

# **Development of large area mosaic high rate MRPC for CMS muon upgrade**

Yancheng Yu Department of Engineering Physics, Tsinghua University, Beijing, China June 29<sup>th</sup>, 2018





- Introduction of real-size mosaic MRPC
- 904 cosmic test
- HZDR beamtest
  - Beamtest preparation and setup
  - Preliminary result
- GIF++ beamtest
- Impedance of transmission lines in MRPC
  Detector

### ■ Summary











#### Mosaic design 1 : glue glass









#### Mosaic design 2 : block by fishing line









#### **Mosaic design 2 : block by fishing line**

#### Beam test @ ELBE, HZDR, Sep, 2015



S24, S25 :  $4 \times 4 \text{ cm}^2$ S11 :  $5 \times 5 \text{ mm}^2$ S1, S2, S3, S4 :  $2 \times 2 \text{ cm}^2$ 



Gas supply: 90% Freon, 5% iso-butane, 5% SF6, 50ml/min



#### Mosaic design 2 : block by fishing line



计数率>40kHz/cm<sup>2</sup>

Cluster size<1.3

Efficiency  $\rightarrow$  95%

#### Time resolution ~60ps



Real size mosaic MRPC.



Strip length:

1 m

mosaic together

#### Cosmic test at CERN 904





#### Cosmic test at CERN 904



Cosmic ray test at CERN in Feb, 2017: Scan000086: 5000 trigger events.



#### HZDR beamtest: Preparation



#### Maxime and xiaolong brought the Mosaic MRPC to HZDR by car on March 24<sup>th</sup>.



Gas box was again opened to switch the Jupiter HV connector to SHV connector. Gas was flushed with a component: 90%  $C_2H_2F_4 + 5\% i-C_4H_{10} + 5\% SF_6$ .

#### HZDR beamtest: Setup





#### HZDR HV Scan: Setup



**Run005** ~ **Run021**: HV:  $\pm 5400$  V ~  $\pm 6800$  V; Rate: 11 kHz/cm<sup>2</sup>. Beam spot position: Horizontal – center; Vertical: between 3<sup>rd</sup> and 4<sup>th</sup> strip.

Define the horizontal center on the mosaic interface as zero point, beam spot at (-8, -30).







#### HZDR HV Scan: Current and Cluster Size

Rate: 11 kHz/cm<sup>2</sup>



#### HZDR HV Scan: Efficiency



#### HZDR HV Scan: Time Resolution 64 Run005 ~ Run009 62 Time Resolution (ps) 95 82 87 09 87 09 Run017 ~ Run021 52 $TOF = \left(\frac{LeftLead + RightLead}{2} - LeadRef\right) - (RF - TRef)$ $TOT = \left(\frac{LeftTrail + RightTrail}{2} - TrailRef\right) - \left(\frac{LeftLead + RightLead}{2} - LeadRef\right)$ 50 5600 5800 6000 6200 6400 5400 6800 6600

HV (V)

#### HZDR Rate Scan





When increasing from 2 kHz/cm<sup>2</sup> to 5 kHz/cm<sup>2</sup>, rate went directly to 120 kHz/cm<sup>2</sup>. Current went up to 8  $\mu$ A. After 10 s, rate dropped back to 5 kHz/cm<sup>2</sup>, but **MRPC can't work** anymore.

#### HZDR Rate Scan: Efficiency



HV scan at different rate of 0.35 kHz/cm<sup>2</sup>, 2.3 kHz/cm<sup>2</sup> and 11 kHz/cm<sup>2</sup> before the MRPC was damaged.



#### HZDR Rate Scan: Time Resolution



HV scan at different rate of 0.35 kHz/cm<sup>2</sup>, 2.3 kHz/cm<sup>2</sup> and 11 kHz/cm<sup>2</sup> before the MRPC was damaged.



#### **HZDR** Position Scan



Two position scan at 295 mm and 165 mm from zero point.



#### HZDR Position Scan







At – 295 mm.





At – 165 mm.

#### HZDR Position Scan



Position scan at rate 10 kHz/cm<sup>2</sup>, HV  $\pm$  6000V.



Vertical mosaic interface's influence on efficiency is more obvious, around 5% lower.

#### GIF++ beamtest: Preparation









- Chamber has been repaired at CERN in Sep, 2017
- It was flushed with CMS gas: 95.2%  $C_2H_2F_4 + 4.5\% i-C_4H_{10} + 0.3\% SF_6$ .
- Dark current was 0.02  $\mu$ A at  $\pm 5000 \text{ V}$

# GIF++ beamtest: Setup





### GIF++ beamtest:HV Scan





There is a big **working point shift** at different gas mixture!

# GIF++ beamtest:Rate Scan





• There is no efficiency loss along with high rate. Efficiency always reaches about 94% at  $\pm$  6000V.



- □ **Impedance matching** of the signal transmission line to the input impedance of the front-end electronics is very critical.
- The impedance test platform based on Digital Sampling Oscilloscope (DSA8300) has been set up.
- □ It allows for differential or common mode **TDR or S-parameter** testing of two coupled lines.





