

Programme SESAME

PRAE: Platform for Research and Applications with Electrons

PRAE collaboration

Imagerie et Modélisation en Neurobiologie et Cancérologie

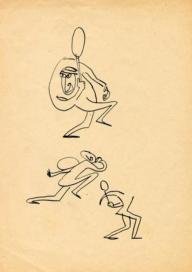
Institut de Physique Nucléaire

Laboratoire de l'Accélérateur Linéaire

P. Ausset, S. Barsuk, M. Ben Abdillah, L. Berthier, P. Bertho, J. Bettane, S. Blivet, J.-S. Bousson, L. Burmistrov, F. Campos, V. Chaumat, J.-L. Coacolo, R. Delorme, N. Dosme, D. Douillet, R. Dupré, P. Duchesne, N. El Kamchi, M. El Khaldi, A. Faus-Golfe, L. Garolfi, B. Genolini, A. Gonnin, X. Grave, M. Guidal, H. Guler, P. Halin, G. Hull, M. Imre, M. Josselin, M. Juchaux, W. Kaabi, R. Kunne, M. Langlet, P. Laniece, F. Lefebvre, C. Le Galliard, E. Legay, P. Lepercq, C. Magueur, B. Mansoux, D. Marchand, A. Maroni, B. Mathon, B. Mercier, H. Monard, C. Muñoz Camacho, T. Nguyen Trung, S. Niccolai, M. Omeich, Y. Peinaud, L. Pinot, Y. Prezado, K. Pressard, V. Puill, B. Ramstein, A. Said, A. Semsoum, A. Stocchi, C. Sylvia, C. Vallerand, M.A. Verdier, O. Vitez, E. Voutier, J. van de Wiele, S. Wurth

Seminar at IHEP/UCAS, March 23, 2018

Sergey Barsuk, LAL Orsay sergey.barsuk@lal.in2p3.fr

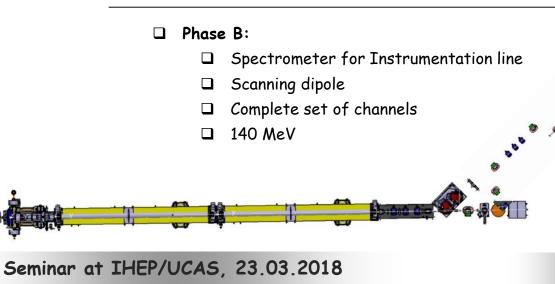

The PRAE project

□ PRAE: the multi-disciplinary site based on the high-performance electron beam with the energy of 70 MeV (intermediate PRAE version) and 140 MeV (designed PRAE version). Infrastructure and PRAE design allows an upgrade to 300 MeV.

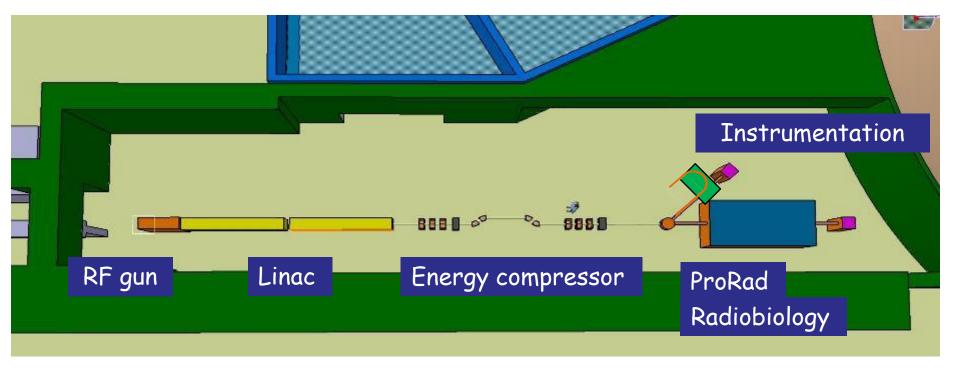
Mutually linked axes of PRAE:

- □ Accelerator: construction of the machine to service other axes with the beam of required performance; accelerator R&D
- □ Nuclear physics/nucleon structure: proton charge radius measure
- Radiobiology: new approaches in radiobiology; promising for IMRT (Intensity Modulated Radiation Therapy), radiobiology studies
- □ Instrumentation R&D: versatile instrumentation platform
- □ Re-use of the unique site of the former Linear Accelerator and its infrastructure
- □ Start of the operation foreseen in 2020-2021.

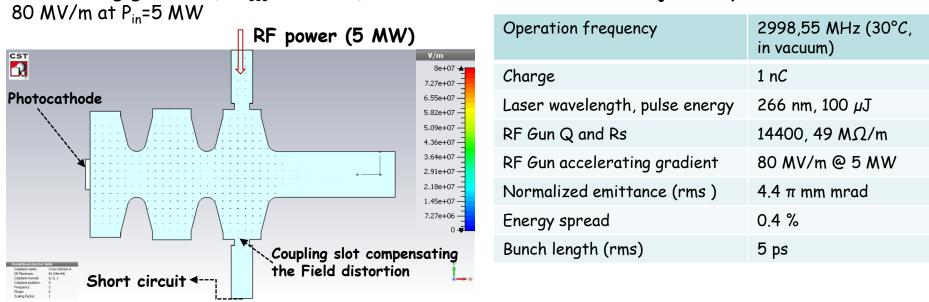
Bruno Touschek


PRAE accelerator

- Principle goal: core accelerator construction / application
- □ Other studies: R&D high-gradient RF, large intensity dynamic range
- BPMs, R&D on other accelerator applications
- Training of engineers and technical staff

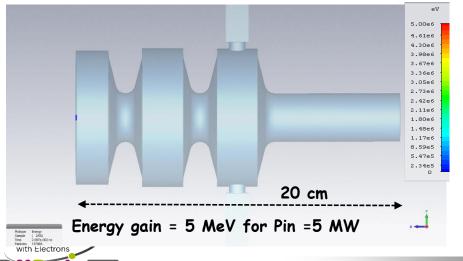

PRAE accelerator: phases of construction

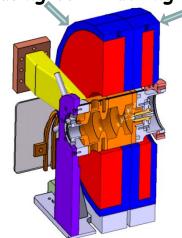
Beam parameters	phase A (B)	Phase A: RF gun at 50 Hz; 50-70 MeV, two lines:
Energy, MeV	50-70 (100-140)	Direct for Instrumentation
Charge (variable), nC	0.00005 – 2	Deviated: magnetic chicane for ProRad
Normalized emittance, mm.mrad	3-10	and radiobiology in mode "Push-Pull"
RF frequency, GHz	3.0	
Repetition rate, Hz	50	ProRad / 'Radiotherapy
Transverse size, mm	0.5	(Push-Pull)
Bunch length, ps	< 10	
Energy spread, %	< 0.2	a a a a a a a a a a a a a a a a a a a
Bunches per pulse	1	•
		Tinstrumentation



PRAE accelerator: schematic outline

LAL RF gun

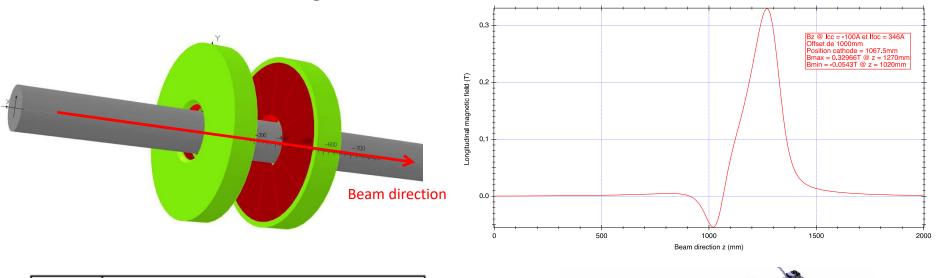

2.5 cells RF gun designed and produced at LAL for ThomX


Photoinjector specification

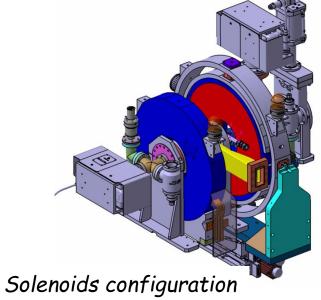
CST-Particle in cells, simulation results

Accelerating gradient (TM₀₁₀ π mode):

focusing coil bucking coil



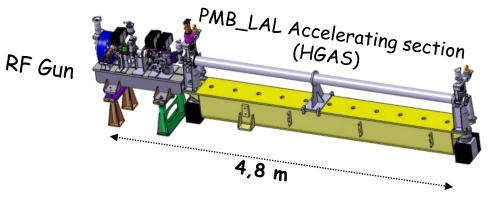
Seminar at IHEP/UCAS, 23.03.2018


RF gun solenoids

Based on ThomX RF Gun configuration

٩	Pour 4 galettes de 21 spires			
champ	conducteur 6x6t4			
	2 circuits d'eau			
contre	courant de 400A			
0				
de	pression (bars)	10	15	20
bobine	puissance (W)	12025	11518	11239
do	échauffement (°C)	56.91	43.79	36.58
2	débit total (l/min)	3.03	3.78	4.41

Pour 8 galettes de 21 spires				
ion	conducteur 6x6t4			
sat	4 circuits d'eau			
cali	courant de 400A			
de focalisation				
	pression (bars)	10	15	20
bobine	puissance (W)	24051	23036	22478
pot	échauffement (°C)	56.91	43.79	36.58
	débit total (l/min)	6.07	7.55	8.82

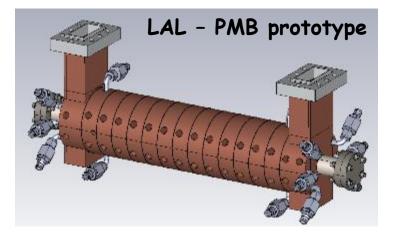


High-gradient linac: LAL - PMB research collaboration

High-gradient S-band compact accelerating structure development (collaboration with industry):

Development of high-gradient S-band TW accelerating structure (HGAS)

duration: 2014 - 2018 (4 years)


HGAS Technical specification:

