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There is more baryon than anti-baryon in our visible universe: 

nb � nb̄

s
⇠ 10�10

3 conditions (Sakharov Criteria) are required if one wants to explain  
baryon asymmetry: 

1 baryon number violation  
2 C and CP symmetry violation 
3 departure from thermal equilibrium 

BAU, 3 condition, EW Baryogenesis a solution



Does the SM work? 

1 baryon number violation  
   sphaleron  

2 C and CP symmetry violation 
   CKM, too small  

3 departure from thermal equilibrium 
   crossover phase transition (125GeV Higgs) 

Another obstacle is stringent constraints from electric dipole 
moment (EDM) measurement, CP violation term have to be 

small : 



Dynamical CPV: Large CPV in the early universe, suppressed now. 

To realize with a simple example:  
A dim-5 operator with additional scalar S: 

yt⌘
S

⇤
Q̄L�̃tR + h.c.

with yt =
p
2mt/v and ⌘ = a+ ib

The same scalar S also realizes a strong first order phase 
transition (SFOPT) with the scalar potential: 

We take the n = 1 as a simple but representative example to show how it gives suc-

cessful baryogenesis and how it is detected with the interplay of collider experiments and

gravitational wave detectors. The corresponding e↵ective Lagrangian [36–38] can be written

as:

L = L
SM

� yt
⌘

⇤
SQ̄L�̃tR +H.c +

1

2
@µS@

µS +
1

2
µ2S2 � 1

4
�S4 � 1

2
S2(�†�). (2)

Based on this Lagrangian, we study the collider constraints, predictions, GW signals and

EDM constraints in detail. For simplicity, we choose the default values as a = b = 1, namely,

⌘ = 1+ i. We can of course rescale ⌘ and ⇤ simultaneously to keep the e↵ective field theory

valid up the interested energy scales. It is not necessary to consider the domain wall problem

here as shown in Refs. [36, 39]. The coe�cients µ2, �,  are assumed to be positive in this

work.

For the above e↵ective Lagrangian, a second order and first order phase transition could

occur in orders. Firstly, a second order phase transition happens, the scalar field S acquire

a VEV and the dimension-five operator generates a sizable CP violating Yukawa coupling,

which provides the source of CP violation needed for BAU. Secondly, SFOPT occurs when

the vacuum transitions from (0, hSi) to (h�i, 0). After the two-step phase transition3, the

VEV of S vanishes at tree level which avoids the electron and neutron EDM constraints,

and the dimension-five operator induces the interaction term �mt

⇤

(aSt̄t + ibSt̄�
5

t), which

produces abundant collider phenomenology at the LHC and future lepton colliders, such as

CEPC, ILC, FCC-ee.

It is worth noticing that the dimension-five e↵ective operator yt
⌘
⇤

SQ̄L�̃tR are present

as well in non-minimal composite Higgs models after integrating out the vector-like top

partner [51–53]. For example, the singlet and the dimension-five operator can come from

composite models such as SO(6)⇥U(1)0/SO(5)⇥U(1)0, SO(5)⇥U(1)S⇥U(1)0/SO(5)⇥U(1)0,

or SO(6) ! SO(5) [52, 53], and the new scalar S can be viewed as a (pesudo) Goldstone

boson. During the phase transition, the S field has a VEV which sources the CP violation

for baryogenesis. At the end of the SFOPT, the VEV dynamically evolves to a loop-induced

smaller value, which is consistent with the current EDM and collider experiments.

3 There are extensive studies on the two-step phase transition in the Higgs extended models with singlet

scalars as in Refs. [40–46, 49? , 50]
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Now things are much better:  

1 baryon number symmetry violation  
   sphaleron        sphaleron 

2 C and CP violation 
   CKM, too small         

3 departure from thermal equilibrium 
   crossover phase transition(125GeV Higgs)          H+S 

yt⌘
S

⇤
Q̄L�̃tR



Now we have two scalar fields, so the PT is 2-step: 

(< S >,< H >) plane

(0, 0) (�, 0)

(0, v)

1st step

2nd step, SFOPT

Constraints from EDM are much weaker: 

Sizable CPV at SFOPT : yt⌘
�

⇤
Q̄L�̃tR

Current time ⇤ suppressed operator : yt⌘
S

⇤

¯QL
˜

�tR



Approximate analysis: high-temperature expansion 

III. PHASE TRANSITION DYNAMICS

In this section we discuss the phase transition dynamics, which provides the necessary

conditions for EW baryogenesis and produces detectable GWs during a SFOPT. To study

phase transition dynamics, we use the the methods in Refs. [54–56], and write the e↵ective

potential as a function of spatially homogeneous background scalar fields, i.e., S(x) = �(x)

and �(x) = 1p
2

(0, H(x))T . Thus, the full finite-temperature e↵ective potential up to one-

loop level can be written as

V
e↵

(H, �, T ) = V
tree

(H, �) +�V T 6=0

1

(H, �, T ) + V T=0

1

(H, �) , (3)

where V
tree

(H, �) is the tree-level potential at zero temperature as defined below in Eq.(4),

�V T 6=0

1

(H, �, T ) is the one-loop thermal corrections including the daisy resummation, and

V T=0

1

(H, �) is the Coleman-Weinberg potential at zero temperature.

