

Search for heavy resonances in the $X \rightarrow WW \rightarrow ev\mu v$ channel with the ATLAS detector at the LHC

Yongke Zhao Shandong University Weihai, 2018.06.27

Introduction

- Signal models
- Event selection optimisation strategy
- The $X \rightarrow WW \rightarrow ev\mu v$ analysis
- Results
- Conclusion

Introduction

- Full 2015+2016 datasets (36.1 fb⁻¹) @ 13 TeV used
- The analysis used the $X \rightarrow WW \rightarrow ev\mu v$ channel to search for a heavy resonance X for the reasons:
 - The WW decay channel is generally very sensitive to various models for its high branching ratio
 - The eµ final state provides most of the sensitivity of the search, whilst in the ee and µµ final states, there is significantly larger Drell-Yan background
 SM-like Higgs decay branching ratio

Benchmark signal models

Production modes considered for signals in the search

gluon-gluon fusion (ggF) quark-antiquark annihilation (qqA) vector-boson fusion (VBF)

Benchmark signal models considered for interpretations

Madal	Resonance	Production mode			
Wiodei	spin ggF qqA			VBF	
Narrow Width Approximation (NWA) Two Higgs Doublet Models (2HDM) Large Width Assumption (LWA) Georgi-Machacek model (GM)	Spin-0	X X X		X X X X	
Heavy Vector Triplet (HVT)	Spin-1		x	х	
Bulk Randall-Sundrum (RS) graviton Effective Lagrangian Model (ELM)	Spin-2	х		x	

Yongke Zhao

- A simple and general optimisation method developed
 - Step 1: Select the most discriminant variables based on the BDT training

- A simple and general optimisation method developed
 - Step 1: Select the most discriminant variables based on the BDT training

A simple and general optimisation method developed

Step 1: Select the most discriminant variables based on the BDT training

(Rel. ≥ 40%)

Remove the less discriminant variables if they are highly correlated with the others

DEtall MI Ptll **MPTRel METRel** -20 MPT -40 MET -60 SubPt -80 LeadPt -100MPTRel METRel MET MPT DEtall Leadpy Subpy Ptll MI

Correlation Matrix (background)

Highly correlated (in both signal and background):

- MPT Ptll
- MII SubPt

Remove the less discriminant variables if they are <u>highly correlated</u> with the others (Corr. ≥ 80%)

DEtall MI Ptll **MPTRel METRel** -20 MPT -40 MET -60 SubPt -80 LeadPt -100MPTRel METRel MET DEtall Leadpy Subpy Ptll MI MPT

Correlation Matrix (background)

Highly correlated (in
both signal and
background):
MPT - Ptll

- MII SubPt

Step 2: Choose cut values by maximising the signal significance

Sgn (Significance): a general definition (suits low statistics)

RSS (Root Squared Significance): defined using MT distribution (by default 1-D)

- Scanning on cut values (LeadPt plots shown only as an example)
 - 1. Individual scan (plot on the left): other optimised cuts **not** applied

- Scanning on cut values (LeadPt plots shown only as an example)
 - 1. Individual scan (plot on the left): other optimised cuts **not** applied
 - 2. N-1 scan (plot on the right):

other optimised cuts applied

Need also an iteration of the N-1 scan (usually repeat 1~2 times until cuts fixed)

Background estimation

Top and WW, the dominant backgrounds, MC (shape and normalisation) determined from the simultaneous fit to data

Z+jets, non-WW diboson and H125, with small contributions, using MC prediction

 W+jets, estimated using data-driven method based on "fake-factor" (FF)

$$N_{\text{id+id}}^{W+\text{jets}} = N_{\text{id+anti-id}}^{W+\text{jets}} \times \text{FF}$$

= $(N_{\text{id+anti-id}} - N_{\text{id+anti-id}}^{\text{EW}}) \times \frac{N_{\text{id}}}{N_{\text{anti-id}}}$

Event categorisation

Event categorization

ggF category (quasi-inclusive ggF,

VBF phase spaces excluded)

Physics results obtained from a simultaneous fit to all SRs and CRs

- The categorisation is defined due to the special topology of the VBF signal production
- > 1J requires exactly 1 jet, while 2J requires at least 2 jets
- NF denoted normalisation factor for MC
- No VBF 2J CR for WW, due to limited statistics

Event selection

Signal acceptance

To simplify the analysis, the event selection is based on the optimisation for the NWA and LWA signals around $m_H = 600$ GeV. The same selection applied to the other mass points and other signal models.

