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Introduction
n Full 2015+2016 datasets (36.1 fb-1) @ 13 TeV used
n The anaysis used the X→WW→eνμν channel to search for a heavy 

resonance X for the reasons:
u The WW decay channel is generally very sensitive to various models 

for its high branching ratio
u The eμ final state provides most of the sensitivity of the search, whilst 

in the ee and μμ final states, there is significantly larger Drell-Yan 
background SM-like Higgs decay branching ratio
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Benchmark signal models
n Production modes considered for signals in  the search

 gluon-gluon fusion (ggF)     quark-antiquark annihilation (qqA)     vector-boson fusion (VBF)

n Benchmark signal models considered for interpretations

Model
Resonance 

spin
Production mode

ggF qqA VBF

Narrow Width Approximation (NWA)
Two Higgs Doublet Models (2HDM)

Large Width Assumption (LWA)
Georgi-Machacek model (GM)

Spin-0

x
x
x

x
x
x
x

Heavy Vector Triplet (HVT) Spin-1 x x

Bulk Randall-Sundrum (RS) graviton
Effective Lagrangian Model (ELM)

Spin-2 x
x
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Event selection optimisation
n A simple and general optimisation method developed

Step 1:    Select the most discriminant variables based on the BDT training

9 variables
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Event selection optimisation
n A simple and general optimisation method developed

Step 1:    Select the most discriminant variables based on the BDT training

Average ranking

Var. Value Rel.

Mll 0.216 100%

DEtall 0.117 54%

MPTRel 0.116 54%

SubPt 0.108 50%

LeadPt 0.104 48%

MPT 0.094 43%

Ptll 0.092 43%

MET 0.086 40%

METRel 0.067 31%

9 variables
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Event selection optimisation
n A simple and general optimisation method developed

Step 1:    Select the most discriminant variables based on the BDT training

Average ranking

Var. Value Rel.

Mll 0.216 100%

DEtall 0.117 54%

MPTRel 0.116 54%

SubPt 0.108 50%

LeadPt 0.104 48%

MPT 0.094 43%

Ptll 0.092 43%

MET 0.086 40%

METRel 0.067 31%

8 variables
(Rel. ≥ 40%)
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Event selection optimisation

    Remove the less discriminant variables if they are highly correlated with the 

others

Highly correlated (in 

both signal and 

background):

•  MPT - Ptll

•  Mll - SubPt

8 variables
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Event selection optimisation

    Remove the less discriminant variables if they are highly correlated with the 

others

Highly correlated (in 

both signal and 

background):

•  MPT - Ptll

•  Mll - SubPt

6 variables

(Corr. ≥ 80%)
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Event selection optimisation
Step 2:    Choose cut values by maximising the signal significance

• Significance calculation
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Sgn (Significance): a general definition (suits low statistics) 

RSS (Root Squared Significance): defined using MT distribution (by default 1-D)
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Event selection optimisation
• Scanning on cut values (LeadPt plots shown only as an example)

1.    Individual scan (plot on the left):  other optimised cuts not applied

• N-1 scan (plot on the right):           other optimized cuts applied

Ø Need also an iteration of the N-1 scan (usually repeat 1~2 times until cuts fixed)
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Event selection optimisation
• Scanning on cut values (LeadPt plots shown only as an example)

1.    Individual scan (plot on the left):  other optimised cuts not applied

2.    N-1 scan (plot on the right):           other optimised cuts applied

Ø Need also an iteration of the N-1 scan (usually repeat 1~2 times until cuts fixed)
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Background estimation
n Top and WW, the dominant backgrounds, MC (shape and 

normalisation) determined from the simultaneous fit to data

n Z+jets, non-WW diboson and H125, with small contributions, using 
MC prediction

n W+jets, estimated using data-driven method based on “fake-factor” 
(FF)

tt tW WWqq  WWgg 
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ggF SR VBF 1J SR VBF 2J SR

NFWW_ggF      NFTop_ggF         NFWW_VBF1J           NFTop_VBF

ggF WW CR ggF Top CR VBF WW 1J CR VBF Top CR

Event categorisation

Ø The categorisation is defined due to the special topology of the 
VBF signal production

Ø 1J requires exactly 1 jet, while 2J requires at least 2 jets
Ø NF denoted normalisation factor for MC
Ø No VBF 2J CR for WW, due to limited statistics

n Event categorization
u  ggF category (quasi-inclusive ggF, 

VBF phase spaces excluded)

u  VBF categories

Physics results obtained from a simultaneous fit to all SRs and CRs
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Event selection
SRs

CRs

VBF 1J phase space
VBF 2J phase space

inversed cuts

ggF phase space
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Signal acceptance

n Signal selection acceptance * efficiency in combined 3 SRs

ggF (qqA) signals VBF signals

n To simplify the analysis, the event selection is based on the optimisation 
for the NWA and LWA signals around mH = 600 GeV. The same selection 
applied to the other mass points and other signal models.