The tree-level potential at zero temperature in Eq. (3) is

V
tree

(H, �) = �1

2
µ2

SMH2 � 1

2
µ2�2 +

1

4
�SMH4 +

1

4
��4 +

1

4
H2�2. (4)

We can see that there are four distinct extremal points, and requiring only two global

minima at V (µSM/
p
�SM , 0) and V (0, µ/

p
�) leads to the relation  > 2

p
��SM . When

µ4
SM

�SM
= µ4

�
, the two minima at tree level degenerates, and if

µ4
SM

�SM
> µ4

�
, V ( µSMp

�SM
, 0) becomes

the only global minimum. The SFOPT can be realized easily since the potential barrier

height appears at tree level and is not suppressed by loops or thermal factors. Based on

these properties, it is convenient to parameterize � and µ2 as

� = (


2�SM

)2�SM(1 + ��), µ2 = µ2

SM



2�SM

(1 + �µ2). (5)

Later on we use the full e↵ective potential in Eq.(3) to numerically calculate the phase

transition dynamics and GW signal, but first we can qualitatively understand the phase

transition dynamics using the tree-level potential and leading order temperature correction,

since the full one-loop e↵ective potential only sightly modifies the values of the parameter

space. Thus, using the high-temperature expansion up to leading order O(T 2), the e↵ective
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thermal potential Eq.(3) can be approximated as

V (H, �;T ) = (DHT
2 � µ2

SM

2
)H2 + (D�T

2 � µ2

2
)�2 +

1

4
(�SMH4 + H2�2 + ��4) (6)

with

DH =
1

32
(8�SM + g02 + 3g2 + 4y2t + 2/3), D� =

1

24
(2+ 3�) ,

where the SM U(1) gauge coupling g0 = 0.34972, SU(2) gauge coupling g = 0.65294 and

top quark Yukawa yt = 0.99561 [57]. The terms DHT 2 and D�T 2 represent the leading

order thermal corrections to the fields of H and �, respectively. Here, the contributions from

the dimension-five operator are omitted as similarly argued and dealt with in Refs. [36–38].

Thus, the washout parameter can be approximated as

v(Tc)

Tc

⇡ 2v

mH

s

DH � D�

�� � 2�µ2
. (7)

Numerically, the allowed parameter space for large washout parameter v(Tc)/Tc is shown

in Fig.1 for  = 1.0 and  = 2.0 cases, respectively. We use the washout parameter to

κ=1.0
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FIG. 1: Parameter spaces for large washout parameter for  = 1.0 and  = 2.0, respectively.

qualitatively see the SFOPT favored parameter region. Generally speaking, larger washout

parameter represents stronger first-order phase transition. For the quantitative determina-

tion of the SFOPT, we need to calculate the nucleation temperature TN as discussed below.

Eventually, some typical parameter sets that give two-step phase transition (the phase tran-

sitions take place as (0, 0) ! (0, hSi) ! (h�i, 0) with the decreasing of the temperature,
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define then

wash out parameter



Exact analysis: alpha and beta 
finite temperature effective 1-loop potential is:

to be positive, so V ( µSMp
�SM

, 0) < 0 and V (0, µp
�
) < 0. For simplicity, we further need V (0, µp

�
)

and V ( µSMp
�SM

, 0) to be the global minimum, namely, V

✓

q

4�µ2
SM�2µ2

4��SM�2 ,
q

4�SMµ2�2µ2
SM

4��SM�2

◆

>

V ( µSMp
�SM

, 0) and V

✓

q

4�µ2
SM�2µ2

4��SM�2 ,
q

4�SMµ2�2µ2
SM

4��SM�2

◆

> V (0, µp
�
). This requirement leads to

 > 2
p

��SM . (6)

If
µ4
SM

�SM
= µ4

�
, the two minima at tree level degenerates and if

µ4
SM

�SM
> µ4

�
, V ( µSMp

�SM
, 0) is the

only global minimum.

The transition can easily be very strong since the barrier height is not suppressed by loops

or thermal factors. If the two minima are not too di↵erent in height, the small e↵ects of

temperature are su�cient to interchange their relative heights to induce the phase transition.

The finite temperatures at the one-loop level is given by [34]

V
e↵

(H, �, T ) =
X

i

ni

64⇡2

m4

i (H, �, T )

✓

ln
m2

i (H, �, T )

Q2

� ci

◆

+�VT (H, �, T ) , (7)

where �VT (H, �, T ) can be written as

�VT (H, �, T ) =
T 4

2⇡2

(

X

i=Bosons

niJB(a
2

i ) +
X

i=Fermions

niJF(a
2

i )

)

, (8)

with

J
B,F(a

2

i ) =

Z 1

0

dxx2 ln



1⌥ exp

✓

�
q

x2 + a2i

◆�

, a2i = m2

i (H, �, T )/T 2. (9)

In the high temperature limits, the above functions can be expanded as the following:

JB(y) ⇡ �⇡4

45
+

⇡2

12
y � ⇡

6
y3/2 � y2

32
ln

y

ab
+O(y3) , (10)

JF (y) ⇡ +
7⇡4

360
� ⇡2

24
y � y2

32
ln

y

af
+O(y3)

with ab = 16af = 16⇡2Exp[1.5 � 2�E]. The field dependent mass and the corresponding

degree of freedom are:

m2

W = g2H2/4, nW = 6,
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To precisely describe dynamics of the PT 
need to calculate two parameters, 

↵ describes the strength of PT

˜� describes the inverse of PT duration
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where 'B(T ) is the VEV of the broken phase minimum at temperature T .
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3-d Euclideam action is:

where SFOPT occurs during the second step) and produce SFOPT are shown in Tab. I.

We now discuss the methods used to produce the table. We first introduce two impor-

TABLE I: Some typical parameter points, which can give two-step phase transition and SFOPT.
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1.00 -0.21 -0.41 116.0
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2.00 -0.21 -0.22 106.6

2.00 -0.21 -0.30 113.6

4.00 -0.21 -0.21 115.9

tant quantities ↵ and �̃ which can precisely describe the dynamical properties of the phase
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To calculate the nucleation rate, we need to obtain the profiles of the two scalar fields.

Here, we need to deal with phase transition dynamics involving two fields using the method

in Refs. [59–61] by choosing a path ~'(t) = (H(t), �(t)) that connects the initial and final
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After we obtain the nucleation rate, the parameter �̃ can be defined as

�̃ = TN
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Another important quantity ↵ parametrizes the ratio between the false-vacuum energy den-

sity "(TN) and the thermal energy density ⇢
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(TN) in the symmetric phase at the nucleation

temperature TN . It is defined as
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where 'B(T ) is the VEV of the broken phase minimum at temperature T .