Signal selection acceptance * efficiency in combined 3 SRs

Similar plots for separated 3 SRs could be found in the backup slides

The difference between the models is expected, due to the different $|\Delta \eta_{\parallel}|$ distributions for the different spin states.

Yongke Zhao

MT binning optimisation

- The old m_T binnings were not optimal, therefore the binning was optimized to maximise the signal sensitivity for all signals in the full mass range, in a similar way as in the event selection optimisation
- The new binning is mass-independent, defined to give a logMT distribution with the same bin size (except for the tails beyond [100 GeV, 1000 GeV] which have

twice bin size)

- The optimisation makes small difference at low masses, but improved the results at high masses significantly
- A cross-check with completely different optimisation method and massdependent binning shows similar results

Top leading lepton pt reweighting

A mismodelling found in the p_T^{lead} distribution in the ggF Top CR
 Thus an in-situ correction applied on top background

- The reweighting was applied only for ggF category
- All other distributions also checked and found to have better agreement between data and MC after reweighting

WW Sherpa-to-Matrix correction

- Sherpa 2.2.1 (used in the analysis) $qq \rightarrow WW$ is not fully a NLO sample
- A reweighting to Matrix NNLO calculation + NLO EW correction is applied to improve the prediction
 - \succ fit performed only in the bulk m_T range
 - > The total uncertainty on the correction considered to be the 100% of the correction (\pm 50% assigned for up and down)

Dominant systematics for backgrounds

Тор	Experimental			Theoretical				
]	Source	Jet	<i>b</i> -tag	ME+PS	Scale	Single top	PDF	Total
	SR _{ggF}	5.2	17	1.3	3.0	4.2	2.5	19
	SR _{VBF1J}	9.6	7.8	1.0	1.6	5.9	2.6	15
	SR _{VBF2J}	9.7	14	9.5	5.0	2.1	3.4	21
	Top CR _{ggF}	2.2	4.8	0.34	0.21	2.6	3.0	6.6
	WW CR _{ggF}	5.3	18	1.1	6.3	4.0	3.2	20
	Top CR _{VBF}	8.2	3.5	10	1.5	1.3	3.7	14
	WW CR _{VBF1J}	9.9	8.3	9.4	3.9	5.3	2.7	18
WW								
	Source	Jet	Pile-up	ME+PS	$\mu_{ m R}$	Resummation	PDF	Total
	SR _{ggF}	1.2	1.8	2.4	1.7	3.1	2.7	5.5
	SR _{VBF1J}	17	2.8	11	7.3	5.0	2.3	23
	SR _{VBF2J}	18	3.1	38	18	1.4	2.1	47
	WW CR _{ggF}	1.1	1.8	2.6	0.95	2.9	3.6	5.9
	WW CR _{VBF1J}	16	4.5	12	11	2.3	2.8	23

- "Total" includes all systematics (not only the dominant ones in the tables)
- Systematics for signal in backup slides

Shape uncertainties

All shape uncertainties that are considered in the analysis

Except for PDF uncertainties, shown in backup slides

Experimental shape uncertainties have been checked and found to be small and negligible

MT plots in Top CRs

- Backgrounds event yields scaled to the post-fit
- Signals scaled to expected limits in the plots

Yongke Zhao

MT plots in WW CRs

Backgrounds event yields scaled to the post-fit

Signals scaled to expected limits in the plots

MT plots in SRs

Post-fit plots

Signals scaled to expected limits in the plots

Post-fit NFs
$$NF_{ggF}^{top} = 0.96 \pm 0.05$$
 $NF_{VBF}^{top} = 1.12 \pm 0.1$ (stat. \oplus sys.) $NF_{ggF}^{WW} = 1.14 \pm 0.09$ $NF_{VBF,1J}^{WW} = 1.00 \pm 0.2$

Yongke Zhao

Limits for NWA

Limits [pb]	ggF	VBF
Lowest mass (200 GeV)	6.4	1.3
Highest mass	0.008 (4 TeV)	0.006 (3TeV)

