

Shu Li Tsung-Dao Lee Institute & Shanghai Jiao Tong Univ. On behalf of

Analysis Team

[email: atlas-exot-2016-30-editors@cern.ch]

Ayana Arce, Andrea Bocci, Wojtek Fedorko, Minyu Feng, Alfred Goshaw, Enrique Kajomovitz, Evgeniy Khramov, Ashutosh Kotwal, Shu Li, Bo Liu, Zhijun Liang, Xinchou Lou, Wei Tang, Vincent Wong,

Editorial Board

[email: atlas-exot-2016-30-editorial-board@cern.ch]

Oleg Brandt Elisabeth Petit Jianming Qian (Chair)

Short on motivations

- Essential for exploring the source of EWSB despite Higgs is discovered but the precise nature is not yet well known
- A dynamical mechanism of EWSB and fermion mass generation may yet involve a variety of heavy bosons of vector, scalar or even tensor particles with narrow resonances
- Benchmark models provide acceptance and efficiencies info for the signals of the spin-2/1/o fundamental/composite particles and the other models could be covered by their cross section normalizations
- A model—independent search at 13TeV for narrow resonances decaying to final states of W/Z/H+γ in boosted hadronic channel: an updated results of 2015→2015+2016

2015+2016 analysis outlines

- Goal: Search for heavy resonance decaying to V(qq)/H(bb)+γ final states
 - Only considered hadronic decay mode (~70%) and merge/boosted regime
 - Signature: Boosted large-R jet (R=1.0) and high p_T photon
- Benchmark models extended
 - Spin-o Zγ NWA (same as 2015)
 - Motivated by the extension of Higgs sector
 - spin=2 Zγ NWA (NEW)
 - Splitted into qq and gg initial states, separate interpretations
 - Higgs Characterisation model
 - Spin-1 Wγ NWA (NEW)
 - Induced by HVT model
 - Spin-1 Hγ NWA (NEW)
 - Higgs effective coupling model

Analysis inputs

Signal configuration and modeling

Channel	Generator	Spin	Production	V Polarization
Ζγ	Powheg+Pythia8	0	gg→X	Transvers
Ζγ	MadGraph+Pythia8	2	gg→X	Transvers
Ζγ	MadGraph+Pythia8	2	qq→X	Transvers
Wγ	MadGraph+Pythia8	1	qq→X	Longitudinal
Ηγ	MadGraph+Pythia8	1	qq→X	-

Main backgrounds

Channel	Generator	
γ+jets dominant	Sherpa	
SM W+ γ	Sherpa	
SM Z+ γ	Sherpa	
tt+ γ (all hadronic and no all hadronic)	MadGraph + Pythia8	

Object definition

- Photon:
 - p_T>250 GeV and |η|<2.37 (without crack region [1.37, 1.52])
 - Pass tight photon ID selection and tight calorimeter only isolation
- Jet:
 - Anti-k_t large-R jet (R=1.0), Trimmed (f_{cut}<5%, R_{sub}=0.2)
 - p_T>200 GeV and |η|<2.0
 - Apply boson tagging according to signal type
 - ntrk<30 for Z/W+γ channel selection.
 - Anti-kT R=0.2 track-jet btagging using MV2c10 algorithm @70% efficiency.
- Overlap removal: remove large-R jet with $\Delta R(J, \gamma) < 1.0$.