To calculate the parameters ↵ and �̃, it is necessary to determine the nucleation temper-

ature TN where the nucleation rate per Hubble volume per Hubble time reaches unity as
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' 1, here H is the Hubble parameter. Thus the condition can be simplified as

S
3

(TN)

TN

= 4 ln(TN/100GeV) + 137. (14)
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we calculate GWs signals for benchmark points 

BAU estimation:

IV. ELECTROWEAK BARYOGENESIS AND CP VIOLATION

In this section, we estimate the constraints on the dynamical source of CP violation

from the observed value of BAU. To produce the observed baryon asymmetry from EW

baryogenesis, CP violation is necessary to produce an excess of left-handed fermions versus

right-handed fermions and then generate net baryon excess through EW sphaleron pro-

cess [36, 37]. After the first step of phase transition, S field obtains a VEV, and then the

CP violating top quark Yukawa coupling is obtained. Thus, during the SFOPT, the top

quark in the bubble wall has a spatially varying complex mass, which is given by [36, 37]

mt(z) =
ytp
2

H(z)
⇣

1 + (1 + i)S(z)
⇤

⌘

⌘ |mt(z)|ei⇥(z), where z is the coordinate perpendicular

to the bubble wall. The CP violating phase ⇥ will provide the necessary CP violation for

the BAU. Taking the transport equations in Refs. [37, 62–64], one can estimate the BAU as

⌘B =
405�

sph

4⇡2ṽbg⇤T

Z

dz µBL
f
sph

e�45�sph|z|/(4ṽb), (15)

where ṽb is the relative velocity between the bubble wall and plasma front in the deflagration

case (the bubble wall velocity vb is smaller than the sound velocity cs =
p
3/3 ⇠ 0.57 in

the plasma). Here, we choose ṽb ⇠ 0.2, which is smaller than the bubble wall velocity

vb [32]. It is because the EW baryogenesis usually favors the deflagration bubble case, and

the BAU depends on the relative velocity between the bubble wall and the plasma front.

Thus, we have reasonably small relative velocity ṽb, which is favored by the EW baryogenesis

to guarantee su�cient di↵usion process in front of the bubble wall, and large enough bubble

wall velocity vb to produce stronger phase transition GWs (In the deflagration case, a larger

bubble wall velocity gives stronger GWs [31, 32]). We take the default value of the bubble

wall velocity vb ⇠ 0.5, which is reasonable since the di↵erence between ṽb and vb can be

large for SFOPT with large washout parameter in the deflagration case.

From the roughly numerical estimation, we see that the observed BAU can be obtained

as long as ��/⇤ ⇠ 0.1 � 0.3, where �� is the change of � during the phase transition

and is determined by the phase transition dynamics. For the two benchmark sets given in
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Collider and EDM analysis

current tree-level Lagrangian :

following, we discuss how to constrain the NP scale ⇤ from the GWs, EDM data and collider

data, which o↵er accurate constraints or predictions on the parameters of the scenario.

V. CONSTRAINTS AND PREDICTIONS IN PARTICLE PHYSICS EXPERI-

MENTS

After the SM Higgs obtains a VEV v at the end of the SFOPT, interaction between S

and top quark becomes

LStt = �
✓

mt

⇤
+

mtH

⇤v

◆

S (at̄t+ ibt̄�
5

t) . (16)

Top quark loop-induced interactions between the scalar S and vector pairs are important

in our collider phenomenology study. In this work, mS, mH , and mS +mH are all assumed

smaller than 2mt, and mS > mH/2. So we can in most cases integrate out top quark

loop e↵ects and use e↵ective couplings to approximately describe the interactions. Here we

use the covariant derivative expansion (CDE) approach [65–67] to calculate our e↵ective

Lagrangian. After straightforward calculations we obtain the relevant one-loop e↵ective

operators

L0
SV V =

a↵S

12⇡⇤
SGa

µ⌫G
aµ⌫ � b↵S

8⇡⇤
SGa

µ⌫G̃
aµ⌫ (17)

+
2a↵EW

9⇡⇤
SFµ⌫F

µ⌫ � b↵EW

3⇡⇤
SFµ⌫F̃

µ⌫ .

Detailed calculations can be referred in the Appendix.

Another e↵ect that needs to be considered here is the one-loop mixing e↵ect between S

and H. In our tree level Lagrangian, there is no mixing term between the S and H, but such

mixing term will be induced by the top quark loop. Considering the one-loop correction,

the (squared) mass matrix terms of the scalar fields can be written as:

Lmass = �1

2

⇣

S H
⌘

0

@

m2

S
,tree

+�m2

S �m2

HS

�m2

HS m2

H
,tree

+�m2

H

1

A

0

@

S

H

1

A . (18)
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Effective operators can be obtained by integrating out the massive top-loop. 
We use CDE(covariant derivative expansion) for relevant terms: Sgg, S𝛄𝛄.
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Those corrections are:

�m2

H =
3m4

t

4⇡2v2
, �m2

HS = a
3m4

t

2⇡2⇤v
, �m2

S = (a2 � b2)
3m4

t

4⇡2⇤2

. (19)

The calculation details can also be found in the Appendix. This mass matrix can be diago-

nalized by a rotation matrix O:

O

0

@

m2

S
,tree

+�m2

S �m2

HS

�m2

HS m2

H
,tree

+�m2

H

1

AOT =

0

@

m2

S,phy 0

0 m2

H,phy

1

A (20)

Here mH,phy = 125 GeV is the mass of the SM-like Higgs boson observed by the LHC, and

the physical mass eigenstates are the mixing of the scalar fields H and S:

8

<

:

S
phy

= O
11

S + O
12

H

H
phy

= O
21

S + O
22

H
(21)

From now on we neglect the subscript “
phy

” and all the fields and masses are physical by

default. The rest of this section is based on this e↵ective Lagrangian.