Yon	ake	7hao
1011	give	21100

Limits extension for NWA

Limits on " σ_{total} (ggF + VBF) * BR", as a function of " $\sigma_{ggF} / \sigma_{total}$ "

2HDM interpretation

The limits for NWA are further translated to exclusion contours in the **2HDM** model for the phase space where NWA is valid

 $m_{\rm H} = 300 \, {\rm GeV}$

Limits for LWA

Interference effects between signals and backgrounds also studied and found to be negligible

Limits for other models

below 750 GeV excluded

below 1.1 TeV excluded

below 1.3 TeV excluded

200

 $\sigma_{\!X}\times B(X\!\to WW)~[pb]$

10

10-

 10^{-2}

Conclusion

• A search for heavy resonance performed in the $X \rightarrow WW \rightarrow ev\mu v$

decay channel at 13 TeV with Run 2 data at 36.1 fb⁻¹

No significant excess or evidence of new heavy resonance found

Results interpreted by giving upper limits for several signal models,

e.g. NWA, LWA, 2HDM, HVT, etc., covering a mass range of [200 GeV,

5 TeV]

Thanks for your attention!

BACKUP

Benchmark signal models

- SM-like Higgs with a Narrow Width Approximation (NWA)
- Two-Higgs-doublet models (2HDM)
 - Type I and Type II
- SM-like Higgs with a Large Width Assumption (LWA)
 - width: 5%, 10% and 15% of m_H
- Georgi-Machacek (GM) model
 - single parameter: $sin^2\theta_H$
- Heavy vector triplet (HVT) model
 - coupling strength: $c_h g_V$ (bosons) and $g^2 c_F/g_V$ (fermions)
- A bulk Randall-Sundrum (RS) graviton model with a spin-2 Graviton
 - coupling constant: $k/\bar{M}_{\rm Pl}$
- Effective Lagrangian model (ELM) with a spin-2 tensor resonance in the VBF production

Event selection

Event selection

Signal acceptance

Signal acceptance * efficiency

Transverse mass

The transverse mass of resonance system, which is the discriminating variable, m_T , defined as:

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - |\mathbf{p}_{\rm T}^{\ell\ell} + \mathbf{E}_{\rm T}^{\rm miss}|^2},$$

$$E_{\rm T}^{\ell\ell} = \sqrt{|{\mathbf{p}}_{\rm T}^{\ell\ell}|^2 + m_{\ell\ell}^2},$$

where, MET is defined as the negative vectorial sum of the momenta of the calibrated objects in the detector:

$$E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss},e} + E_{x(y)}^{\text{miss},\gamma} + E_{x(y)}^{\text{miss},\tau} + E_{x(y)}^{\text{miss},\text{jets}} + E_{x(y)}^{\text{miss},\mu} + E_{x(y)}^{\text{miss},\text{soft}}$$

WW Sherpa-to-Matrix correction

The fit function for this correction was also checked to avoid bias from statistical fluctuation

All the fit functions that are tried can be covered by the uncertainty band

Powheg-to-MadGraph correction

Powheg (ggF NWA signals) provides only events with only up-to-one jet at the ME, therefore higher jet multiplicities are expected to be insufficiently described

Scale factor for 2J (similar for 1J):

$$k = \frac{N_{\text{MADGRAPH5}}^{2-\text{jet VBF}} / N_{\text{MADGRAPH5}}^{\text{inclusive ggF}}}{N_{\text{PowHEG}}^{2-\text{jet VBF}} / N_{\text{PowHEG}}^{\text{inclusive ggF}}}$$

$$k = \frac{N_{\text{MADGRAPH5}}^{2-\text{jet VBF}} / N_{\text{PowHEG}}^{\text{inclusive ggF}}}{N_{\text{PowHEG}}^{2-\text{jet VBF}} / N_{\text{PowHEG}}^{\text{inclusive ggF}}}$$

$$\frac{1.4}{\sqrt{s=13 \text{ TeV, ggF H}} + WW \rightarrow |v|v}{\sqrt{s=13 \text{ TeV, ggF H}} + WW \rightarrow |v|v}$$

PDF uncertainty

- PDF uncertainties for are actually applied as a function of m_T
- For NNPDF, standard deviation is used to estimate the uncertainty
- The envelope of the different PDF sets is taken as the total PDF uncertainty

More plots in backup slides

Standard deviation:

where X_0 is the central value or the mean value, and N, the number of ensembles, is usually 100 for NNPDF.