The difference between the models is expected, due to the different |∆ηll| distributions 
for the different spin states.

Similar plots for separated 3 SRs could be found in the backup slides
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MT binning optimisation
n The old mT binnings were not optimal,therefore the binning was optimized to 

maximise the signal sensitivity for all signals in the full mass range, in a similar 
way as in the event selection optimisation

n The new binning is mass-independent, defined to give a logMT distribution with 
the same bin size (except for the tails beyond [100 GeV, 1000 GeV] which have 
twice bin size)

n The optimisation makes small difference at low masses, but improved the results 
at high masses significantly

n A cross-check with completely different optimisation method and mass-
dependent binning shows similar results
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Top leading lepton pt reweighting
n A mismodelling found in the pT

lead distribution in the ggF Top CR
n Thus an in-situ correction applied on top background

CR Top ggFin  mT

reweighting fit function

• The reweighting was applied only for ggF category
• All other distributions also checked and found to have better agreement between 

data and MC after reweighting

Before reweighting                           After reweighting
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WW Sherpa-to-Matrix correction
n  Sherpa 2.2.1 (used in the analysis) qq→WW is not fully a NLO sample
n A reweighting to Matrix NNLO calculation + NLO EW correction is applied to 

improve the prediction
Ø fit performed only in the bulk mT range
Ø The total uncertainty on the correction considered to be the 100% of the 

correction (±50% assigned for up and down)

ggF SR ggF WW CR
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Dominant systematics for backgrounds
n Top

n WW

• “Total” includes all systematics (not only the dominant ones in the tables)
• Systematics for signal in backup slides

Experimental           Theoretical
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Shape uncertainties
n  All shape uncertainties that are considered in the analysis
u Except for PDF uncertainties, shown in backup slides

n  Experimental shape uncertainties have been checked and found to 
be small and negligible
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MT plots in Top CRs

ggF Top CR VBF Top CR

n Backgrounds event yields scaled to the post-fit

n Signals scaled to expected limits in the plots

50.069.0NFtop
ggF  1.012.1NFtop

VBF 
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MT plots in WW CRs

ggF WW CR VBF 1J WW CR

n Backgrounds event yields scaled to the post-fit

n Signals scaled to expected limits in the plots

09.014.1NFWW
ggF  2.01.00NFWW

VBF,1J 
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MT plots in SRs
n Post-fit plots

n Signals scaled to expected limits in the plots

03.015.1NF

01.099.0NF
WW
ggF

top
ggF





13.092.0NF

02.098.0NF
WW
VBF,1J

top
VBF




Pre-fit NFs

Post-fit NFs

(stat. only)

(stat. ⊕ sys.)
09.014.1NF

50.069.0NF
WW
ggF

top
ggF





2.01.00NF

1.012.1NF
WW
VBF,1J

top
VBF





ggF SR    VBF 1J SR       VBF 2J SR

Yongke Zhao 24Weihai



Limits for NWA

n Values above 6.4 pb at 200 GeV and above 0.008 pb at 4 TeV are excluded for ggF

n Values above 1.3 pb at 200 GeV and above 0.006 pb at 3 TeV are excluded for VBF

n Run 1 mass range: [300 GeV, 1.5 TeV]

ggF          VBF

Limits [pb] ggF VBF

Lowest mass (200 GeV) 6.4 1.3

Highest mass 0.008 (4 TeV) 0.006 (3TeV)
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Limits extension for NWA
n Limits on “σtotal (ggF + VBF) * BR”, as a function of “σggF / σtotal” 
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2HDM interpretation
n The limits for NWA are further translated to exclusion contours in 

the 2HDM model for the phase space where NWA is valid

GeV 300mH 

Type I Type II
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Limits for LWA

n Values above 5.2 pb at 200 GeV and above 0.02 pb at 4 TeV are excluded for ggF LWA (width = 
15%*mH)

n Values above 1.3 pb at 200 GeV and above 0.006 pb at 3 TeV are excluded for VBF LWA (width = 
15%*mH)

n Interference effects between signals and backgrounds also studied and found to be negligible

→ Width: 15%*mH

→ Widths:  

15%*mH, 10%*mH, 5%*mH

Run 1 mass range:

