

Feng Wang

On behalf of IHEP HGCAL group

28/06/2018

Yong Liu as a new member

1

Outline

- Introduction of CMS HGCAL
- Test beam
 - **1.** HGCAL modules in test beam
 - 2. HGCAL cosmic ray in IHEP
- Summary and plans
 - **1.** Work plan for beam test at IHEP

CMS will replace its endcap calorimeters for High-Luminosity LHC: the High-Granularity Calorimeter (HGCAL)

Si-sensors: 583 m² Scintillator: 487 m²

Benefit from particle-flow techniques

- High granularity
 - Unprecedented jet energy resolution
 - Explosion of channel number ~ \$\$\$

Totally ~6M channels (silicon+SiPM) in HGCAL: ~67M CHF

HL-LHC: harsh environment

Radiation tolerance

High pile-up

The CMS HGCAL

The whole HGCAL will be operated at -30°C

Silicon Detector Module Design of HGCAL

Assembly Center: IHEP-Beijing, BARC-Mumbai, Taiwan, USA (CMU, TTU, UCSB)

Test beam from 2016 to 2017

Date	Location	No. of module	PCB type	ASIC type	Database	IHEP
2016	FNAL	16 Si modules	"2 layers" PCB	SKIROC 2 ASIC	e beam (4-32 GeV)	~
2016	CERN	8 Si modules	Single layer PCB (V1)	SKIROC 2 ASIC	e beam (20-250 GeV) π beam (125 GeV)	~
8-15May 2017	CERN	1 Si module	Single layer PCB (V1)	SKIROC 2CMS ASIC	e beam (20-250 GeV)	~
12-19 July 2017	CERN	10 Si modules	Single layer PCB (1 V1 & 9 V2)	SKIROC 2CMS ASIC	e beam (80 GeV) π beam (300 GeV)	~
29 Sep-2 Oct 2017	CERN	17 Si modules	Single layer PCB (1 V1 & 16 V2)	SKIROC 2CMS ASIC	e beam (20-90 GeV) hadrons beam (100- 350 GeV)	~
19-23 October 2017	CERN	20 Si modules	Single layer PCB (1 V1, 16 V2 & 3 V3)	SKIROC 2CMS ASIC	e beam (20-80 GeV) hadrons beam (50- 120 GeV)	~
2017 From July to October	CALICE-AHCAL joined the combined beam test with CMS-HGCAL 12 active layers Each layer: 144 scintillator tiles ($30 \times 30 \times 3$ mm ³), Readout by SiPM					•

Test beam @ FNAL in 2016

Events / (1 ADC) 250 120 120

100

50

-<u>20</u>

- Huaqiao ZHANG participated the HGCAL module assembly at UCSB in Mar. 2016
- Participated the first HGC beam test @ FNAL Beam

highGaihADC = 10.00 ADC meanMip = 8.13 ± 0.13 meanNoise = -0.0924 ± 0.069

sigmaLandau = 0.711 ± 0.095 sigmaNoise = 2.141 ± 0.049

30

highGainADC (ADC)

40

 $nBKG = 1639 \pm 44$ $nMip = 1285 \pm 47$

- ✤ 16 Si modules, 15 X₀
- ✤ e beam (4-32 GeV)
- ★ π beam (120 GeV) for calibration

The first MIP signal fit of a HGCAL module by Huaqiao Zhang

20

10

0

Test beam @ CERN in 2016

0

Skiroc2 #

Test beam setup @ CERN in 2017

- CE-E part: Hanging file structure with lead absorber.
- CE-H (Si) part: Hanging file structure with iron absorber.
- Data taking together with CALICE-AHCAL prototype as CE-H part (scintillator+SiPM)

- Total detector: ~54 X_0 and ~9.4 λ_0 Test 20 modules @ CERN in 2017
- -- 5 in CE-E
- -- 15 in CE-H: 5 layers (1 module per layer) +
- 1 layer (3 modules)+ 1 layer (7 modules)
- -- Binghuan Li and Francesco participated the CERN beam test

Event display for electrons and pions

More data taking in Fall 2017

Several configurations were explored with more module assembled (up to 20 modules finally)

• 29/09 - 02/10 in H2: 17 modules: 7 layers in EE, 10 layers in FH.

- 19/10 23/10 in H6a: 20 modules: 5 layers in EE, 7 layers in FH.
 - Increased the statistics with respect to the July beam test
 - Test the DAQ with the daisy-chain structure shown right.