•	
Structure	Disk-loaded
Operation mode or phase advance	2π/3
Operation Frequency	2998,55 MHz (30°C, in vacuum)
Accelerator type	Quasi constant gradient, travelling wave
Accelerating Field for an input peak power of 22 MW	25 MV/m (peak value)
Energy gain for an input peak power of 22 MW	65 MeV (only HGAS)
Quality factor Q	> 14000
Number of cells	94 + 2 coupler cells
Flange to flange length	3,47 m

M. EL Khaldi, L. Garolfi, "RF DESIGN OF A HIGH GRADIENT S-BAND TRAVELLING WAVE ACCELERATING STRUCTURE FOR THOMX LINAC", IPAC2015,

M. EL Khaldi, J. Bonis, A. Camara, L. Garolfi, A. Gonnin, "ELECTROMAGNETIC, THERMAL AND STRUCTURAL DESIGN OF A THOMX RF GUN USING ANSYS", Proceedings IPAC2016

High-gradient linac: LAL - PMB research collaboration

- RF design has been performed & main requirements accomplished
- Prototype mechanical drawings

- □ Aluminum prototype fabrication is finished (check out & validation of all technical choices) → not validated.
- Low power tests and thermal analysis completed
- Copper prototypes will be constructed in order to validate the fabrication process
- High power tests of the Copper prototype will be done in collaboration with the IFIC HG-RF lab.
- Beam dynamics simulations of the accelerating section are underway using ASTRA and RFTrack (benchmarking)

High-gradient linac: RI company

TW S-Band structures from RI

Parameter	Value
Length	3.5m
Number of Couplers + Cells	1+96+1
Туре	Constant gradient
Phase Advance	2π/3
Frequency	2998.55 @ 30°C
Pulse Width	Зµs
Repetition Rate	50Hz
Max. input Power	40 MW
Max. average power	5 kW
Guaranteed unloaded energy gain	>65MeV

- □ SLAC-type structures
- Constant gradient
- Race track coupler for quadrupole compensation
- □ BIG Splitter for dipole compensation
- □ 2 RF loads

Platform for Research and Applications with Electrons

Seminar at IHEP/UCAS, 23.03.2018

Modulator

RF powering: Second generation SLAC modulator from S-band old 30 GeV linac being recuperated

Klystron

□ **RF powering: t**he klystron characteristics

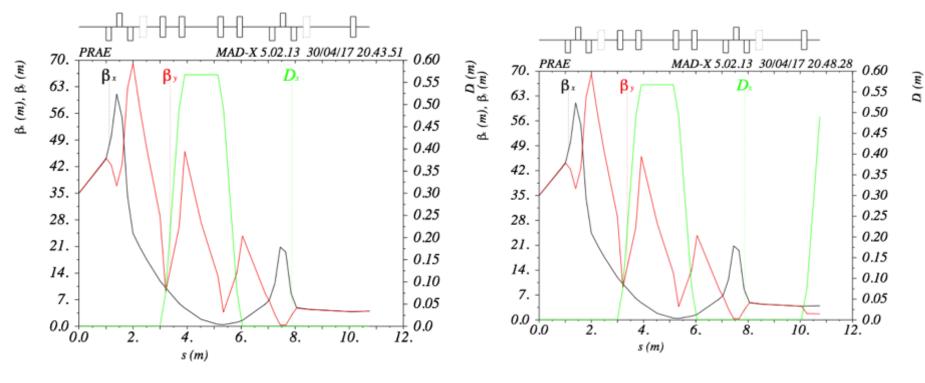
Klystron Specifications:

Frequency Functioning mode : Pulsed Repetition Rate : 50 Hz Beam Pulse Width (mid-height) : $\ge 6,5 \ \mu$ S RF Pulse Width (flat top) : $\ge 4,5 \ \mu$ S Peak RF output power: $\ge 45 \ MW$ Average RF output power : $\ge 10 \ kW$ Nominal beam voltage : 305 kV Nominal beam current : 340 A Micro-perveance : 2 Efficiency (@ saturated RF output power) : $\ge 43\%$ Gain (@ saturated RF output power) : $\ge 43\%$ Gain (@ saturated RF output power) : ≥ 47 Bandwidth -1dB (@ saturated RF output power) : $\ge 8 \ MHz$ RF input power : $\le 500 \ W$ Nominal load VSWR : $\le 1.1:1$ Sustainable load VSWR : $\ge 1.35:1$

microwave power products division

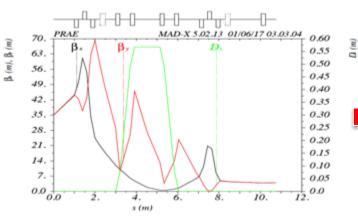
Focusing Electromagnet:

Coils : high impedance


Connections:

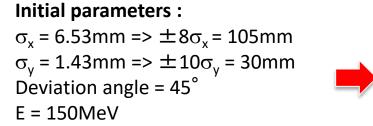
RF Input : Type N RF Output : WR284 with crush-seal vacuum flange LIL type (use of SF6 acceptable with pressurization between 2,4 bar and 3,1 bar)

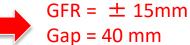
Tank oil with functionalities adapted to SLAC modulator

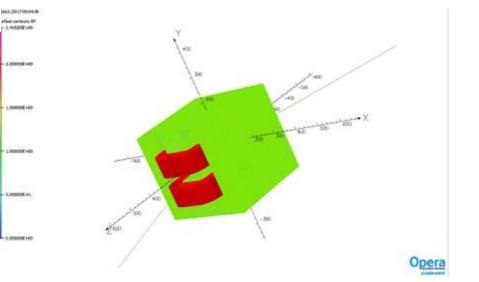

Two triplets, flexible final conditions, with Energy compression System (ECS) in the direct line and a dedicated Beam Energy Measurement in the deviated line.

Direct line: ProRad and Radiobiology

Deviated line: Instrumentation




Main parameters of the yoke @ 150 MeV


Gap (mm)	40
Center magnetic field (T)	1,0643
Curvature radius (°)	45
Pole width (mm)	120
Pole height (mm)	90
Yoke length (mm)	347
Yoke thickness (mm)	350
Chamfer entrance/exit (mm)	10*10

Main parameters of the coil @ 150 MeV

Ampere-turns	18000
Number of double pancakes vertical	6
Number of double pancakes horizontal	10
Number of turns	60
Current (A)	300
Conductor size (mm)	7*7
Cooling diameter conductor size (mm)	4
Number of circuits	4
Current density (A/mm2)	8,28
Conductor length (m)	78,00
Résistance/magnet (ohm)	3,85E+01
Voltage drop/magnet (V)	23,08
Power/magnet (kW)	6,92
Number of cooling circuits	4
Water temperature rise (°C)	6
Pressure drop (bar)	7
Flow rate/magnet (l/mn)	2,24
Cooling water speed (m/s)	2,97
and Applications	0,03

B1 = 1,0643 T Homogeneity = 5.10^{-4} in the GFR Magnetic length = 383 mm

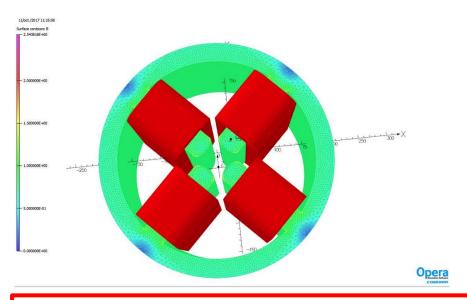
Pre-design is finished

Seminar at IHEP/UCAS, 23.03.2018

Quadrupoles (150 MeV)

Initial parameters :

R = 20mm


- $k = 28m^{-2}$
- E = 150 MeV

Main parameters of the yoke @ 150 MeV

Gap (mm)	40
Center magnetic field gradient (T/m)	14,6059
Pole width (mm)	40
Pole height (mm)	120
Yoke length (mm)	300
Yoke thickness (mm)	190
Chamfer entrance/exit (mm)	0

Main parameters of the coil @ 150 MeV

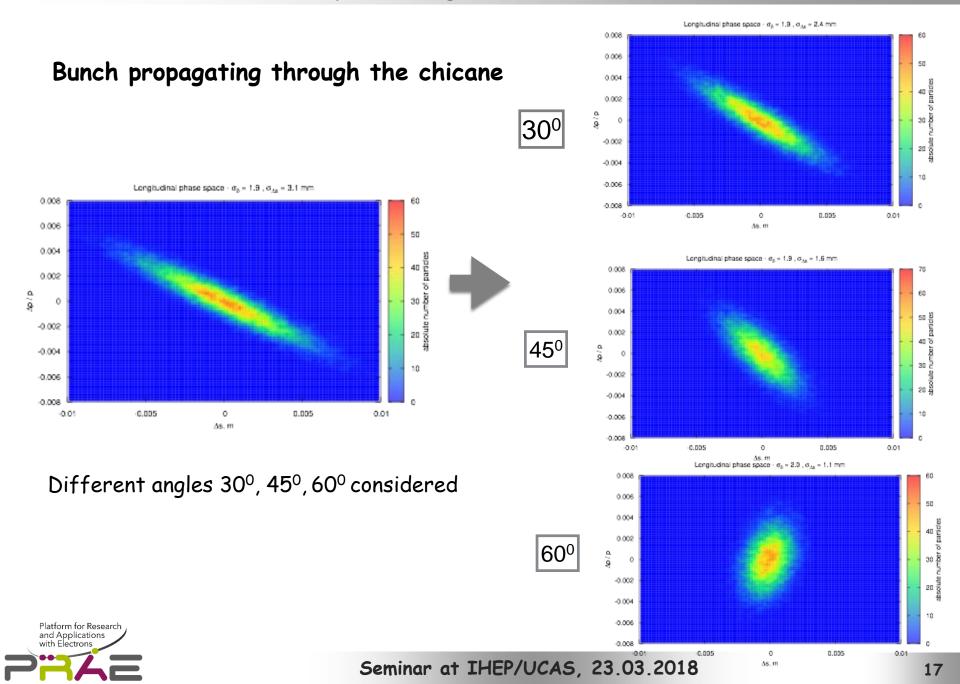
Ampere-turns	2400
Number of double pancakes vertical	12
Number of double pancakes horizon	20
Number of turns	240
Current (A)	10
Conductor size (mm)	2*5
Current density (A/mm2)	1,00
Conductor length (m)	194,00
Résistance/magnet (ohm)	3,26E-01
Voltage drop/magnet (V)	13,04
Power/magnet (kW)	0,13

Integrated magnetic field B2 = -0.07063 T.m Magnetic gradient G = -14.6059 T/m Magnetic length = 366 mm Main harmonics : B6/B2 = -10,6 B10/B2 = 1,1 B14/B2 = 1,85

□ Pre-design is finished. Need to optimize coils.