Top @ GGFSR

Dominant systematics for signals

QCD scale, PDF and PS uncertainties on signal acceptance

- The uncertainties have some dependences on the masses
- Only overall results shown below
- PS shower tune uncertainties also evaluated, but the the PS shower model uncertainties are significantly larger

ggF induced	Sources(%)	ggF SR	VBF 1J SR	VBF 2J SR
signals	Scale	-	-	0.2 ~ 2.5
	PDF	< 0.4	< 1.5	< 1.6
	PS model	1.3 ~ 3.1	13 ~ 28	2.3 ~ <mark>15</mark>
VBF induced	Sources(%)	ggF SR	VBF 1J SR	VBF 2J SR
VBF induced signals	Sources(%) Scale	ggF SR 0.9 ~ 2.8	VBF 1J SR 1.9 ~ 3.6	VBF 2J SR 1.0 ~ 7.3
VBF induced signals	Sources(%) Scale PDF	ggF SR 0.9 ~ 2.8 < 1.7	VBF 1J SR 1.9 ~ 3.6 < 1.2	VBF 2J SR 1.0 ~ 7.3 < 1.5

QCD scale uncertainties on event category migration

• 3% - 10% for ggF SR, 4% - 30% (30% - 60%) for VBF 1J (2J) SRs

Top and WW PDF uncertainties in SRs

• Following PMG recommendations for NNPDF PDF set

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/PdfRecommendations#Standard_deviation

 Envelope of different PDF sets taken as total uncertainty as a function of MT in 3 SRs (overall uncertainty used in CRs)

Event yields in ggF regions

- Post-fit event yields
- Numbers are rounded by PDG rules

	$ m SR_{ggF}$	Top CR_{ggF}	$WW \ \mathrm{CR}_{\mathrm{ggF}}$
WW	11500 ± 800	810 ± 110	3350 ± 220
Top-quark	11800 ± 600	52550 ± 330	2610 ± 180
Z/γ^*	1420 ± 110	111 ± 20	21.0 ± 2.0
W+jets	1180 ± 320	710 ± 190	280 ± 70
VV	866 ± 34	101 ± 12	250 ± 11
Backgrounds	26740 ± 170	54290 ± 250	6510 ± 80
Data	26739	54295	<mark>6515</mark>

Uncertainties including both statistical and systematic uncertainties Good agreement found between data and backgrounds

Post-fit event yields

Numbers are rounded by PDG rules

	SR _{VBF1J}	SR _{VBF2J}	Top CR _{VBF}	WW CR _{VBF1J}
WW	390 ± 50	120 ± 26	61 ± 11	265 ± 32
Top-quark	450 ± 50	391 ± 24	5650 ± 90	167 ± 18
Z/γ^*	45 ± 11	24 ± 6	68 ± 19	74 ± 12
W+jets	52 ± 13	8.9 ± 2.5	91 ± 24	43 ± 11
VV	32 ± 7	16.6 ± 1.9	20 ± 9	38 ± 4
Backgrounds	972 ± 29	563 ± 22	5890 ± 80	596 ± 22
Data	978	560	5 889	594

Uncertainties including both statistical and systematic uncertainties Good agreement found between data and backgrounds

MT binning optimization

ICHEP m_{τ} binning

➢ ggF SR:

[0,100,120,140,160,180,200,220,240,260,280,300,320,340,360,380,400,450,500,550,600,650,700,800,900,1000,3000]

➤ VBF SRs:

[0, 100, 150, 200, 250, 300, 350, 400, 500, 600, 3000]

New m_{τ} binning (optimized)

➢ ggF SR:

[70, 100, 117, 138, 163, 193, 227, 268, 316, 372, 439, 517, 610, 719, 848, 1000, 1389, 1930, 3000]

➤ VBF SRs:

[70, 100, 146, 215, 316, 464, 681, 1000, 3000]

New m_{τ} binning (optimized, in log scale)

Table 32: Bin boundaries in log [linear] scale of the m_T distributions used in the fit for the three signal regions are shown.

