W Mass Measurement in CEPC

Presented by ¹Pei-Zhu Lai (賴培築)

Supervisor: ²Man-Qi Ruan, ²Gang Li, ²Bo Liu, ¹Chia-Ming Kuo ¹National Central University, Taiwan ²Institute of High Energy Physics, China Electroweak Measurement Meeting

Mar 12, 2018

Last Time to Do List

- Assume WW \rightarrow Iv jj events only
- Statistical sensitivity ~ RMS_{Mvis}/sqrt(N_w)
- To estimate calibration systematics :
 - Z calibration statistical uncertainty ~ RMS_{Mvis}/sqrt(N_z)
 - $Z \rightarrow W$ extrapolation:
 - M_{vis} for W → ud, cs, us, cd

(#, mean value, RMS)

- M_{vis} for Z \rightarrow uu, dd, ss, cc, bb
- M_{vis} vs M_{true} (to check linearity) in W and Z events
 - Rejection of Z → bb/cc events, and efficiency for Z → uu/dd/ss, or a typical b-tagging working point

$Z \rightarrow (uu, dd, cc, ss, bb) (50 \le m_Z \le 160)$

	Z→uu	Z→dd	Z→cc	Z→ss	Z→bb
Entries	277624	337688	276937	338912	337928
RMS	4.400	4.398	4.975	4.738	5.443
Mean	92.164	92.004	91.126	91.653	89.958
RMS/√Nz	0.0084	0.0076	0.0095	0.0081	0.0094

m _z = 91.1876	m _u = 2.2 MeV	m _c = 1.27 GeV	m _t = 173 GeV
	m _d = 4.7 MeV	m _s = 96 MeV	m _b = 4.6 GeV

W->(ud, cs, us, cd) ($40 < m_W < 160$)

Calculate the value from the fitting results.

Mean value systematically higher than current measurement's value, because the additional lepton.

The performance is quite stable. Right column is poor than left one because cquark.

Mar 12, 2018

	W→ud	W→cs	W→us	W→cd
Entries	4355461	9178827	4593124	4592346
RMS	4.002	4.168	4.009	4.007
Mean	81.517	81.250	81.507	81.499
RMS/√N _w	0.0019	0.0014	0.0019	0.0019

m _w = 80.385	m _u = 2.2 MeV	m _c = 1.27 GeV	m _t = 173 GeV
	m _d = 4.7 MeV	m _s = 96 MeV	$m_b = 4.6 \text{ GeV}$

CEPC

m_{jj} vs. $m_{true} | Z \rightarrow (uu, dd, cc, ss, bb)$

CEPC

m_{jj} vs. m_{true} | W->(ud, cs, us, cd)

- The mjj higher part mainly caused by additional lepton, lower part caused by the detector acceptance.
 Need to veto the
- 10² Need to veto the additional lepton and then extract the slope.

mail pfo VS. $\cos\theta < 0.99$ mail Vis MC

mail pfo VS. $\cos\theta < 0.99$ mail Vis MC

CFF

JER & JES(Reco-Gen)

■ JER/JES of heavy flavor quark are worse than light flavor one about 0.5%.

Pei-Zhu Lai (NCU, Taiwan)

Flavor and En dependent calibration by JES

CET

- We have the calibration constants of each flavor from Z.
- RMS of Z and W invariant mass distribution is bigger when the final state is the heavy flavor quark, but the condition of mean is converse.
- The value in each category in WW process is quite stable.
- We know several factors which caused the vertical line in the 2-D histogram,

ISR photon, $|\cos\theta|$, and additional lepton.

- The last mission in the Maarten's to do list. What is the b-tagging and c-tagging cut value?
- Compare the m_{jj} /m_{true} after two ways calibration to fine the best one. One way is that calibrated by the energy and flavor dependent JES. Another is that calibrated by the each flavor dijet's invariant mass in ZZ process.
- Add the requirement to reduce the vertical line in the 2-D histogram, and then try to extract the slope in the m_{jj} vs. m_{true} plots in each category.

Back up

Z->(uu, dd, cc, ss, bb)

$Z \rightarrow (uu, dd, cc, ss, bb) (50 \le m_Z \le 160)$

- Suppress the effect from the low mass range. (Calculate the σ, x̄ in this range)
- u-, c-, b- statically sensitivity is higher than the others.
- Does mean value has meaning for calibration? We use the peak position to calibrate right?

W->(ud, cs, us, cd)

- Calculate the value eventby-event.
- Mean value systematically higher than current measurement's value, because the additional lepton.
- The performance is quite stable. Right column is poor than left because c-quark.

W->(ud, cs, us, cd) ($50 < m_W < 160$)

- In this mass range, the value dose not change too much.
- These plot is used to compare with the Z in the same range.