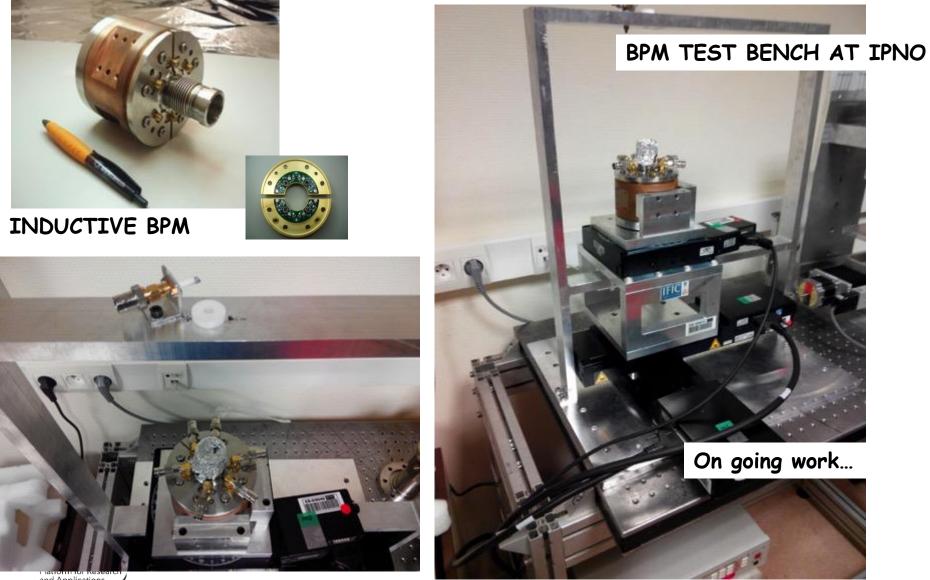
Optics design and simulation

Initial parameters


□ Beam energy: 70 MeV □ Emittance: 5×10^{-8} m □ Bunch length: 3 mm □ Energy spread: 2×10^{-3} □ $\beta_{x,y} = 35$ m □ $\alpha_x = -4.24$ □ $\alpha_y = -4.34$ □ $D_{xy} = 0.0$

Initial distribution

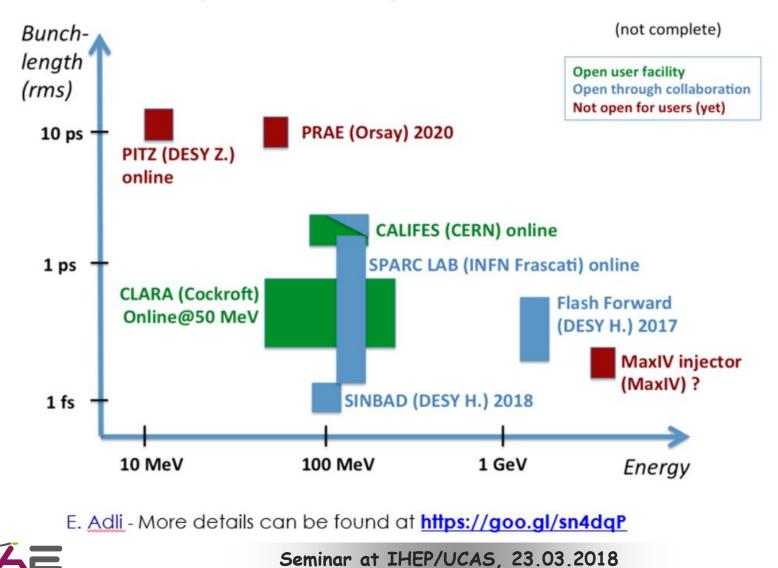
Transverse distribution generated with 2 Gaussians, which are then rotated to simulate the energy chirp at the end of the linac, tracking with MadX-PTC in a first stage, further simulation taking into account CSR and wakefields under study.


Longitudinal phase space \cdot σ_{3} = 3.5 , σ_{4a} = 0.5 mm Longitudinal phase space \cdot σ_8 = 1.9 , σ_{Aa} = 3.1 mm 0.01 0.008 70 0.006 60 0.005 60 0.004 50 Spins particles 0.002 ъ 40 ზ d/d 40 8 à Ô. 0 30 2 30 Hoste 20 50 aboute -0.002 -0.005 -0.004 10 10 0.006 0.01 0.008 -0.01 -0.0050 0.005 0.01 0.01 0.0050 0.005 0.01 Δs. m Δs. m

Optics design and simulation

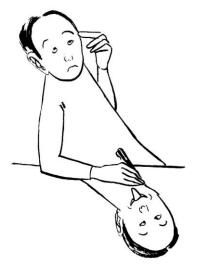
Beam diagnostics

Inductive BPMs recuperated from CTF3, tests at IPNO in collaboration with BI-CERN