Boosted boson large-R Jet Mass: tagging inefficiency w.r.t. polarization

- The inefficiency indicated in the jet mass spectra evolves as the heavy resonance goes lower
- Official boson jet tagger leads to inefficiency in Zy spin-o/2 and Hy channel.
 - Should be revisited for next round
 - \bullet Less colliminating in dedicate polarization scheme ${}^{\scriptscriptstyle 18/6/_{\scriptscriptstyle 26}}$

Event selection and categorization

Baseline selection

- high p_T photon trigger: HLT_g140_loose
- Preselection: GRL + LooseBadJet cut on Resolved jets
- At least one photon in barrel calorimeter (|η|<1.37)
- 1 Tight Photon in the barrel & 1 Fat Jet (anti-kt R=1.0)
- Jet and photon OR: ΔR(jet, γ) > 1.0
- Categorization:
 - Zγ: btagged, D2, Vmass, else
 - Wγ: D2, Vmass, else
 - Hγ: btagged
 - Note: "Else" recover high mass eff.
 - Note: only $H \rightarrow bb$ is considered

Categorization flow chart

2015+2016 signal efficiency review

Signal shape modeling and parameterization

- Signal peak is modelled as Crystal ball + Gaussian function $f_{\text{signal}}(m_{\gamma J}) = f_{\text{CB}} \cdot \text{CB}(m_{\gamma J'} \mu, \sigma_{\text{CB'}} \alpha_{\text{CB'}} n_{\text{CB}}) + (1 - f_{\text{CB}}) \cdot \text{Gauss}(m_{\gamma J'} \mu, \sigma_{\text{Gauss}})$
- Parameters are parametrised as polynomial function
- σ_{CB} , σ_{Gauss} , f_{CB} is parametrised with 2-order polynomial
- α_{CB} is parameterised with 3-order polynomial
- n_{CB} is fixed for Wγ and Zγ, but float and parameterised as 2-order polynomial in Hγ

Background fit

Dijet fit function adopted to benchmark the M(J γ) fit $\frac{dn}{dx} = N(1-x)^{p_1} x^{p_2+p_3 log(x)+p_4 log^2(x)+O(log^3(x))}$

of fit param. choice driven by SS-tests and F-tests

(Unbinned) Fit range settings:

- btag: 800-3200 GeV
- d2: 800-7000 GeV
- zmass: 800 7000 GeV
- else: 2500 7000 GeV

Spurious Signal test procedure

- Procedures of Spurious Signal Test:
 - (1) Fit with bkg+sig hypothesis on the MC (with expected error from data)
 - \rightarrow numbers of spurious signal events (N_{SS}) & fitted background function
 - (2) A. Background event counting with 2 sigma around signal peak
 - \rightarrow "background uncertainty", $\delta_s =$ Uncertainty in PoissonDistribution(B_{expected})
 - B. Fix background parameters as fitted in (1), and fit again with bkg+sig hypothesis (with MC stat. error)
 - \rightarrow 1-sigma, σ ss, error bands due to MC stat. power = uncertainty of NSS
 - (3) Plot N_{ss}/δ_s as a function of mJy (tested from 860 GeV to 7 TeV, increment of 20 GeV)
- The conditions for a function to be accepted is that:
 - Minimal number of parameters when spurious signal converges
 - (In general) N_{ss} +/- σ_{ss} < 20% δ_s
- Abs(N_{ss}) is included as systematic uncertainties to obtain conservative limits.

MC based Spurious Signal test results: Ζγ

Choosir	Choosing:			
btag	-> 2-parameter			
d2	-> 2-parameter			
vmass	-> 4-parameter			
else	-> 2-parameter			

N_{ss}/ð_s 2 parameters 2 parameters 3 parameters btag 3 parameters d2 4 parameters 4 parameters 5 parameters 5 parameters 6 parameters 6 parameters 0.5 0.5 0 -0.5 -0.5-1.5 -1.5 -2 -21000 1000 1500 2000 2500 3000 M, J [GeV] 6000 M_{y J} [GeV] 2000 3000 4000 5000

Large spurious signal at low mass due to MC fluctuation.

2015+2016 Zγ mass spectra (spin-o)

2015+2016 Zy limits

2015+2016 Wy and Hy limits

Reminder: High mass resonance search in X->Zγ final states, leptonic vs hadronic

- The 2016 analysis of hadronic channel makes use of categorization in combination of btagged category to enhance the low mass sensitivity
 - W/H+γ channels are done for the 1st time!