[200 GeV, 1 TeV]

ggF VBF

Limits (width = 15%*mH) [pb] ggF VBF
Lowest mass (200 GeV) 5.2 1.3

Highest mass 0.02 (4 TeV) 0.006 (3TeV)
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Limits for other models

below 1.3 TeV excluded     below 1.1 TeV excluded       below 750 GeV excluded

HVT  qqA   RS  ggF, c=1.0     RS ggF, c=0.5

GM  VBF   HVT  VBF     Spin-2 VBF
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Conclusion

n A search for heavy resonance performed in the X→WW→evμv 

decay channel at 13 TeV with Run 2 data at 36.1 fb-1

n No significant excess or evidence of new heavy resonance found

n Results interpreted by giving upper limits for several signal models, 

e.g. NWA, LWA, 2HDM, HVT, etc., covering a mass range of [200 GeV, 

5 TeV]
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Benchmark signal models
n SM-like Higgs with a Narrow Width Approximation (NWA)
n Two-Higgs-doublet models (2HDM)

u Type I and Type II 
n SM-like Higgs with a Large Width Assumption (LWA)

u width: 5%, 10% and 15% of mH

n Georgi-Machacek (GM) model
u single parameter: sin2θH

n Heavy vector triplet (HVT) model
u coupling strength: chgV (bosons) and g2cF/gV (fermions)

n A bulk Randall-Sundrum (RS) graviton model with a spin-2 Graviton
u coupling constant: 

n Effective Lagrangian model (ELM) with a spin-2 tensor resonance in the 
VBF production
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Event selection
SRs

CRs

optimized to 
improve sensitivity 
in SRs

optimized to improve 
WW purity and reduce 
Z+jets, W+jets in CRs
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Event selection
SRs

CRs

VBF 1J phase space
VBF 2J phase space

inversed cuts
loose cuts

Yongke Zhao 35Weihai



Signal acceptance
n Signal acceptance * efficiency
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Transverse mass
n The transverse mass of resonance system, which is the 

discriminating variable, mT, defined as:

where, MET is defined as the negative vectorial sum of the momenta 
of the calibrated objects in the detector:
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WW Sherpa-to-Matrix correction
n  The fit function for this correction was also checked to avoid bias from 

statistical fluctuation
n All the fit functions that are tried can be covered by the uncertainty band

ggF SR ggF WW CR
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Powheg-to-MadGraph correction
n Powheg (ggF NWA signals) provides only events with only up-to-one 

jet at the ME, therefore higher jet multiplicities are expected to be 

insufficiently described

n Scale factor for 2J (similar for 1J):
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PDF uncertainty
n PDF uncertainties for are actually applied as a function of mT

n For NNPDF,  standard deviation is used to estimate the uncertainty

Standard deviation:

n The envelope of the different 
PDF sets is taken as the total 
PDF uncertainty

top PDF uncertainty in ggF SR

More plots in backup slides
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Dominant systematics for signals
n QCD scale, PDF and PS uncertainties on signal acceptance

Sources(%) ggF SR VBF 1J SR VBF 2J SR
Scale - - 0.2 ~ 2.5
PDF < 0.4 < 1.5 < 1.6

PS model 1.3 ~ 3.1 13 ~ 28 2.3 ~ 15

ggF induced 
signals

Sources(%) ggF SR VBF 1J SR VBF 2J SR
Scale 0.9 ~ 2.8 1.9 ~ 3.6 1.0 ~ 7.3
PDF < 1.7 < 1.2 < 1.5

PS model 4.3 ~ 19 5.1 ~ 9.0 3.3 ~ 8.0

VBF induced 
signals

• The uncertainties have some dependences on the masses
• Only overall results shown below
• PS shower tune uncertainties also evaluated, but the the PS shower model 

uncertainties are significantly larger

n QCD scale uncertainties on event category migration
• 3% - 10% for ggF SR, 4% - 30% (30% - 60%) for VBF 1J (2J) SRs
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Top and WW PDF uncertainties in SRs

• Following PMG recommendations for NNPDF PDF set
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/PdfRecommendations#Standard_deviation

• Envelope of different PDF sets taken as total uncertainty as a function of MT in 3 

SRs (overall uncertainty used in CRs)
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Event yields in ggF regions
n Post-fit event yields
n Numbers are rounded by PDG rules

Uncertainties including both statistical and systematic uncertainties
Good agreement found between data and backgrounds
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Event yields in VBF regions
n Post-fit event yields
n Numbers are rounded by PDG rules

Uncertainties including both statistical and systematic uncertainties
Good agreement found between data and backgrounds
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MT binning optimization
n ICHEP mT binning

n New mT binning (optimized)

Ø ggF SR:
  [0,100,120,140,160,180,200,220,240,260,280,300,320,340,360,380,400,450,500,550,600,650,700,800,900,1000,3000]