and Applications with Electrons

Seminar at IHEP/UCAS, 23.03.2018

R. Corsini – Background information and CALIFES Description

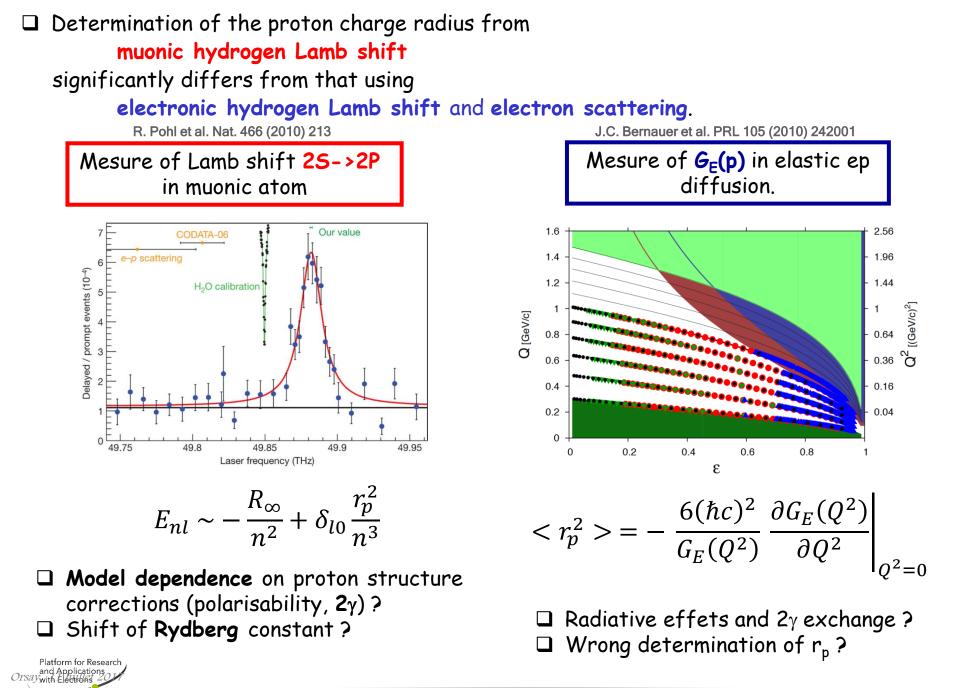


Present and planned European electron test beams

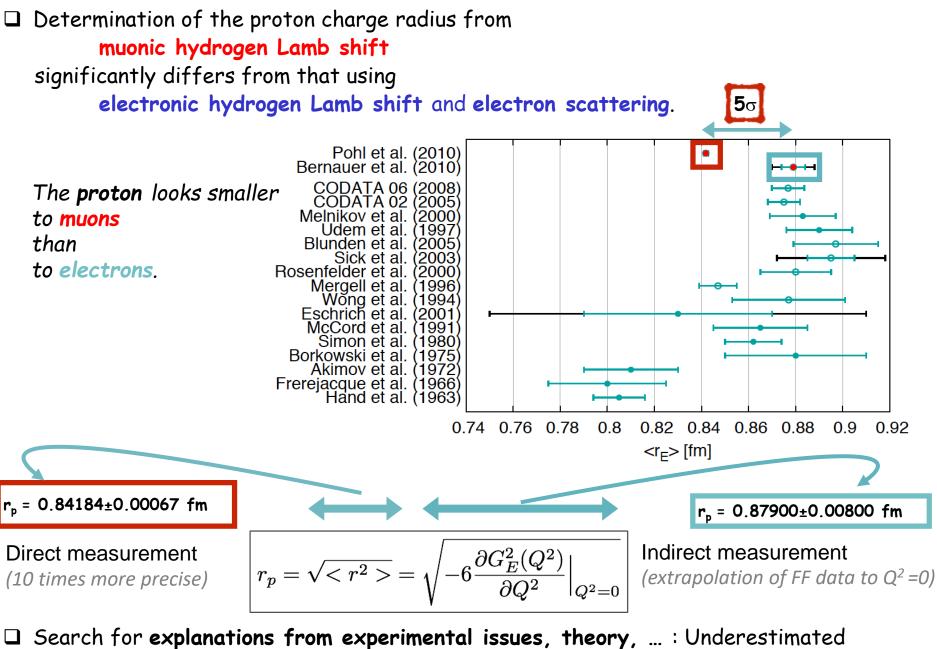
19

14

Bruno Touschek

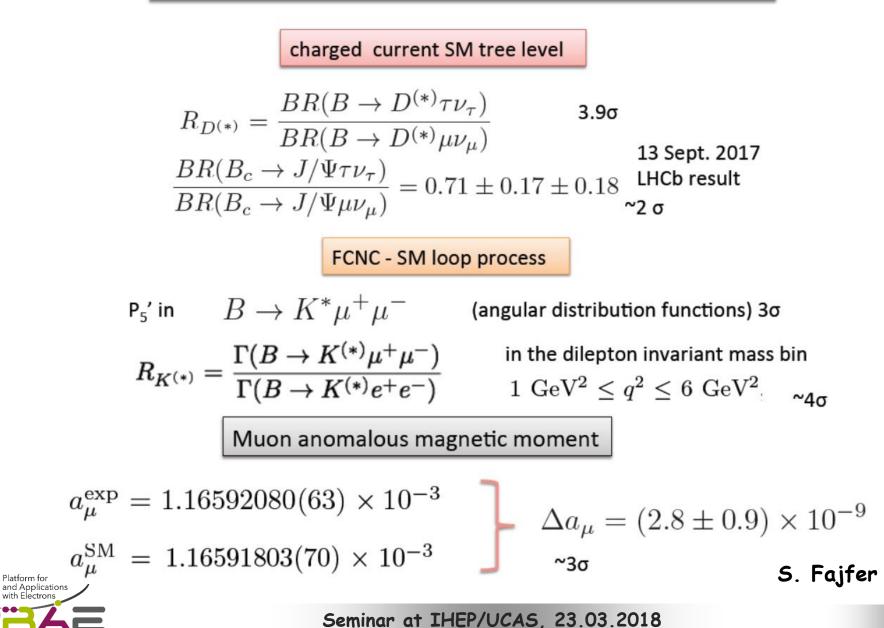

Nuclear physics / nucleon structure

□ Principle experiment: proton charge radius measurement, 30-70 MeV

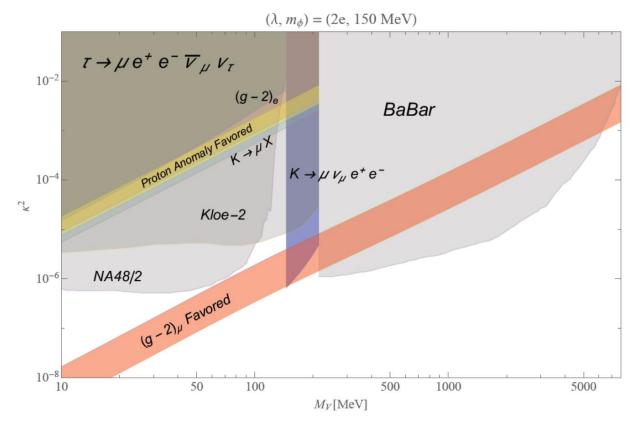


Seminar at IHEP/UCAS, 23.03.2018

Seminar at IHEP/UCAS, 23.03.2018



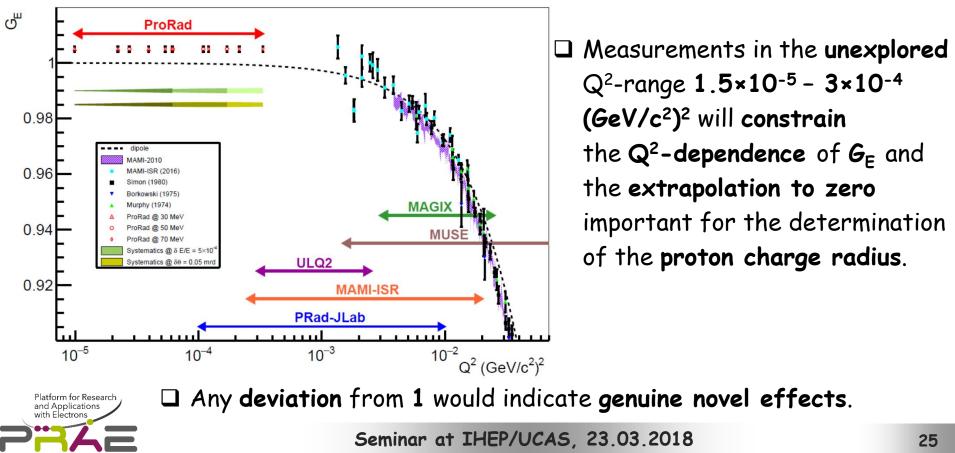
uncertainties / Bad radius determination / Lepton non-universality / New force/particles / Novel hadronic physics / ... 22

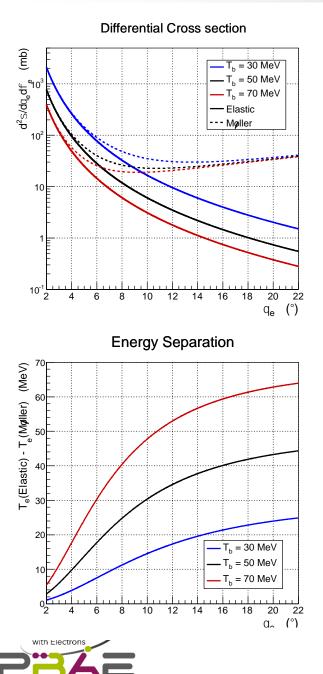

Problem maybe related with

Platform for

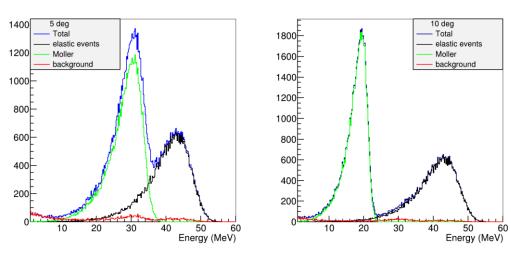
B physics anomalies: experimental results \neq SM predictions!

Model of DM (F. C. Correia, S. Fajfer, arXiv:1609.0860, Batell et al., arXiv:1103.0721):
V is the gauge boson, neutral under the SM gauge group and charged under U(1)d
κ is a mixing angle between dark boson and photon


Colour areas are excluded (for proton charge radius and (g-2)_μ yellow and red are favored)!


ProRad experiment at PRAE

□ The **ProRad** experiment at **PRAE** aims at accurate measurements ($\leq 1\%$) of the electric form factor of the proton $G_E(Q^2)$ at very low four-momentum transfer Q^2 .


A linear region in the FF: extrapolation with no dependence on non-linearities

ProRad: experimental technique

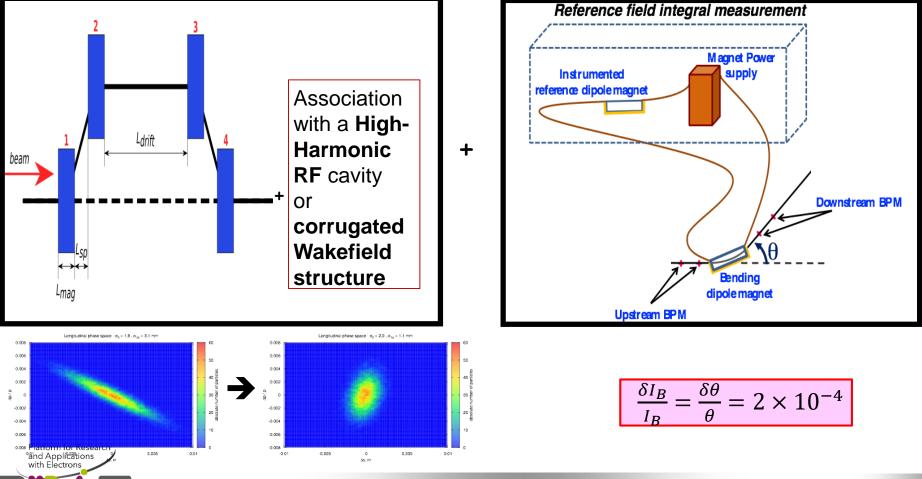
- Measurements of the ep elastic scattering between 5° and 15° (5 angle points) at 3 different beam energies, and in absence of any magnetic field (and tracking system ?).
- □ The energy deposit spectra in calorimeter allow separation between elastic and Møller electrons

Absolute normalization from simultaneous measurement of ep elastic and ee Møller within the same detector using scattered electron kinematic separation.

Precise beam:

 $\Delta E/E = 10^{-3}$, $\sigma_{x,y} < 0.5$ mm, $\Delta \Theta < 1$ mrad

ProRad experiment requirements

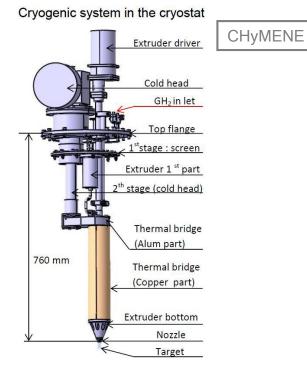

- □ High precision beam: Reduced energy dispersion $\delta P/P = 5 \times 10^{-4}$
- □ Precise knowledge of the beam energy $\delta E/E = 3 \times 10^{-4}$

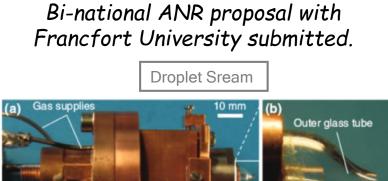
$$E = \frac{c}{\theta} \int B dl = \frac{c}{\theta} I_B$$

- □ A stable target
- Optimized measurement of the scattered electron energy and position

Energy compression

Beam energy measurement



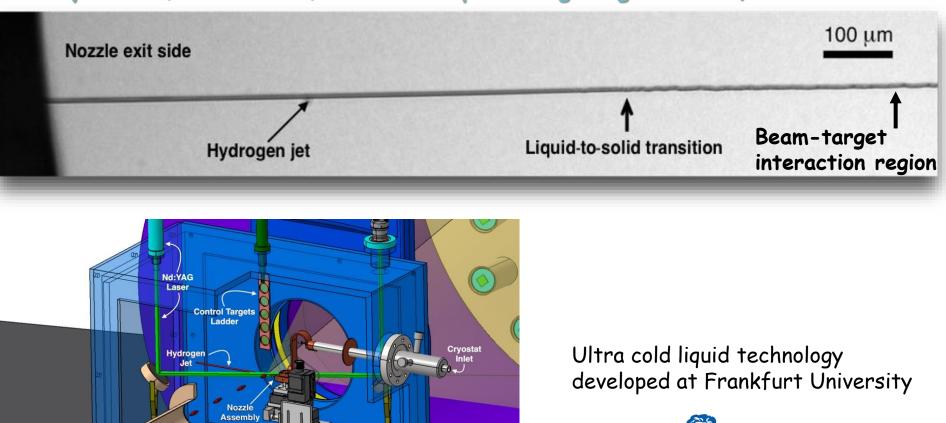

Seminar at IHEP/UCAS, 23.03.2018

Hydrogen target

Selection of reliable target of acceptable cost: CHyMENE film (CEA Saclay), solid wire from techniques of droplet beam (Frankfurt am Main University), ...