A. Electric dipole moment experiments

Current EDM experiments put severe constraints on many baryogenesis models. For ex-

ample, the ACME Collaboration’s new result, i.e. |de| < 8.7⇥ 10�29 cm · e at 90% C.L. [68],

has ruled out a large portion of the CP violation parameter space for many baryogenesis

models. However, in this dynamical CP violation baryogenesis scenario, the strong con-

straints from the recent electron EDM experiments can be greatly relaxed since S does not

acquire a VEV at zero temperature, thus the mixing of S and the Higgs boson and the

CP violation interaction of top Yukawa is prevented at tree level, i.e. the two-loop Barr-Zee

contributions to the EDM only come from the loop induced mixing e↵ects. Thus, in our case

the constraints from the EDM are weaker than the collider constraints (discussed in the next

section), which is di↵erent from usual EW baryogenesis case where the EDM constraints

are much stronger than the collide constraints. Due to the loop induced mixing e↵ects, the

12

loop induced S-gg and S-jj couplings 

mixing between S and H

they affect Higgs data, light resonance search, and EDM 

tan ✓ =
2�m2

HSp
4(�m2

HS)
2 + (m2

H �m2
S)

2



two-loop Barr-Zee contribution to EDM is suppressed and can be expressed as [69–71]:

d2-loope =
e

3⇡2

✓

↵EWGFvp
2⇡mt

◆

me

✓

vb

2⇤

◆

O
11

O
12

h

� g(zts) + g(zth)
i

, (22)

with

zts =
m2

t

m2

S

, zth =
m2

t

m2

H

, g(z) =
1

2
z

Z

1

0

dx
1

x(1 � x) � z
log

✓

x(1 � x)

z

◆

. (23)

The numerical results are shown in Fig. 3, where the region below the dotted blue lines are

excluded by the EDM experiments.

We also consider constraints from neutron EDM [72–74] and mercury EDM [75, 76].

But through our calculation, we find that limits from current neutron and mercury EDM

experiments are weaker than electron EDM. However, the expected future neutron EDM

measurement [77] with a much enhanced precision could have the capability to detect this

type of CP violation.
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FIG. 2: Left: Main branching ratios and total decay width of S with di↵erent mS . In this plot
we set a, b, and ⇤ as 1, 1, and 1TeV, respectively. The gap around 125 GeV comes from the

S-H mixing term �m2

HS = a
3m4

t
2⇡2

⇤v
. S-H mixing term changes the S property hugely when mS

is close to mH . Right: S-H field mixing v.s. mS plot. Maximal mixing is obtained when mS is
approaching 125 GeV.
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property of S, there is a huge mixing with H, even the HS mass term is small 

contribution to EDM (neutron EDM)
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h
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Figure 1. Left: Two-loop Barr-Zee contributions to the EDM of the electron involving a virtual
Higgs boson and a photon or Z boson. Right: Two-loop contribution to the Weinberg operator.

where xt/h ⌘ m2
t /M

2
h and the loop functions f1,2(x) can be written as [28],1

f1(x) =
2xp
1� 4x



Li2

✓

1� 1�p
1� 4x

2x

◆

� Li2

✓

1� 1 +
p
1� 4x

2x

◆�

,

f2(x) = (1� 2x) f1(x) + 2x (lnx + 2) .

(2.3)

Here Li2(x) = � R x
0 du ln(1� u)/u is the usual dilogarithm.

From Eq. (2.2) it is evident that the electron EDM constraint on ̃t vanishes in the
limit that the Higgs does not couple to electrons, e, ̃e ! 0, or by an appropriate tuning
of the ratio ̃e/e. For simplicity we will from here on assume that the Higgs coupling to
the electron is CP conserving, so that ̃e = 0. In this case the top-quark contribution to
the EDM of the electron is (with ↵ ⌘ ↵(0) ' 1/137)

de
e

= 3.26 · 10�27 cm e̃t f1(xt/h) = 9.0 · 10�27 cm e̃t , (2.4)

where in the second equality we used that f1(xt/h) ' 2.76 for mt = 163.3GeV [29] and
Mh = 126GeV. The 90% confidence level (CL) limit [30]

�

�

�

�

de
e

�

�

�

�

< 8.7 · 10�29 cm , (2.5)

then translates into
|̃t| < 0.01 , (2.6)

assuming that the Higgs coupling to the electron is the SM one, e = 1.
Above we have neglect the two-loop diagram, Fig. 1 (left), with the Z boson instead of

the photon in the loop. Due to charge-conjugation invariance only the vector couplings of
the Z boson enter the Barr-Zee expression for the electron EDM. As a result the Z-boson
contribution is strongly suppressed by [27]

✓

�2

3
e2
◆�1 e2

s2W c2W

✓

�1

4
+ s2W

◆✓

1

4
� 2

3
s2W

◆

' 1.6% , (2.7)

1
Note that the loop function f1(x) is real and analytic even for x > 1/4. In particular, in the limit

x ! 1, one has f1(x) = lnx+ 2 +O(1/
p
x).

– 3 –

top-quark loop. Considering the one-loop correction, the
(squared) mass matrix terms of the scalar fields can be
written as

Lmass ¼ −
1

2

!
S H

"!m2
S;tree þ Δm2

S Δm2
HS

Δm2
HS m2

H;tree þ Δm2
H

"

×
!

S

H

"
: ð18Þ

Those corrections are

Δm2
H ¼ 3m4

t

4π2v2
; Δm2

HS ¼ a
3m4

t

2π2Λv
;

Δm2
S ¼ ða2 − b2Þ 3m4

t

4π2Λ2
: ð19Þ

The calculation details can also be found in the Appendix.
This mass matrix can be diagonalized by a rotation
matrix O:

O
!m2

S;tree þ Δm2
S Δm2

HS

Δm2
HS m2

H;tree þ Δm2
H

"
OT

¼
!m2

S;phy 0

0 m2
H;phy

"
: ð20Þ

Here mH;phy ¼ 125 GeV is the mass of the SM-like Higgs
boson observed by the LHC, and the physical mass
eigenstates are the mixing of the scalar fields H and S:

Sphy ¼ O11SþO12H;

Hphy ¼ O21SþO22H: ð21Þ

From now on, we neglect the subscript “phy,” and all the
fields and masses are physical by default.

