altot

2.42E-02

4.84E-02

1.45E+02

1.22E+02

8.01E+01

5.97E+01

Alnlo2

2.66E-03

5.33E-03

1.60E+01

1.40E+01

1.11E+01

9.55E+00

2.15E-02

4.31E-02

1.29E+02

1.08E+02

6.90E+01

5.02E+01

1.632

2.13E-02

4.26E-02

1.28E+02

1.06E+02

7.07E+01

5.24E+01

eC]

2.64E-02

5.28E-02

1.58E+02

9.31E+01

7.72E+01

5.49E+01

4.22E+01

4.02E+00

0.00E+00

5.48E+00

6.23E+00

6.66E+00

(BSM-SM)/
sqrt(SM)

1.25E+00

1.22E+00

1.40E+00

1.52E+00
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