- J.-M. Gheller et al. AIP Conf. Proc. 1573 (2014) 58
- A. Gillibert et al. EPJA 49 (2013) 155

Outer tube
adjusting front plateInner capillaryR.A. Costa Fraga et al. Rev. Sci, Inst. 83 (2012) 025102


- □ Hydrogen film of **50-200** µm produced via extrusion technique.
- Adaptation needed to achieve ~20 μ m.

Complementary system based on conventional solid targets for beam control and check for systematics effects.

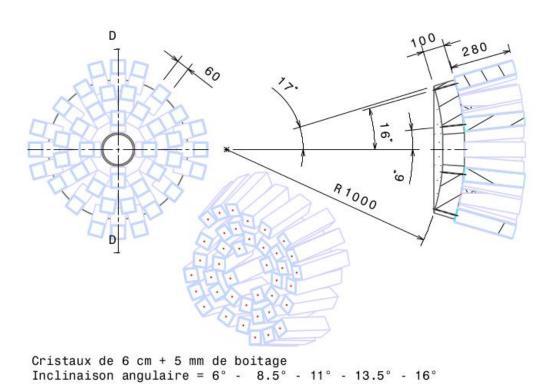
Hydrogen target

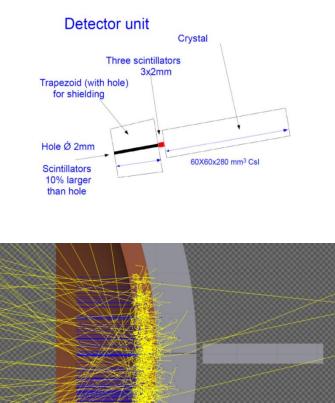
Requirements:

A very stable, windowless, and self-replenishing target of 15 μ m diameter

Micrometer Table

Platform for Research and Applications with Electrons


Electron beam


R.A. Costa Fraga et al. Rev. Sci, Inst. 83 (2012) 025102

Seminar at IHEP/UCAS, 23.03.2018

Detector

- □ Conceptual studies with GEANT4 and FLUKA to optimise detector configuration for small diffusion angles.
- □ BGO crystals for energy measurements and fiber tracker to measure position
- □ Studies of system mechanics.

Seminar at IHEP/UCAS, 23.03.2018

Bruno Touschek

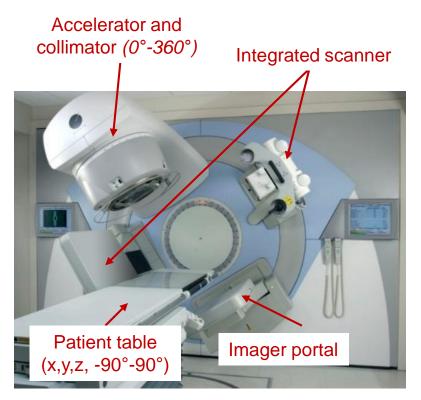
Radiobiology

Principal goal : explore new original approaches in radiotherapy
 Other studies : promising for IMRT, radiobiology studies

New approaches in radiotherapy

- □ Radiotherapy (RT) is one of the most frequently used methods for **cancer** treatment
- □ Treatment of some radio resistant tumors, pediatric cancers and tumors close to a delicate structure (i.e. spinal cord) is currently limited
- □ The main challenge is to find **novel** approaches to increase normal tissue resistance
- Standard RT restricted to the few temporal and spatial schemes, dose rates, broad field sizes: mainly photons, 2 Gy/session, 1 session/day, 5 days/week, dose rates ~ 2 Gy/min, field sizes > cm2, homogeneous dose distributions

Possible strategy to spare normal tissue: VHEE

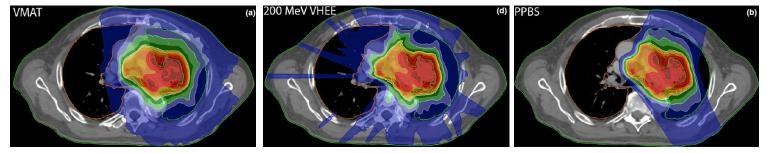

- Different particle types: very high energy electrons (VHEE)
 - □ At hospitals mainly photons (6-18 MV) and electrons (2-25 MeV) are used.
 - □ Compared to clinical electron beams: longer penetration depth; reduced lateral scattering (transversal widening → sparing normal tissues).
 - □ Compared to photons: scans possible → advantageous for image-guided energy- and intensity-modulated radiation therapy.
 - □ Compared to protons: greater **precision** of the beam, lower accelerator **cost**; less **radioprotection** issues.
 - □ Biological advantages to be established !

Conventional radiotherapy

Conventional radiotherapy

- □ X-rays: 6 18MV (tumors of all types)
- Electrons: 3 18 MeV (surface treatment)
- Machines: electron linear accelerators + multi-lame collimators (1-4 M€)
- □ Syst. quality control & imagers : advanced
- Dose rate: **30-70 mGy/s**
- Time fractionation: 2 Gy/session,
 5 sessions/week, total dose: 40-70 Gy
- \Box Field sizes: 4 cm² 40 cm²
- Many items become « conventional »: experience 60 years in dosimetry, clinical effect of X-rays, dose control ...

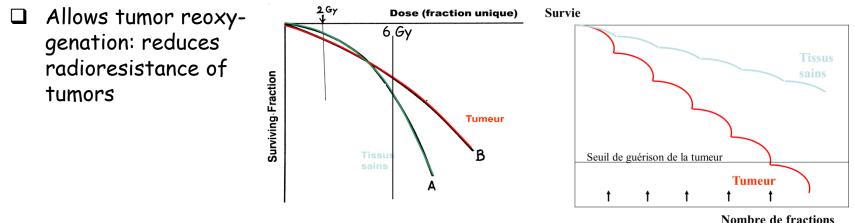
Conventional e- accelerator (X-rays 6-18 MV)



Radiobiology basics

Different effect for tumor and healthy tissues with:

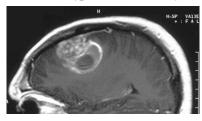
□ Ballistic precision/ anatomic restrictions


Lung tumor : comparison X-ray, VHEE, & protons Schuler, 2017 (Stanford)

Limits: precision of tumor limits, organ movements / repositioning errors, machine cost.

Dose deposit shape & time fractionation

- For the same total dose, biological efficiency differs according to dose/session, total number of sessions (fractionation) and treatment time (staggering)
- □ Allows reparation of radiomolecular lesions and tissue repopulation

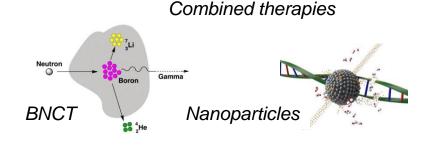


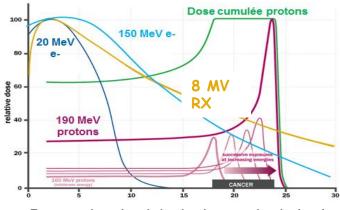
Pharmacomodulation: combination of radiotherapy with chemotherapy, specifically acts on the cells of rapid proliferation (particularly tumors)

Radiotherapy, context

Limits of conventional radiotherapy

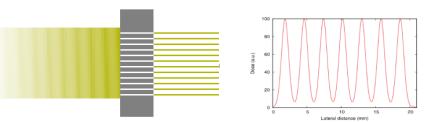
Resistant, voluminous and diffuse cancers (glioblastomes)




Non-localized tumors

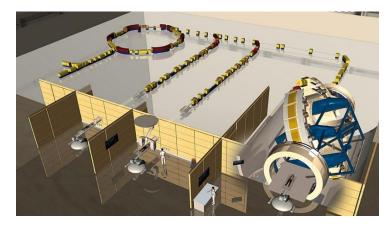
- Precision of tumor limits, organ movements, patient repositioning errors
- Toxicity to healthy tissues limits the dose

- □ How to improve the treatment?
 - □ Induce more effective tumor irradiation → e.g. hadrontherapy, combined therapy with nanoparticles/chemical agents


Different particles/energies

Penetration depth in the human body (cm)

 Preserve healthy tissues via dose delivery mode: microbeams & FLASH


FLASH therapy, very high dose rate > 40 Gy/s (conventional 0,03 Gy/s)

Spatial fractionation of the dose

X-rays, hadrons, VHEE

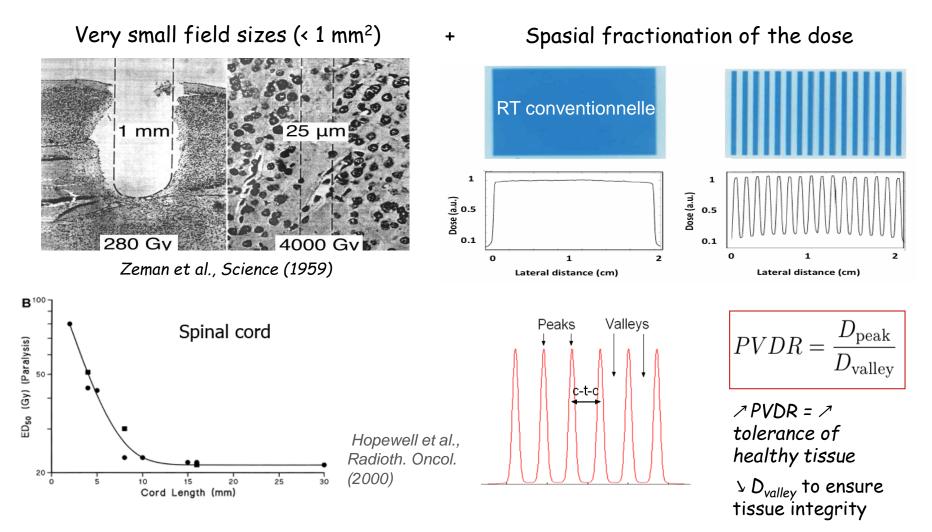
□ Impact of cost and congestion on the number of patients treated

VHEE ? (~10 M€ ?

