

W/Z physics in CDR

Zhijun Liang

IHEP,CAS

News

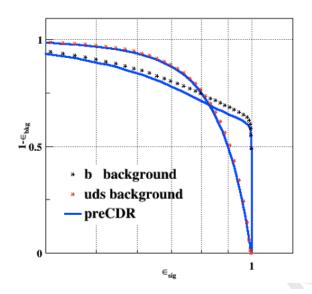
- Some discussion about CEPC Z pole running.
 - http://indico.ihep.ac.cn/event/7709/
 - Two possibility:
 - E=90 GeV, L=1.6 X 10³⁵ cm⁻²s⁻¹, solenoid field = 3T (new default)
 - Two year running proposed by accelerator team
- WW threshold scan
 - Proposal from accelerator team
 - One year running about 160GeV, 3T
 - Total luminosity 3.2 ab⁻¹

CDR writing

- CEPC CDR draft is on git
 - http://cepcgit.ihep.ac.cn/cepcdoc/CDR/tree/master/CDR_draft
 - need to register a new account for the first time)
- To checkout the CDR:
 - git clone git@cepcgit.ihep.ac.cn:cepcdoc/CDR.git
- Plan to cover the prospects of 6-7 key parameters.

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	$2~{ m MeV}$	$0.5~{ m MeV}$	Z threshold scan runs	$1ab^{-1}$
m_W	$33~{ m MeV}$	$2-3~{ m MeV}$	WWthreshold, ZH runs	$5 { m ab}^{-1}$
A^b_{FB}	1.7%	0.1%	Z threshold scan runs	$1 \mathrm{ab}^{-1}$
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.01%	Z threshold scan runs	$1 \mathrm{ab}^{-1}$
R_b	0.3%	0.05%	Z pole	$1 \mathrm{ab}^{-1}$
$N_{ u}$	1.7%	0.05%	ZH runs	$5\mathrm{ab^{-1}}$
R_{μ}	0.2%	0.01%	Z pole	$1 \mathrm{fb}^{-1}$

Production with 3T magnetic field and new geometry


- Afb(I): lepton angular resolution
 - 100k full sim Z->ll at Z pole to study lepton angular resolution
 - 10M~100M fast sim to Z->II and Z->tautau to understand background and perform fit for weak mixing angle
- W mass (direct approach): jet energy resolution
- N_v : photon energy resolution
- R_b: "B jet efficiency" vs "cjet/light rejection "
 - Need more Z->bb simulation ?

Backup

Performance input

- Identify some performance input needed to support the W/Z physics prospect study
 - May need to repeat some study with 3T magnetic field and new detector geometry
- Afb(I): lepton angular resolution
- R_b: "B jet efficiency" vs "cjet/light rejection "
- W mass (direct approach): jet energy resolution
- W mass (threshold scan): ?
- N_v: photon energy resolution

CEPC W/Z physics Plan for CDR

- Plan to cover the prospects of 6-7 key parameters.
- Text for CDR need to ready soon
- Contributions are welcome

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	$2~{ m MeV}$	$0.5~{ m MeV}$	Z threshold scan runs	$1ab^{-1}$
m_W	$33~{ m MeV}$	$2-3~{ m MeV}$	WWthreshold, ZH runs	$5 { m ab}^{-1}$
A^b_{FB}	1.7%	0.1%	Z threshold scan runs	$1 \mathrm{ab}^{-1}$
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.01%	Z threshold scan runs	$1 \mathrm{ab}^{-1}$
R_b	0.3%	0.05%	Z pole	$1 \mathrm{ab}^{-1}$
$N_{ u}$	1.7%	0.05%	ZH runs	$5\mathrm{ab^{-1}}$
R_{μ}	0.2%	0.01%	Z pole	$1 \mathrm{fb}^{-1}$