A. Electric dipole moment experiments

Current EDM experiments put severe constraints on
many baryogenesis models. For example, the ACME
Collaboration’s new result, i.e., jdej < 8.7 × 10−29 cm · e
at 90% C.L. [68], has ruled out a large portion of the CP
violation parameter space for many baryogenesis models.
However, in this dynamical CP violation baryogenesis
scenario, the strong constraints from the recent electron
EDM experiments can be greatly relaxed, since S does not
acquire a VEV at zero temperature; thus, the mixing of S
and the Higgs boson and the CP violation interaction of the
top Yukawa is prevented at the tree level; i.e., the two-loop
Barr-Zee contributions to the EDM come only from the
loop-induced mixing effects. For example, if one considers
hSi ¼ 100 GeV, then current electron EDM measurements
can exclude the parameter space with Λ < 10 TeV [69].
This difference can be analytically understood by loop

order estimation. In those models with hSi ≠ 0, the CP
violation term contributes to electron EDM through the
Barr-Zee diagram at the two-loop level. While in our case
with hSi ¼ 0, this CP violation term can contribute to
EDM only at the three-loop level, because the mixing of H
and S is induced at the one-loop level. Thus, in our case the
constraints from the EDM are weaker than the collider
constraints (discussed in the next section), which is differ-
ent from the usual EW baryogenesis case where the EDM
constraints are much stronger than the collide constraints.
Because of the loop-induced mixing effects, the two-loop
Barr-Zee contribution to EDM is suppressed and can be
expressed as [69–71]

d2-loope ¼ e
3π2

!
αEWGFvffiffiffi

2
p

πmt

"
me

!
vb
2Λ

"

×O11O12½−gðztsÞ þ gðzthÞ&; ð22Þ

with

zts ¼
m2

t

m2
S
; zth ¼

m2
t

m2
H
;

gðzÞ ¼ 1

2
z
Z

1

0
dx

1

xð1 − xÞ − z
log

!
xð1 − xÞ

z

"
: ð23Þ

The numerical results are shown in Fig. 3, where the
region below the dotted blue lines is excluded by the EDM
experiments.
We also consider constraints from neutron EDM [72–74]

and mercury EDM [75,76]. But, through our calculation,
we find that limits from current neutron and mercury EDM
experiments are weaker than electron EDM. However, the
expected future neutron EDM measurement [77] with a
much enhanced precision could have the capability to
detect this type of CP violation.

B. Collider direct search and Higgs data

Production and decay patterns of both the Higgs boson
and S particle are modified by the loop-induced mixing;
see Fig. 2 for an illustration. In Fig. 2, the mass gap around
125 GeV comes from the mass mixing term Δm2

HS ¼
a 3m4

t
2π2Λv, which is fixed by Λ rather than a free parameter.

This feature is shown more clearly in Fig. 3, where the mass
region between black dashed lines is forbidden by this
mass mixing term. Fortran code EHDECAY [78–81] is used
here to do precise calculations. Figure 2 shows that the
branching ratios of S is quite SM-like near the Higgs mass
due to a large mixing with H. While in the region away
from 125 GeV, i.e., the region with a smaller mixing, top-
loop-induced γγ and gg channels are enhanced. Our
scenario get constraints from the SM and non-SM Higgs
searches in various channels at LEP, Tevatron, and LHC
experiments and the observed 125 GeV Higgs signal
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FIG. 3: Current exclusion limit and future search limit projected on mS vs. ⇤ plane. Region
below dotted blue lines haven been excluded by EDM measurement. Region below dashed red
lines haven been excluded by collider scalar search and Higgs data. In left plot, region below dash
dotted olive lines can be observed from ZS production at 5 ab�1 CEPC with a C.L. higher than
5�. In right plot, we show the ratio �(HZ)
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with purple dash dotted contour lines. In this plot
we set a = b = 1, and  = 2.

B. Collider direct search and Higgs data

Production and decay patterns of both the Higgs and S are modified by the loop induced

mixing, see Fig. 2 for an illustration. Fortran code eHDECAY [78–81] is used here to do

precise calculations. Fig. 2 shows that the branching ratios of S is quite SM-like near the

Higgs mass due to a large mixing with H. While in the region away from 125 GeV, i.e.

the region with a smaller mixing, top loop induced �� and gg channels are enhanced. Our

scenario get constraints from the SM and non-SM Higgs searches in various channels at

LEP, Tevatron, and LHC experiments, and the observed 125 GeV Higgs signal strengths.

We apply cross section upper limits on relevant channels from these collider searches as

included in the package HiggsBounds-5 [82–85]. Besides, we use the framework implemented

in HiggsSignals-2 [86] to perform a Higgs data fitting. Experimental data from 7 + 8 TeV

ATLAS and CMS combined Higgs measurements [87], and two 13 TeV Higgs measurements

with a higher precision [88, 89] are included in the fit. The Higgs signal strength is required

to lie within 2� C.L of the measured central value. Limits from Higgs data and direct

searches are shown in Fig. 3. Reading from the figure, the mS region near 125 GeV is

excluded due to reduced Higgs signal strength through strong mixing between H and S.
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future search

LHC future running: di-photon, 4-leptons, pp-> SH  

electron collider(CEPC for example), simple and clear:
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indirect search: ZH Xsection deviation, from mixing and field strength renormalization:
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CEPC. We are especially sensitive to regions with mS closer to 125 GeV, which corresponds

to an increasing S-H mixing.