Hadrontherapy center in Heidelberg (~Ten in the world, ~100 M€)

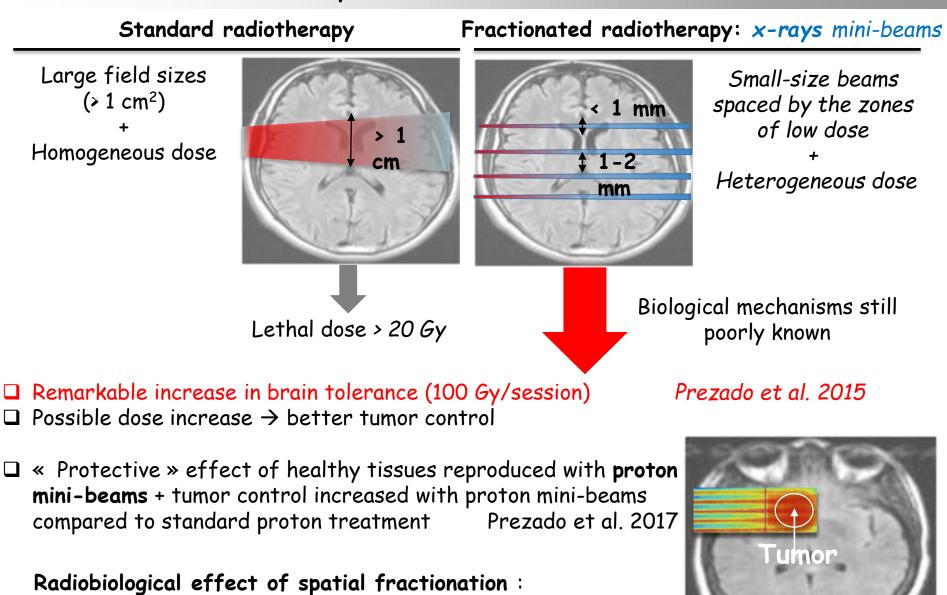
Standard medical accelerator (~500 in France, ~1-4 M€)

Challenge for quality control of the dose


□ VHEE beams: avantages vs protons

- □ Cost and beam handling, more compact accelerators
- □ For our applications: very small beam sizes (<1mm)

NARA (New Approaches in RAdiotherapy): Spatial fractionation of the dose


Spasial fractionation of the dose and mini-beams

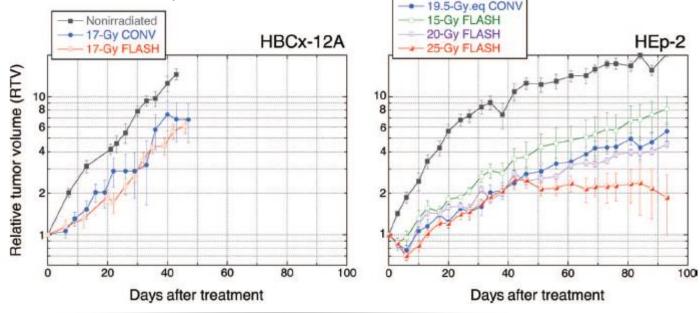
Dose-volume effect: the smaller the field is, the higher dose tolerance of healthy tissues

NARA: Spatial fractionation of the dose

 \square Cell repair and repopulation of zones « valley » \rightarrow zones « peak »

 Differential tissue effect between vascularization « immature » (tumor type, reparation --) and « mature » (healthy tissues) Bo

Bouchet et al.


FLASH irradiation

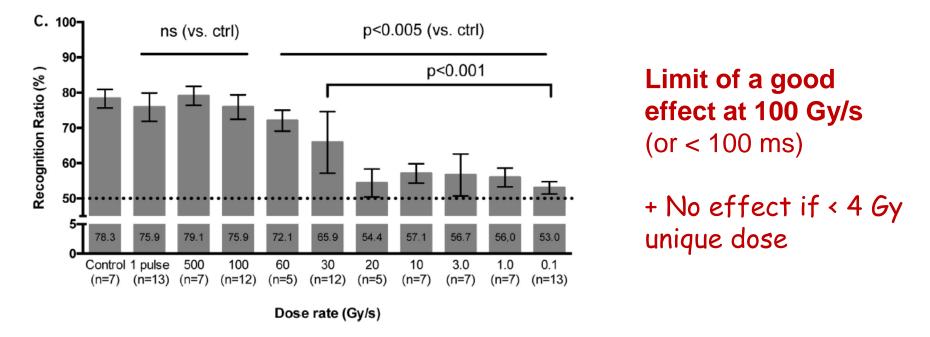
Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice 2014

Vincent Favaudon,^{1,2}* Laura Caplier,^{3†} Virginie Monceau,^{4,5‡} Frédéric Pouzoulet,^{1,2§} Mano Sayarath,^{1,2¶} Charles Fouillade,^{1,2} Marie-France Poupon,^{1,2∥} Isabel Brito,^{6,7} Philippe Hupé,^{6,7,8,9} Jean Bourhis,^{4,5,10} Janet Hall,^{1,2} Jean-Jacques Fontaine,³ Marie-Catherine Vozenin^{4,5,10,11}

□ Appearance of Pulmonary Fibrosis on mice:

- □ Starting from 15 Gy in CONV mode (0.03 Gy/s).
- No fibrosis appearance in FLASH mode (40 Gy/s) up to 20 Gy + Protection of muscles and epithelial cells (skin, membranes...)
- □ Xenograft tumors on nude mice: same tumor control for CONV & FLASH
- $\Box \rightarrow$ different effect tumor/healthy tissues !

Nonirradiated


Seminar at IHEP/UCAS, 23.03.2018

FLASH irradiation

Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s

2017

Pierre Montay-Gruel^{a,b,1}, Kristoffer Petersson^{c,1}, Maud Jaccard^c, Gaël Boivin^a, Jean-François Germond^c, Benoit Petit^a, Raphaël Doenlen^d, Vincent Favaudon^b, François Bochud^c, Claude Bailat^c, Jean Bourhis^{a,1}, Marie-Catherine Vozenin^{a,*,1}

Effect on the brain 50 Gy in FLASH mode equivalent to 10 Gy in CONV mode.

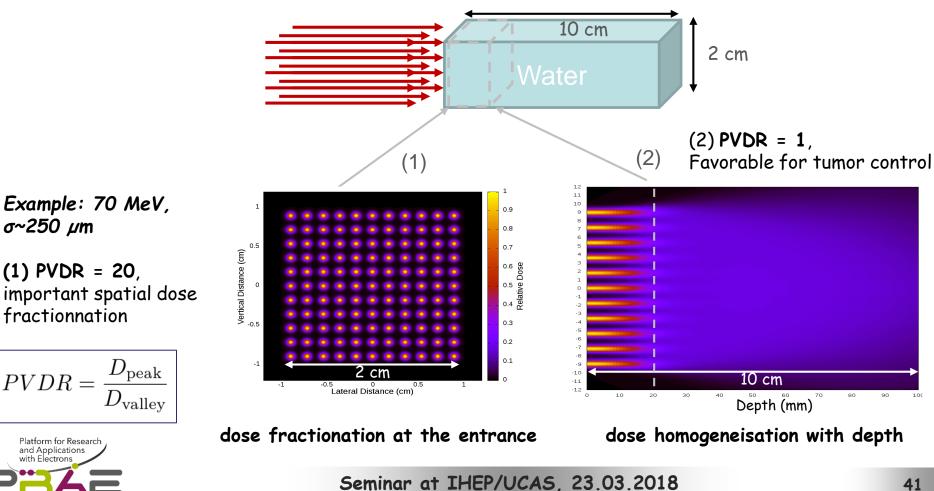
 \rightarrow Biological effect ? Some oxygen process occuring very fast... (?)

PRAE: beam parameters and first simulation

Beam at PRAE

- ✓ Small beam-size:
- \checkmark Energies:
- ✓ Small divergence:
- Dose rate: \checkmark

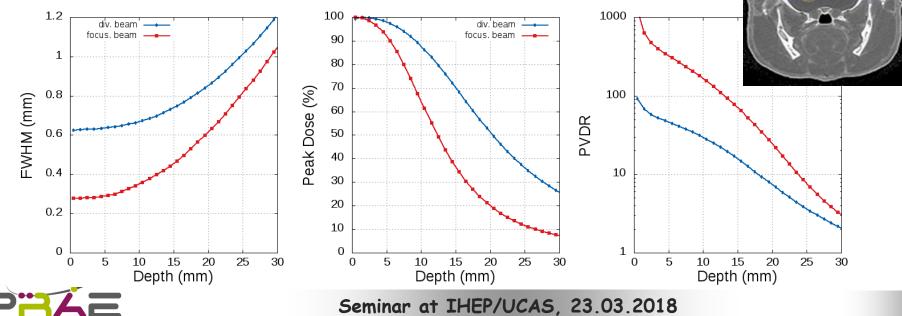
 $250 \mu m < \sigma < 2 mm$

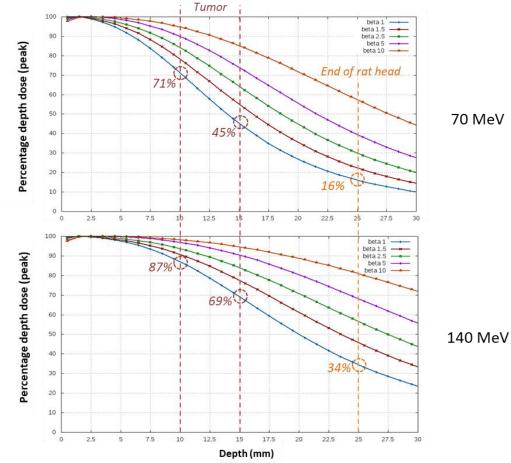

70 - 140 MeV

0.1 - 0.4 mrad 0.035 Gy/s - 40 kGy/s *

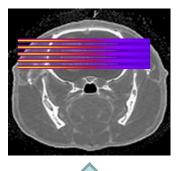
*depending on σ , Q

□ First simulations to optimize the beam for VHEE:


Optics optimization for PRAE


□ Beam size (FWHM) and dose rate at the phantom entrance (Gy/s, voxel 0.1x0.1x1mm³):

Energy	Beta/AG (cm)	FWHM	BWF	1 pC	2 nC	
70 MeV	Beta1 – 10 cm	650 µm	1.15	18 Gy/s	36 kGy/s	
	Beta 1 – 100 cm	11 mm	20	0.05 Gy/s	110 Gy/s	
	Beta 120 – 100 cm	12 mm	2	0.037 Gy/s	70 Gy/s	
140 MeV	Beta1 – 10 cm	600 µm	1.03	23 Gy/s	46 kGy/s	
	Beta 1 – 100 cm	6 mm	9	0.25 Gy/s	500 Gy/s	
	Beta 120 – 100 cm	6.1 mm	1.06	0.2 Gy/s	400 Gy/s	