18/6/26

р

W/Z/ł

Physics Briefing highlight

🔀 882 Photos and videos

<u>arXiv:1805.01908</u> <u>ATLAS Physics Briefing [link]</u> <u>ATLAS Official twitter highlight [link]</u>

ATLAS Experiment @ @ATLASexperiment · 53m [Physics Briefing] Searching for forces beyond the Standard Model: a new ATLAS measurement extends searches for new bosons up to masses about 70 times the mass of the Z boson. Find out more: cern.ch/go/p9Zj

Summary

- W/Z/H+γ resonance search updated with full 2015+2016 pp collision dataset at ATLAS
- Upper limits are set on the production cross section times decay branching ratio to Z/W(H) + γ of new resonances with mass between 1.0 and 6.8(3.0) TeV.
- The results extend the mass range and broaden the scope of previous searches for massive boson resonances decaying to
 Zy, Wy and Hy final states. And Wy/Hy limits are done for the first time!

Spare

Search for $Z\gamma$, $W^{\pm}\gamma$ and $H\gamma$ resonances in boosted large-R jet plus photon final states with 36.5 fb⁻¹ pp collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector

Ayana Arce^a, Andrea Bocci^a, Wojtek Fedorko^c, Minyu Feng^a, Alfred Goshaw^a, Enrique Kajomovitz^a, Evgeniy Khramov^d, Ashutosh Kotwal^a, Shu Li^a, Bo Liu^{b,e}, Zhijun Liang^b, Xinchou Lou^b, Wei Tang^a, Vincent Wong^c

^aDuke University ^bIHEP ,Beijing ^cUniversity of British Columbia ^dJINR Dubna ^eIowa State University

Support Note: <u>https://cds.cern.ch/record/2227222</u> Paper v1.0: <u>https://cds.cern.ch/record/2298713/files/EXOT-2016-30-001.pdf</u>

Editorial Board: Jianming Qian (chair), Oleg Brandt, Elisabeth Petit

Background modeling and DATA/ MC agreement

Leading photon pT distribution in Zy channel

Zy signal shape modeling

23

Wy signal shape modeling

Hy signal shape modeling

Boosted boson large-R Jet Mass: tagging inefficiency w.r.t. polarization

- W/Z large-R jets' mass sensitive to polarization of the given model
- Official boson jet tagger leads to inefficiency in Zy spin-o/2 and Hy channel.
 - Should be revisited for next round
 - Less colliminating in dedicate polarization scheme
 - May also need to test of pruning effect

Channel	Generator	Spin	Production	V Polarization
Zγ	Powheg+Pythia8	0	gg→X	Transvers
Zγ	MadGraph+Pythia8	2	gg→X	Transvers
Zγ	MadGraph+Pythia8	2	qq→X	Transvers
Wγ	MadGraph+Pythia8	1	qq→X	Longitudinal
Hγ	MadGraph+Pythia8	1	qq→X	- 26

MC based Spurious Signal test results: Wγ

Choosir	Choosing:			
d2	-> 2-parameter			
vmass	-> 4-parameter			
else	-> 2-parameter			

Large spurious signal at low mass due to MC fluctuation.

MC based Spurious Signal test results: Ηγ

2-param does sufficiently well, Consistent choice as it does for Zγ

Unblinded results: Wy and Hy

Selection	Event yield			
Baseline	135305			
	Category			
	BTAG	D2	ZMASS	ELSE
$Z\gamma$ search	55	1923	12680	120647
$H\gamma$ search	138	NA	NA	NA
$W\gamma$ search	NA	1683	11867	121755

Hγ (btagged category)

P-value per channel

30

Summary of the categorization power

In 2015 analysis, only D2 category was considered.

Big improvement at low mass after adopting btagging

Big improvement and high mass extension after adopting else category to recover the signal acceptance in a bgd free region

18/6/26

Impact of systematics uncertainties