Ø VBF SRs:
  [0,100,150,200,250,300,350,400,500,600,3000]

Ø ggF SR:
  [70, 100, 117, 138, 163, 193, 227, 268, 316, 372, 439, 517, 610, 719, 848, 1000, 1389, 1930, 3000]

Ø VBF SRs:
  [70, 100, 146, 215, 316, 464, 681, 1000, 3000]

n New mT binning (optimized, in log scale)
Ø ggF SR:
  [1.85, 2.00, 2.07, 2.14, 2.21, 2.29, 2.36, 2.43, 2.50, 2.57, 2.64, 2.71, 2.79, 2.86, 2.93, 3.00, 3.14, 3.29, 3.48]

Ø VBF SRs:
  [1.85, 2.00, 2.16, 2.33, 2.50, 2.67, 2.83, 3.00, 3.48]
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Plots after pre-section
Pre-fit

leadl,
Tp llm || ll

n Signals are normalized to expected limits
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MT plots in top CRs
n Top and WW NFs applied
n Top leadlep pt reweighting applied
n Signals are normalized to expected limits

ggF Top CR VBF Top CR

03.015.1NF

01.099.0NF
WW
ggF

top
ggF





13.092.0NF

02.098.0NF
WW
VBF,1J

top
VBF





Pre-fit
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MT plots in WW CRs
n Top and WW NFs applied
n Sherpa-to-Matrix correction applied on qq→WW
n Top leadlep pt reweighting applied
n Signals are normalized to expected limits

ggF WW CR VBF WW 1J CR

03.015.1NF

01.099.0NF
WW
ggF

top
ggF





13.092.0NF

02.098.0NF
WW
VBF,1J

top
VBF





Pre-fit

Yongke Zhao 48Weihai



MT plots in SRs

ggF SR    VBF 1J SR       VBF 2J SR

03.006.1NF

01.099.0NF
WW
ggF

top
ggF





13.092.0NF

02.098.0NF
WW
VBF,1J

top
VBF





Pre-fitn Top and WW NFs applied
n Sherpa-to-Matrix correction applied on qq→WW
n Top leadlep pt reweighting applied
n Signals are normalized to expected limits
n Using the optimized MT binning for the fit
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N-1 plots in ggF SR
Pre-fitn Top and WW NFs applied

n Top leadlep pt reweighting applied

n Signals are normalized to expected limits

leadl,
Tp llm || ll
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N-1 plots in VBF 1J SR
Pre-fitn Top and WW NFs applied

n Signals are normalized to expected limits

leadl,
Tp llm || ll
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N-1 plots in VBF 2J SR
Pre-fitn Top and WW NFs applied

n Signals are normalized to expected limits

leadl,
Tp llm || ll
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Pull plots for NWA H800 (ggF)
n Dominant sources:

Ø WW ME+PS

Ø Top leading lepton pt 

reweighting shape uncertainty 

Ø Top radiation (QCD scale)

Ø JER

Ø Signal QCD scale in VBF 1J SR

Ø B-tagging efficiency

Ø WW PDF uncertainty

More in supp. note
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Pull plots for NWA H800 (VBF)

n Dominant sources:

Ø Top radiation (QCD scale)

Ø  Top leading lepton pt 

reweighting shape uncertainty

Ø WW renormalisation scale

Ø JER

Ø Signal QCD scale in VBF 1J SR

Ø B-tagging efficiency

Ø Top MEPS

Ø WW k-factor uncertainty
More in supp. note
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Correlation plots for NWA H800
n Only NPs with coefficient > 0.4 are shown
n Correlation as expected
n Very similar plots for other mass points (more in backup slides)

ggF     VBF

More in supp. note
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Interference effects
n Generator: gg2VV
n The interference effects considered here include the interference effects 

between a heavy resonance and the SM WW continuum and the SM Higgs 
boson at 125 GeV

n The lineshape has been compared with MadGraph5_aMc@Nlo for SM-like 
heavy Higgs and good agreement observed

The yields are normalised to the 

integrated luminosity of the data 2015 

and 2016 (36.1 fb-1)
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Interference effects
n Interference effects increase with larger masses and widths

LWA 1TeV
Width: 5%   Width: 10%       Width:15%

      LWA 3 TeV
      Width: 5% Width: 10%     Width: 15%
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Interference effects
n Expected limits for LWA (width: 15%∙mH) [pb]

• Only a few mass points have been studied
• Signal cross section scaled to σH→WW = 1 pb in the input

Limits with interference     Compared to expected limits without interference

The effects for ggF LWA are negligible
The interference effects for VBF are smaller than ggF, and neglected
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