*Conventional = 0.033 Gy/s

□ PRAE settings: beam pipe window - 10 cm of air - 3 cm depth in phantom

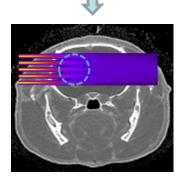
70 MeV

With 140 MeV, σ 250 μm (SFR):

- submillimetric over all depth
- dose sufficiently large to control a tumor

With 70 MeV, σ 350 μ m (partial SFR)

- submillimetric < 10 mm
- dose homogeneous in tumor -

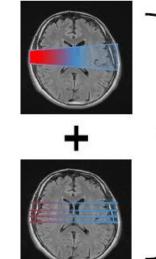


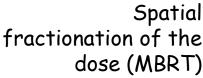
eHGRT

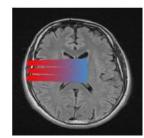
Tumor 1 ~27 mm 10 mm

Example of rat head with a brain tumor

Typical depth of interest

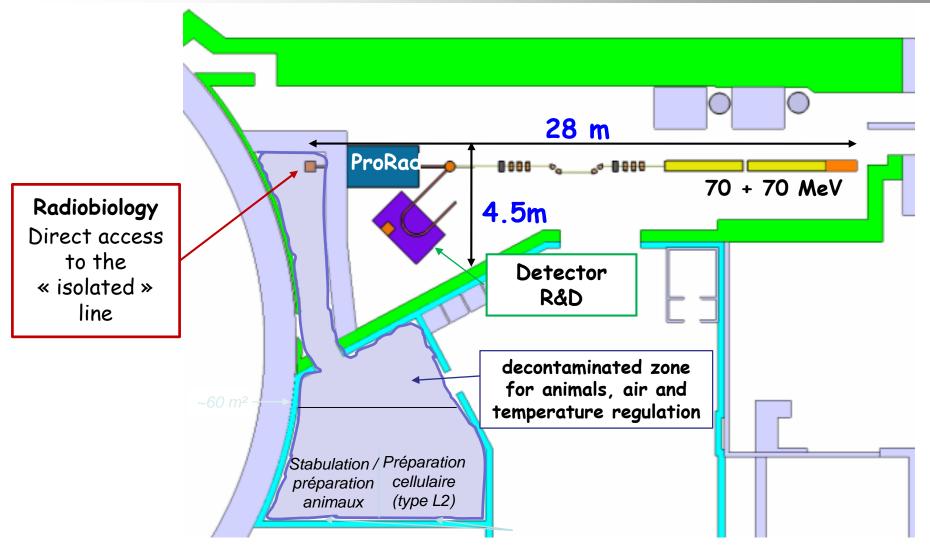





Radiobiology at PRAE

High Energy Electron Grid Therapy (eHGRT):

Very high energy electrons (VHEE)


eHGRT: novel approach to spare normal tissue at the entrance with a quasi homogeneous dose distribution in the tumor

Proof of concept with dosimetric Monte Carlo study: Martinez and Prezado, Med. Phys. 2015

] To be studied on the PRAE radiobiology line:

- Experimental dosimetry for very small field sizes: with radiochromic films and microdiamond detector
- Monte Carlo dose calculation: beam characteristics for eHGRT, validation of experimental dosimetry, dose calculation for radiobiology studies
- Radiobiology studies on cells and small animals: confirmation of the hypothesis of high normal tissue resistance
- □ Relative Biological Efficiency (RBE) of VHEE with respect to photons
- Kenter State St
- Online imaging/control

Experimental area

Preparation hall for biological experiments (animal room by Curie Institute)

PROBARE ET REPROBARE !
With complements at Laboratori Nazionali di Frascati

Bruno Touschek

Instrumentation R&D

Principle goal is to construct versatile tool for detector R&D and tests: deliver calibrated beam with adjusted and known kinematics and number of electrons per sample

□ Fully-equipped versatile tool for precision instrumentation R&D based on high-performance electron beam

□ Excellent technical performance

□ **Timing** reference, < 10 ps bunch length

□ Charge accuracy, RMS < 2×10⁻³

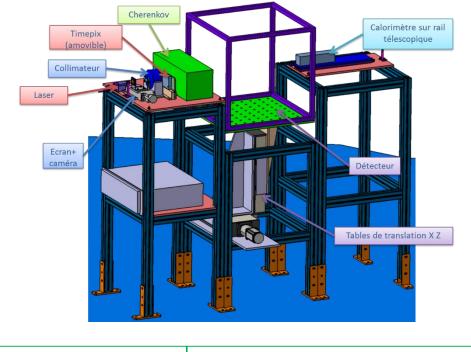
□ Low straggling (energy >> 1 MeV)

High-performance, remotely controlled tools

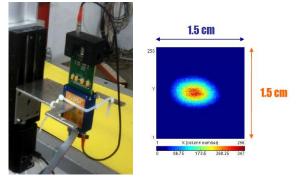
□ Beam position, profile and monitoring

□ 60 digitization channels for users on NARVAL-based data acquisition

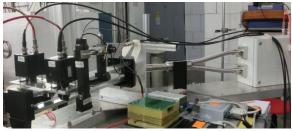
D Motorized moving table for scans, accuracy < 500 μm

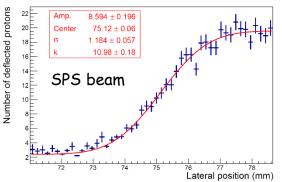

No need to place the detectors in vacuum

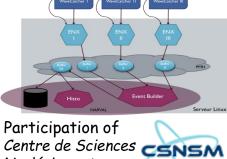
Measure the time, charge and imaging performance of particle detectors


→ Calibration for charge, trigger, tracking detectors

Instrumentation R&D at PRAE

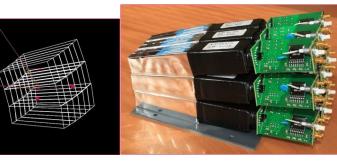



Timepix detector for precision spot measurement


Cherenkov quartz counter for intensity monitoring

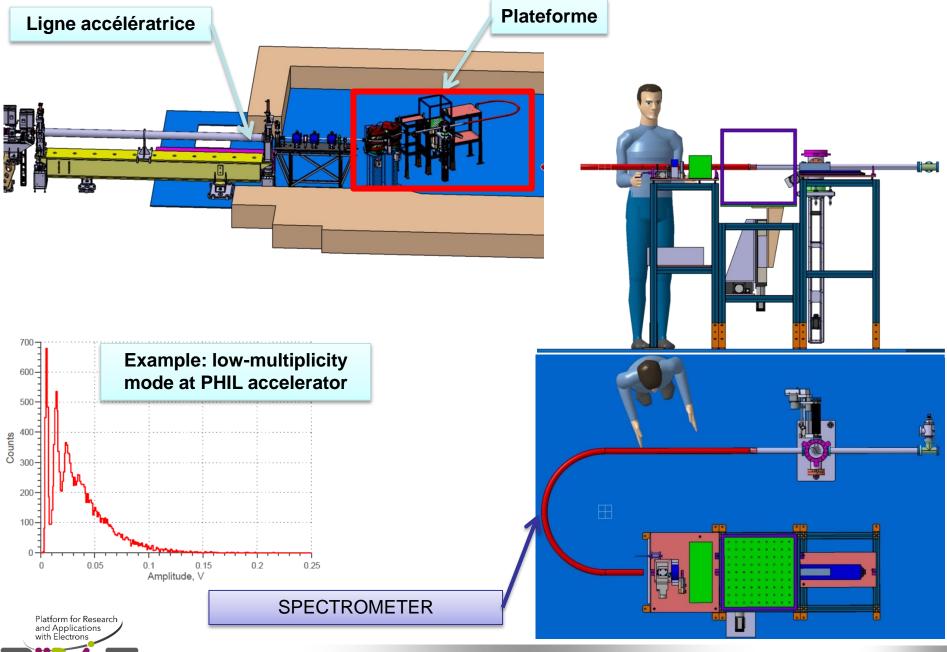
2 channel Cherenkov counters (LAL) tested at BTF (Frascati); installed in the SPS (CERN) beam pipe

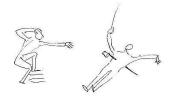
DAQ + slow control
60 user digitization signals (WaveCatcher)
DCOD = NARVAL + ENX