FH: - 1x 7 module layer- 1x 3 module layer- 5x 1 module layers

TB October 2017, H6 120 GeV hadron

HGCAL: contributions from IHEP

• TDR: https://twiki.cern.ch/twiki/pub/CMS/EC-TDR/TDR-17-007-paper-v1.pdf

Paper of HGCAL module beam test submitted to <u>Journal of Instrumentation</u>

Test beam in 2018

• More beam tests in 2018:

-10 days @ DESY in March: low-energy showers, performance studies at different positions (Huaqiao Zhang participated the test beam)

-10 days @ CERN in June: 28-layer electromagnetic section (Huaqiao Zhang and Hongbo Liao participated the test beam)

Another test with extended prototypes foreseen at CERN:
 14 days @ CERN in October: 28-layer EM + 12-layer hadronic section + CALICE-AHCAL

Test beam @ DESY in March 2018

- MIP calibration (DUT1)
- Energy response uniformity (DUT2)

not to scale ;-)

MIP signal @ DESY in 2018

Test beam @ CERN in June 2018

- Module assembly @UCSB (Feng Wang, Huaqiao Zhang)
- Module testing setup, data taking @CERN (Huaqiao Zhang, Hongbo Liao)

Double-sided "cassette"

28 modules in 14 "cassettes"

Water cooling

Shower shape at CERN in June 2018

- > 100GeV electrons: occupancy plots for all 28 layers;
- The last 3 layers are noisy;
- > 29th module is a bare hexaboard as a timing reference

Plan: testing with cosmic rays

- 2019-2020: no beams at CERN
- But beams available at DESY, FNAL, IHEP;
- External signal sources: IR Laser / cosmic rays
 - To study long-term stability, uniformity, noise, temperature dependency, etc.
 - ✓ Training peoples

HGCAL module of 2016 version

The DAQ hardware components

Cosmic-ray setup: schematics

Cosmic-ray Setup built at CERN

Hongbo Liao

Scintillators

MIP signal in cosmic ray

MIP signals seen from cosmics:

• We successfully built a cosmic testing system at CERN for 2016 HGCAL module • S/N is consistent with TB 2016

• Cosmic testing system (hardware & software) is working well

Summary and next to do

- HGCAL: beam test campaigns
 - **1**. Extensive beam tests (at CERN, FNAL and DESY) since 2016 to validate the HGCAL design
 - **2**. IHEP group fully participated all HGCAL beam tests till now; independently analyzed the beam test data.

Cosmic-ray tests

1. A cosmic-ray testing system is built and works well.

2. This testing system will be sent to IHEP with one Simodule (2016 version) within this year.

Plans

1. Will join the CERN beam tests within 2018

2. Prepare a beam test at IHEP: in late 2018 or early 2019 (if everything goes smoothly)

Back up

The CMS HGCAL

Endcap Electromagnetic calorimeter (EE): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X₀ & ~1.3 λ_0 Front Hadronic calorimeter (FH): Si & scintillator, steel absorbers, 12 layers, ~3.5 λ_0 Backing Hadronic calorimeter (BH): Si & scintillator, steel absorbers, 12 layers, ~5 λ_0

Electron energy & position resolution

• Energy resolution:

-- Distributions from electrons match those predicted by simulation (to within 5%)

-- Beam tests in 2016 & 2017 with few layers validated basic design

• Position resolution:

- -- The DWC contribution to the uncertainty is quite large
- -- The agreement between data and simulated showers is very good with DWC uncertainty
- -- The intrinsic spatial precision at this depth is around 0.6mm for high-energy electrons

HGCAL TDR

Time resolution

• Time resolution:

- -- The intrinsic timing resolution does not significantly depend on the fluence at a given S/N ratio
- -- Tests with larger energy range at CERN (100-250 GeV)
- -- It is better than 20 ps for S/N > 100
- -- The n-on-p diodes showed very similar performance

25 fast timing cells

系统搭建

B27 @ CERN

- 1. Module
- 2. Elbow board
- 3. DDC board
- 4. ZEDIO board
- 5. ZedBoard
- 6. 电源
- 7. 高压低压
- 8. LEMO cable
- 9. 闪烁体
- 10. 光电倍增管

从CERN邮寄 到高能所
在高能所准 备

 ✓ 俩套系统均搭建成功,工作正常;
 ✓ 操作,运行,分析等软件都已经测试;
 ✓ 主要材料正在安排由CERN邮寄到高能所;
 ✓ 六月底到七月初能在高能所搭建自己的 系统。