In addition, S-H mixing could also be detected through a potentially visible deviation of

�(e+e� ! HZ) measurement, which can be an indirect signal of our model [98]. Further

more, wave function normalization of Higgs field which comes from 1

2

S2(�†�) reduces

�(e+e� ! HZ) by a global rescaling factor:
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Here we fix  to 2, because a large  is favored by SFOPT. So �(e+e� ! HZ) will be

rescaled by a factor |O
22

|2Z. Quoting from the proposed precision of CEPC with 5 ab�1

data, it is capable to measure the inclusive HZ cross section to about 1.0% sensitivity. In

Fig. 3 we draw contour lines for di↵erent ratio �(HZ)

�SM (HZ)

. Unlike the nearly symmetric shape

of our direct search lines, �(HZ) shows a larger deviation in light mS region. This e↵ect

comes from the Higgs field wave function normalization, which will be enhanced by a light

mS. This indirect detection method shows an even better search ability compared to the

direct peak search.

VI. GRAVITATIONAL WAVE SIGNALS AND THEIR CORRELATION WITH

COLLIDER SIGNALS

The key point to predict the phase transition GW signal is to calculate the two parameters

↵ and �̃ from the finite temperature e↵ective potential in Eq. (3) using the method described

in Sec. III. The two parameters are related to the phase transition strength and the inverse

of time duration, respectively. The GWs also depend on the energy e�ciency factors �i
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FIG. 3: Current exclusion limit and future search limit projected on mS vs. ⇤ plane. Region
below dotted blue lines haven been excluded by EDM measurement. Region below dashed red
lines haven been excluded by collider scalar search and Higgs data. In left plot, region below dash
dotted olive lines can be observed from ZS production at 5 ab�1 CEPC with a C.L. higher than
5�. In right plot, we show the ratio �(HZ)

�SM (HZ)

with purple dash dotted contour lines. In this plot
we set a = b = 1, and  = 2.

B. Collider direct search and Higgs data

Production and decay patterns of both the Higgs and S are modified by the loop induced

mixing, see Fig. 2 for an illustration. Fortran code eHDECAY [78–81] is used here to do

precise calculations. Fig. 2 shows that the branching ratios of S is quite SM-like near the

Higgs mass due to a large mixing with H. While in the region away from 125 GeV, i.e.

the region with a smaller mixing, top loop induced �� and gg channels are enhanced. Our

scenario get constraints from the SM and non-SM Higgs searches in various channels at

LEP, Tevatron, and LHC experiments, and the observed 125 GeV Higgs signal strengths.

We apply cross section upper limits on relevant channels from these collider searches as

included in the package HiggsBounds-5 [82–85]. Besides, we use the framework implemented

in HiggsSignals-2 [86] to perform a Higgs data fitting. Experimental data from 7 + 8 TeV

ATLAS and CMS combined Higgs measurements [87], and two 13 TeV Higgs measurements

with a higher precision [88, 89] are included in the fit. The Higgs signal strength is required

to lie within 2� C.L of the measured central value. Limits from Higgs data and direct

searches are shown in Fig. 3. Reading from the figure, the mS region near 125 GeV is

excluded due to reduced Higgs signal strength through strong mixing between H and S.
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future search

LHC future running: di-photon, 4-leptons, pp-> SH  

background, previous diphoton and four-lepton search
results, as shown earlier, already excluded some parameter
space of our model. So diphoton and four-lepton channels
would continue to exclude parameter space or give the first
hint of signals as the LHC continues accumulating data. In
Table III, we give the production cross sections times
branching ratios at 14 TeV LHC of these two channels for
the two benchmark points. A concrete analysis relies on a
detailed simulation and dedicated final state studies, which
is beyond the scope of the current paper, and could be
interesting future work. The pp → SH process is mostly
through the one-loop gg → SH contribution, and an exact
calculation at the leading order is performed. There are
three types of Feynman diagrams as shown in Fig. 4. The
second (tri4) and third (box) diagrams are proportional to
the contribution of the dimension-five effective operator
and, thus, interfere destructively according to the low-
energy theorem [93]. Their contributions nearly cancel out
at low-energy scale, just above themS þmH threshold. The
first diagram (tris), however, is proportional to κ and
contributes dominantly when κ becomes large. The lead-
ing-order total cross section of pp → SH is around 25 fb
with κ ¼ 2, mS ¼ 115 GeV, Λ ¼ 1 TeV, and

ffiffiffi
s

p
¼

14 TeV and roughly scales with κ2 for even larger κ
values. We illustrate the separate contributions to the
leading-order differential cross section as a function of
mSH from the different diagrams in Fig. 5. As seen in the
figure, the total contribution is indeed dominated by the
“tris” or κ term at a low energy scale and dominated by
the “tri4þ box”, or the dimension-five term proportional to
η at a high energy scale. Thus, by probing this process, we
obtain complementary information on the model parame-
ters compared to the diphoton and four-lepton search.
Multiplied by a k factor of around two for typical gg to
scalar(s) processes, this gg → SH process becomes com-
parable to or even larger than the SM pp → HH total cross
section, which is about 40 fb at 14 TeV. In our scenario, the

S decays dominantly to a pair of gluons and by a small
fraction to a pair of photons. A study that is similar to the
di-Higgs search at the high luminosity LHC, while with one
scalar at a different mass, in the γγbb̄ and jjbb̄ final states,
becomes another interesting future work. The pp → SH
study would benefit from a future hadron collider with a
higher center of mass energy, for example at a 27 TeV HE-
LHC and a 100 TeV FCC-hh, SPPC. Very similar to the
study of di-Higgs production, the cross section of the gg →
SH increases from 25 to 92 and 770 fb at 27 and 100 TeV
center of mass energy, respectively, with our leading-order
calculation.
Note here that the scalar S is larger than half the Higgs

mass in our benchmark scenarios and cannot be produced
or probed through Higgs decay; the 1

2 κS
2Φ2 term with large

κ could as well be indirectly probed at the off-shell Higgs
region, for example, as discussed in Ref. [94].