#### Figure 1 Impedance Test Platform





PCB Design with different width of strips

#### **MRPC** parameters:

- Strips width : 3.5, 5, 7, 9, 12, 15(mm)
- The number of gas gaps: 4, 6, 8
- The number of stacks: 1, 2, 3, 4
- The thickness of gaps: 0.12, 0.20, 0.28(mm)

----Determined by fishing line

- The thickness of **float glass**: 0.23, 0.7 (mm)
- > 72 kinds of different structures of the

detectors have been finished and tested

▶ 432 sets of impedance data

Goal:

Study on the relationship between the impedance and the width of strip, the thickness of gaps.....

□ Develop an approximate formula for impedance estimation



Impedance Results of three single-stack MRPCs





Impedance Results of MRPC with different stacks

$$Z_{0,ns} = \frac{\left(1 + 0.895\right) \times Z_{0,single-stack}}{ns + 0.895}$$





The coefficients have been determined by analysing experimental data by **nonlinear least squares** (NLS) algorithm with MATLAB.



#### Summary



- A good solution to develop large area high rate MRPC
  Cosmic ray test at CERN
  - ✓ Efficiency above 95% at  $\pm$ 6800V.
  - $\square$  30 MeV electron beam at HZDR at rate of 10kHz/cm<sup>2</sup>
  - $\checkmark\,$  Efficiency 95% , time resolution around 55ps at  $\pm\,6800V$
  - $\checkmark$  Efficiency loss at mosaic interface is very low.
  - GIF++ beamtest with CMS dry gas
  - ✓ Efficiency can reaches about 94% at  $\pm$  6000V at rate of 10kHz/cm<sup>2</sup>.
- > New material--Low resistive glass
  - □ Working voltage shift at different gas mixture.

An approximate formula for the impedance of MRPC based on float glass has been proposed.



#### Thank You!

- Yu Yancheng
- Department of Engineering Physics,
- Tsinghua University, Beijing, China
- June 29<sup>th</sup>, 2018



### Backup

#### Structure and performance of small mosaic MRPC





Fig.1 structure of mosaic MRPC



Fig.3 Efficiency, time resolution and cluster size

Table 1 Component of mosaic MRPC

| MRPC      | Size (mm)                    |  |  |
|-----------|------------------------------|--|--|
| Component |                              |  |  |
| Honey     | 255×472×6                    |  |  |
| Comb      |                              |  |  |
| PCB       | $320 \times 540 \times 0.7$  |  |  |
| Mylar     | $260 \times 480 \times 0.18$ |  |  |
| Mosaic    | 250×470×0.7 &                |  |  |
| Glass     | $250 \times 200 \times 0.7$  |  |  |
| Spacer    | 0.5                          |  |  |
| Gap       | $0.25 \times 5$              |  |  |





Fig.2 Noise rate

37





3mm







#### Geometry of HZDR beamtest setup



| The geometry of the setup is as follows: |             |           |       |        |          |  |  |
|------------------------------------------|-------------|-----------|-------|--------|----------|--|--|
| element                                  | material    | thickness | width | height | diameter |  |  |
|                                          |             | mm        | mm    | mm     | mm       |  |  |
| window                                   | Be          | 0.2       |       |        | 40       |  |  |
| drift                                    | air         | 140       |       |        |          |  |  |
| S24                                      | BC408       | 2         |       |        | 40       |  |  |
| drift                                    | air         | 133       |       |        |          |  |  |
| S25                                      | BC408       | 2         |       |        | 40       |  |  |
| drift                                    | air         | 225       |       |        |          |  |  |
| S1S2                                     | BC418       | 5         | 20    | 20     |          |  |  |
| drift                                    | air         | 115       |       |        |          |  |  |
| S14                                      | BC408       | 2.5       | 5     | 15     |          |  |  |
| drift                                    | air         | 105       |       |        |          |  |  |
| S13                                      | BC408       | 2.5       | 15    | 5      |          |  |  |
| drift                                    | air         | 25.00     |       |        |          |  |  |
| box                                      | aluminum    | 3         |       |        |          |  |  |
| MRPC                                     | glass       | 215       |       |        |          |  |  |
| drift                                    | working gas | 435       |       |        |          |  |  |
| box                                      | aluminum    | 3         |       |        |          |  |  |
| drift                                    | air         | 650       |       |        |          |  |  |
| 56                                       | BC408       | 5         | 35    | 35     |          |  |  |
| drift                                    | air         | 155       |       |        |          |  |  |
| 5354                                     | BC418       | 5         | 20    | 20     |          |  |  |



#### HZDR beamtest: Setup



Timing of trigger.



File Horizontal Trigger Vertical Math Cursor Meas Masks Search Analysis Display Tutorials

#### Run005: Efficiency





#### Run005: Time Resolution



#### Run005: Time Resolution



#### HZDR Rate Scan: Efficiency