Inclusive ggF SR									
~ 1.8 [70]	2.0 [100]	2.07 [120]	2.14 [140]	2.21 [160]	2.28 [190]	2.36 [230]	2.43 [270]	2.5 [315]	2.57 [370]
2.64 [440]	2.71 [510]	2.78 [600]	2.86 [725]	2.93 [850]	3.0 [1000]	3.14 [1380]	3.28 [1900]	3.48 [3000]	1
$N_{\text{jet}} = 1 \text{ and } \ge 2 \text{ VBF SRs}$									
~ 1.8 [70]	2.0 [100] 2.17 [15	50] 2.33 [215] 2.5	[315] 2.6	7 [470] 2.	83 [680] 3	.0 [1000]	3.48 [3000]

Plots after pre-section

Signals are normalized to expected limits

MT plots in top CRs

- Top and WW NFs applied
- Top leadlep pt reweighting applied

Signals are normalized to expected limits

"CutVBETonCR h let/MTBinLinVBE GeV 3500 SM (svs @ stat) ATLAS Internal Other VV ww Events / 50 3000 $\sqrt{s} = 13 \text{ TeV}, \int \text{Ldt} = 36.1 \text{ fb}^{-1}$ ZIY Тор VBF H125 W+iets χ^2 p-value = 0.024343 VBF NWA H700 VBF NWA H2000 2500 H→WW→evuv VBF Top CR 2000 1500 1000 500 1.4 Data / SM 12 0.8 0.6 õ 200 600 800 400 1000 1200 m_T [GeV] $NF_{VBF}^{top} = 0.98 \pm 0.02$ $NF_{VBF,1J}^{WW} = 0.92 \pm 0.13$

VBF Top CR

Yongke Zhao

MT plots in WW CRs

- Top and WW NFs applied
- Sherpa-to-Matrix correction applied on qq→WW
- Top leadlep pt reweighting applied
- Signals are normalized to expected limits

ggF WW CR

VBF WW 1J CR

Yongke Zhao

Weihai

Pre-fit

MT plots in <u>SRs</u>

- Top and WW NFs applied
- Sherpa-to-Matrix correction applied on $qq \rightarrow WW$
- Top leadlep pt reweighting applied
- Signals are normalized to expected limits
- Using the optimized MT binning for the fit

VBF 1J SR

Yongke Zhao

Weihai

Pre-fit

N-1 plots in ggF SR

- Top and WW NFs applied
- Top leadlep pt reweighting applied
- Signals are normalized to expected limits

Pre-fit

N-1 plots in VBF 1J SR

Top and WW NFs applied

Signals are normalized to expected limits

N-1 plots in VBF 2J SR

Top and WW NFs applied

Signals are normalized to expected limits

Pull plots for NWA H800 (ggF)

Dominant sources:

➢ WW ME+PS

- Top leading lepton pt
 reweighting shape uncertainty
- Top radiation (QCD scale)
- > JER
- Signal QCD scale in VBF 1J SR
- B-tagging efficiency
- WW PDF uncertainty

More in supp. note

Yongke Zhao

Pull plots for NWA H800 (VBF)

Dominant sources:

- Top radiation (QCD scale)
- Top leading lepton ptreweighting shape uncertainty
- WW renormalisation scale
- > JER
- Signal QCD scale in VBF 1J SR
- B-tagging efficiency
- ➢ Top MEPS
- WW k-factor uncertainty

More in supp. note

Yongke Zhao

Correlation plots for NWA H800

Only NPs with coefficient > 0.4 are shown

corrHist

Correlation as expected

Very similar plots for other mass points (more in backup slides)

corrHist

VBF

ggF

More in supp. note

Interference effects

- Generator: gg2VV
- The interference effects considered here include the interference effects between a heavy resonance and the SM WW continuum and the SM Higgs boson at 125 GeV
- The lineshape has been compared with MadGraph5_aMc@Nlo for SM-like heavy Higgs and good agreement observed

The yields are normalised to the integrated luminosity of the data 2015 and 2016 (36.1 fb⁻¹)

Interference effects

Interference effects increase with larger masses and widths

Interference effects

Expected limits for LWA (width: 15%·m_H) [pb]

- Only a few mass points have been studied
- Signal cross section scaled to $\sigma_{H \rightarrow WW} = 1$ pb in the input

Limits with interference

Compared to expected limits without interference

The effects for ggF LWA are negligible

The interference effects for VBF are smaller than ggF, and neglected