de Sciences de la Matière

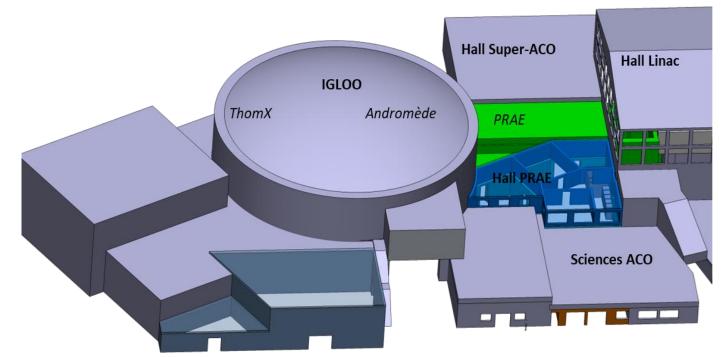
Nucléaires et


Calorimeter for energy monitoring


BGO scintillator crystals in compact matrix geometry

Example of a calorimeter realized at IPN

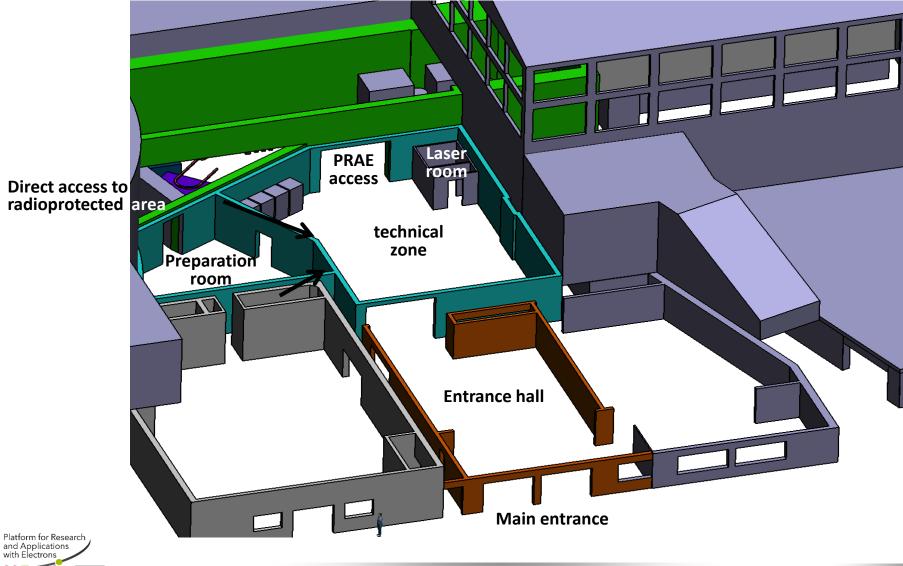
Instrumentation R&D


Bruno Touschek

PRAE site

Future PRAE site: IGLEX complex

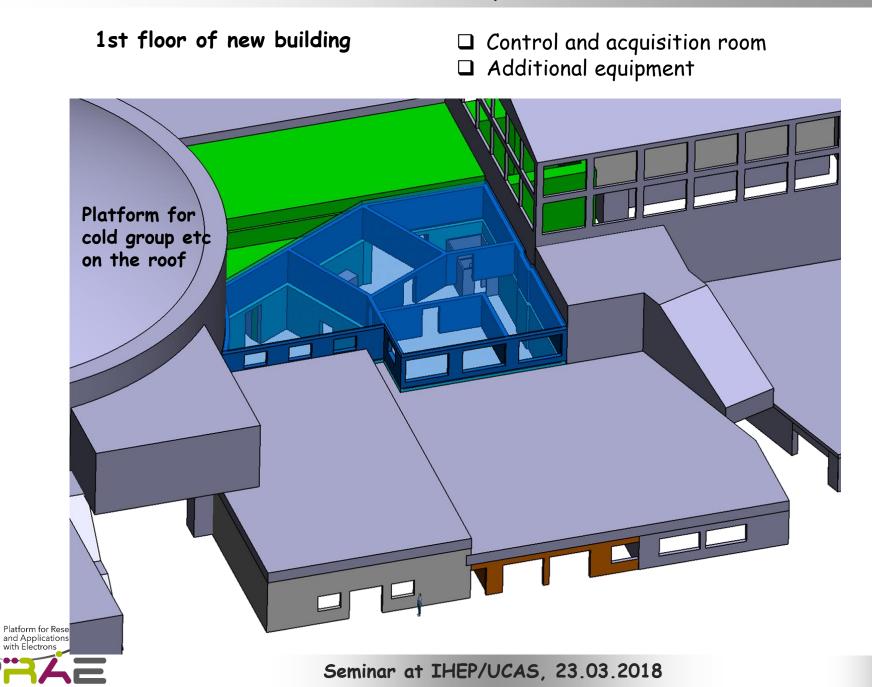
□ PRAE experimental hall - existing structure, locked and radio-protected site



PRAE site layout

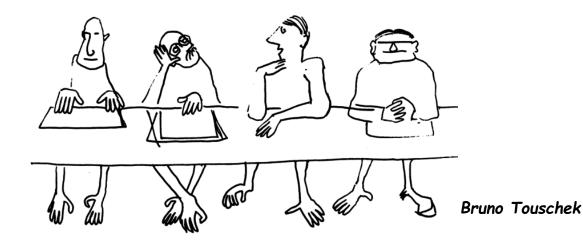
Ground floor of new building

Ground surface : 290 m²



Seminar at IHEP/UCAS, 23.03.2018

52

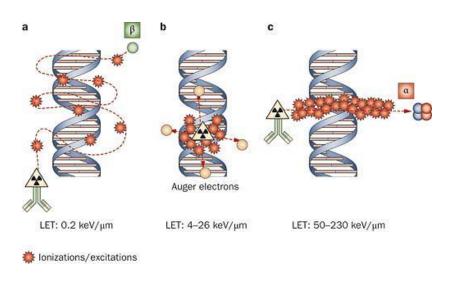

10

PRAE site layout

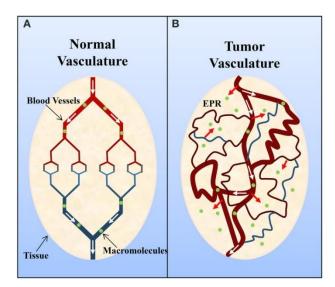
- PRAE is a new project for science, R&D and applications based on complementary expertise of major Orsay laboratories.
- Construction of the multi-disciplinary PRAE site Subatomic physics, Radiobiology, Instrumentation R&D and Accelerator - is centered around the new high-performance electron accelerator.
- □ We expect a start of the main PRAE program in 2020-2021.
- □ The PRAE collaboration is open to new groups:

YOU ARE WELCOME TO JOIN!

Backup

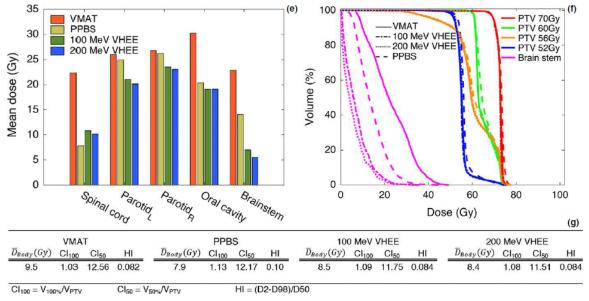


European facilities, table


(this worksheet is now protected, please contact Erik Adli if you have modifications/corrections.)	EUROPE (only primary beams)									
••		01 ADA	The ch Command	Circle at	-		Mary Difinisator	DDAF	DADEE (olinar	
						-		PRAE	RADEF (clinac)	
Country						Italy		France	Finland	Germany
Laboratory	CERN	Daresbury	DESY, Hamburg	DESY, Hamburg	DESY, Zeuthen			Orsay, France	Jyväskylä	KIT
Type of facility	твр	Test facility for UKFEL R&D	DESY tests of PWFA		Photo-inj test facility		Part of Max IV. Ideas (but no funding) to create a 3 GeV ebeam test facility	Multi-disiplinary	Medical linac (?)	THz tests
Online when?	Online	Jan 2017 (50 MeV)	mid-2017	2018 ?	Online		Linac under final commissioning. Parameters as expected when fully commissioned.	s 2020 ?	online	online (?)
Energy	130-200 MeV (60 with upgrade)	50 MeV (Jan 2017) 250 MeV (Sept 2019)	1.25 GeV	100 MeV	25 MeV	150 MeV	3 GeV	65 MeV	<= 20 MeV	41 MeV
Energy spread	< 1 MeV FWHM (< 0.2 % rms)	25 to 100 keV rms	0.10%	5 < 0.3% (low charge, peak	k <0.5%	0,1%	<0.05% + chirp	0.2 % rms		
RF Frequency	3 GHz	3 GHz		3 GHz	1.3 GHz	2.856 GHz	3 GHz	3 GHz		
Rep. rate		100Hz at 250MeV, 400Hz at 100MeV		10 - 50 Hz	10 Hz	10 Hz	10 (100) Hz	50 Hz		10
Time structure	1.5 GHz, or single bunch	single bunch	single or double bunch			z single bunch or up to 4 bunches at 1 THz rep rate		single bunch		single bunch (?)
Bunch length	4 ps FWHM (~ 500 um rms)	35 fs to 1.9ps FWHM	10-500fs		Flat top, 2ps rise/fall time; 22ps FWHM	s 30 fs - 5 ps	10-500 fs	10 ps		1 - 300 fs
Charge per bunch	10 pC to 0.5 nC (for < 30 bunches)	25 to 250pC		0.5 pC - 20 pC for fs bunc 1 nC possible		0.1-0.8 nC	20-200 pC	sub pC - 2 nC		1 - 3000 pC
Trans. emittance Normalized	3 um for 0.05 nC bunches, 20 um for 0.4 nC	0.5 to 1.0um	2 um	< 0.5 um	0.6 um for 1 nC	1 um	< 1um	3 - 10 um		

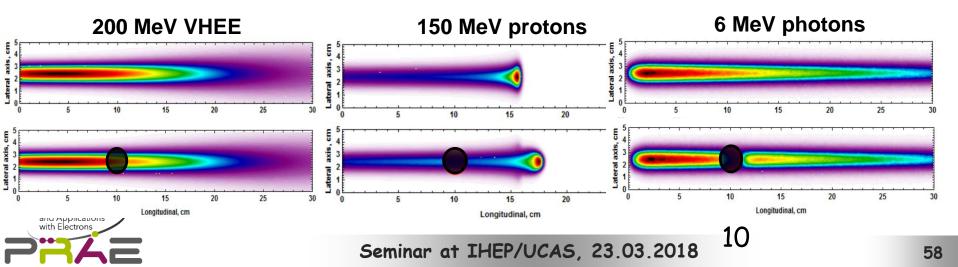
Radiobiology concept

- □ « Biological » dose vs. « physics » dose
 - Molecular scale:
 - □ LET: ionisation density
 - □ Reparation mechanisms ...
 - □ Cellular / tissue scale
 - Cellular regulation
 - Vascularisation...



- Optimize physics parameters to induce different biological response
 - Particles
 - Dose delivery mode: temporal, spatial
- Objective: favorable difference between healthy tissue and tumor

Avantages VHEE, hétérogénéités, cas cliniques



Schuller 2017: comparaison VHEE vs protons et photons, H&N cancer

FIG. 6. Treatment plan comparison, HNC. Treatment planning comparison between VMAT, PPBS, 100 MeV VHEE, and 200 MeV VHEE plans. (a–d) Coronal images through PTV for the different modalities, (e) mean doses to the spinal cord, parotid glands, oral cavity, and brain stem, (f) dose volume histogram for the PTVs and brain stem, and (g) mean integral body dose, conformity index, and homogeneity for the different modalities. [Color figure can be viewed at wileyonli-

Agnese Lagzda : avantage hétérogénéités

DesRosiers et al. 2008 : hétérogénéité