FIG. 4. Representative Feynman diagrams that contribute to the gg → SH process.
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FIG. 5. Leading-order differential cross section for the gg →
SH process, with κ ¼ 2, mS ¼ 115 GeV, Λ ¼ 1 TeV, andffiffiffi
s

p
¼ 14 TeV. The separate contributions from the diagrams

are shown in different color schemes. ”tris” (magenta) represents
the cross section considering only the first type of diagrams as in
Fig. 4, “tri4” (red) represents the second, and “box” (green)
represents the last. The blue curve shows the cross section
including the tri4 and the box contributions. The black curve
is the total cross section including all diagrams and their
interference, which is dominated by the tris or κ term at a low
energy scale and by the dimension-five η term and interference at
a high energy scale.

TABLE III. Production cross sections of S times branching
ratios at 14 TeV LHC, with Λ ¼ 1 TeV.

mS [GeV]
σðpp → SÞ×
BRðS → γγÞ

σðpp → SÞ×
BRðS → ZZ%Þ

115 37.73 fb 54.69 fb
135 18.38 fb 520.60 fb

HUANG, QIAN, and ZHANG PHYS. REV. D 98, 015014 (2018)

015014-8
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Table III, we give the production cross sections times
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the two benchmark points. A concrete analysis relies on a
detailed simulation and dedicated final state studies, which
is beyond the scope of the current paper, and could be
interesting future work. The pp → SH process is mostly
through the one-loop gg → SH contribution, and an exact
calculation at the leading order is performed. There are
three types of Feynman diagrams as shown in Fig. 4. The
second (tri4) and third (box) diagrams are proportional to
the contribution of the dimension-five effective operator
and, thus, interfere destructively according to the low-
energy theorem [93]. Their contributions nearly cancel out
at low-energy scale, just above themS þmH threshold. The
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contributes dominantly when κ becomes large. The lead-
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ffiffiffi
s

p
¼

14 TeV and roughly scales with κ2 for even larger κ
values. We illustrate the separate contributions to the
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figure, the total contribution is indeed dominated by the
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η at a high energy scale. Thus, by probing this process, we
obtain complementary information on the model parame-
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parable to or even larger than the SM pp → HH total cross
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higher center of mass energy, for example at a 27 TeV HE-
LHC and a 100 TeV FCC-hh, SPPC. Very similar to the
study of di-Higgs production, the cross section of the gg →
SH increases from 25 to 92 and 770 fb at 27 and 100 TeV
center of mass energy, respectively, with our leading-order
calculation.
Note here that the scalar S is larger than half the Higgs

mass in our benchmark scenarios and cannot be produced
or probed through Higgs decay; the 1

2 κS
2Φ2 term with large

κ could as well be indirectly probed at the off-shell Higgs
region, for example, as discussed in Ref. [94].
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¼ 14 TeV. The separate contributions from the diagrams
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the cross section considering only the first type of diagrams as in
Fig. 4, “tri4” (red) represents the second, and “box” (green)
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including the tri4 and the box contributions. The black curve
is the total cross section including all diagrams and their
interference, which is dominated by the tris or κ term at a low
energy scale and by the dimension-five η term and interference at
a high energy scale.
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 = 2, mS = 115 GeV, ⇤ = 1 TeV @14TeV

�LO ⇠ 25fb

�SM
HH ⇠ 40 fb



GWs calculation

our input parameters are just ↵ ˜� and energy e�ciency factors �

there are 3 kinds of GWs sources: bubble collision, sound wave, turbulence.
(i=col, turb, sw, denoting bubble collision, turbulence, and sound waves respectively) and

bubble wall velocity vb. For the GW spectrum from bubble collisions, we use the formulae

from the envelope approximations [29, 97]:
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The e�ciency factor �
col

is a function of ↵ and vb, and we use the results for the deflagration

case as obtained in Ref. [31] As for GW spectrum from sound waves, numerical simulations

give [33, 35]
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The turbulence contribution to the GW spectrum is [30, 99]
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We now show our numerical results of the total GW spectrum from SFOPT in the con-

19

(i=col, turb, sw, denoting bubble collision, turbulence, and sound waves respectively) and

bubble wall velocity vb. For the GW spectrum from bubble collisions, we use the formulae

from the envelope approximations [29, 97]:

⌦
col

(f)h2 ' 1.67 ⇥ 10�5 ⇥
✓

0.11v3b
0.42 + v2b

◆

�̃�2

✓

�
col

↵

1 + ↵

◆

2

✓

100

g⇤(TN)

◆

1/3 3.8(f/f̃
col

)2.8

1 + 2.8(f/f̃
col

)3.8
,

at the peak frequency

f̃
col

' 1.65 ⇥ 10�5 Hz ⇥
✓

0.62

1.8 � 0.1vb + v2b

◆

�̃

✓

TN

100 GeV

◆✓

g⇤(TN)

100

◆

1/6

. (26)

The e�ciency factor �
col

is a function of ↵ and vb, and we use the results for the deflagration

case as obtained in Ref. [31] As for GW spectrum from sound waves, numerical simulations

give [33, 35]

⌦
sw

(f)h2 ' 2.65 ⇥ 10�6vb�̃
�1

✓

�
sw

↵

1 + ↵

◆

2

✓

100

g⇤(TN)

◆

1/3

⇥ (f/f̃
sw

)3
✓

7

4 + 3(f/f̃
sw

)2

◆

7/2

with the peak frequency

f̃
sw

' 1.9 ⇥ 10�5 Hz
1

vb
�̃

✓

TN

100 GeV

◆✓

g⇤(TN)

100

◆

1/6

. (27)

The turbulence contribution to the GW spectrum is [30, 99]

⌦
turb

(f)h2 ' 3.35 ⇥ 10�4vb�̃
�1

✓

�
turb

↵

1 + ↵

◆

3/2 ✓ 100

g⇤(TN)

◆

1/3

⇥ (f/f̃
turb

)3

(1 + f/f̃
turb

)11/3(1 + 8⇡f/H
0

)

with the peak frequency

f̃
turb

' 2.7 ⇥ 10�5 Hz
1

vb
�̃

✓

TN

100 GeV

◆✓

g⇤(TN)

100

◆

1/6

(28)

and

H
0

= 1.65 ⇥ 10�5 Hz

✓

TN

100 GeV

◆✓

g⇤(TN)

100

◆

1/6

. (29)

We now show our numerical results of the total GW spectrum from SFOPT in the con-

19

(i=col, turb, sw, denoting bubble collision, turbulence, and sound waves respectively) and

bubble wall velocity vb. For the GW spectrum from bubble collisions, we use the formulae

from the envelope approximations [29, 97]:

⌦
col

(f)h2 ' 1.67 ⇥ 10�5 ⇥
✓

0.11v3b
0.42 + v2b

◆

�̃�2

✓

�
col

↵

1 + ↵

◆

2

✓

100

g⇤(TN)

◆

1/3 3.8(f/f̃
col

)2.8

1 + 2.8(f/f̃
col

)3.8
,

at the peak frequency

f̃
col

' 1.65 ⇥ 10�5 Hz ⇥
✓

0.62

1.8 � 0.1vb + v2b

◆

�̃

✓

TN

100 GeV

◆✓

g⇤(TN)

100

◆

1/6

. (26)

The e�ciency factor �
col

is a function of ↵ and vb, and we use the results for the deflagration

case as obtained in Ref. [31] As for GW spectrum from sound waves, numerical simulations

give [33, 35]
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The turbulence contribution to the GW spectrum is [30, 99]
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We now show our numerical results of the total GW spectrum from SFOPT in the con-
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FIG. 7: The correlation between the GW spectrum and the associated collider signals for the
benchmark sets with  = 2 and ⇤ = 1 TeV. The colored regions depict the expected sensitivities
from the future GW experiments LISA, BBO and U-DECIGO, respectively. The black line repre-
sents the phase transition GW spectrum for the benchmark sets at mS = 115 GeV, which is related
to the detectable lepton collider signal with a cross section �(SZ) = 13.6 fb at CEPC . The green
line represents the case for another benchmark set at mS = 135 GeV.

produced in this EW baryogenesis scenario can be detected marginally by LISA, BBO and

certainly by U-DECIGO. We also show the corresponding CEPC cross sections as a double

test on this scenario, and vice versa. For example taking benchmark set I, the GW spectrum

is represented by the black line in Fig. 7, which can be detected by LISA and U-DECIGO.

The black line also corresponds to 0.9339�SM(HZ) of the HZ cross section for e+e� ! HZ

process and 115 GeV recoil mass with 13.6 fb cross section for the e+e� ! SZ process at

CEPC, which has a 5� discovery potential with 5 ab�1 luminosity at CEPC. Other lepton

colliders are similarly capable to detect this collider signals, such as ILC and FCC-ee. The

observation of GWs with several mHz peak frequency at LISA and the observation of the 115

GeV recoil mass at CEPC are related by this EW baryogenesis scenario. We can see that

the future lepton collider and GW detecter make a double test on the scenario [100–103].

VII. CONCLUSION

We have studied the collider search and GW detection of the EW baryogenesis scenario

with a dynamical source of CP violation realized by a two-step phase transition. The VEV

of a new scalar field hSi evolves with the two-step phase transition, and provides both the
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produced in this EW baryogenesis scenario can be detected marginally by LISA, BBO and

certainly by U-DECIGO. We also show the corresponding CEPC cross sections as a double

test on this scenario, and vice versa. For example taking benchmark set I, the GW spectrum

is represented by the black line in Fig. 7, which can be detected by LISA and U-DECIGO.

The black line also corresponds to 0.9339�SM(HZ) of the HZ cross section for e+e� ! HZ

process and 115 GeV recoil mass with 13.6 fb cross section for the e+e� ! SZ process at

CEPC, which has a 5� discovery potential with 5 ab�1 luminosity at CEPC. Other lepton

colliders are similarly capable to detect this collider signals, such as ILC and FCC-ee. The

observation of GWs with several mHz peak frequency at LISA and the observation of the 115

GeV recoil mass at CEPC are related by this EW baryogenesis scenario. We can see that

the future lepton collider and GW detecter make a double test on the scenario [100–103].

VII. CONCLUSION

We have studied the collider search and GW detection of the EW baryogenesis scenario

with a dynamical source of CP violation realized by a two-step phase transition. The VEV

of a new scalar field hSi evolves with the two-step phase transition, and provides both the

20
SFOPT and su�cient CP violation at early universe. At current time, hSi becomes zero

at tree level, which makes it easy to evades the severe EDM constraints. Nevertheless, the

loop-induced mixing between the scalars S and H can produce abundant collider signals.

We have shown possible collider signals at future collider experiments, especially at the

lepton colliders. Meanwhile, collider signals and GW surveys could cross check this EW

baryogenesis scenario. As a by product, the discussion here suggests potentially interesting

collider signals for additional generic light scalar searches near the Higgs mass. The analysis

in this work may help to understand the origin of CP violation and EW baryogenesis,

furthering the connection between cosmology and particle physics. More systematical study

is left to our future study.
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Appendix: E↵ective Lagrangian calculation through covariant derivative expan-

sion

CDE (covariant derivative expansion) is a convenient method to calculate one-loop e↵ec-

tive Lagrangian [65–67]. In this appendix we use CDE to calculate several most important

operators in our work. Operators we calculated here are those connecting gluon or photon

pairs to scalars and induced by top quark loop, which are most relevant to the phenomenol-

ogy we want to study at hadron colliders. In order to make things clear and easy to check,

we write down our calculation procedure in detail. For notation and convention, we follow

Ref. [66].

The particle being integrated out here the is top quark, so the corresponding one-loop

contribution to the e↵ective action is:

S
e↵,1-loop

= �iTr log (P/ � mt � M) , (30)
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